2022 NCSIP NETWORK CONFERENCE

PEOPIE PIPPOSSE PASSOW

THE PATHWAY TO SUCCESS

What's Essential in Math Intervention?

Sarah R. Powell, Ph.D.

Associate Professor

The University of Texas at Austin
www.sarahpowellphd.com

srpowell@utexas.edu

Introduce yourself.

Describe your role as an educator.
Describe the mathematics you support.

Share fun things from today and tag @sarahpowellphd!

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

MODELING

Step-by-step explanation
Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Modeling is a dialogue between the teacher and students.	MODELING Step-by-step explanation Planned examples	PRACTICE Guided practice Independent practice
	SUP Ask high-level and Eliciting frea Providing affirmative	RTS w-level questions t responses corrective feedback

"Today, we are learning about addition. This is important because sometimes you have different amounts - like money - and you want to know how much money you have altogether."

26 ＂Let＇s solve this problem．What＇s the problem？
＂To solve 26 plus 79， first decide about the operation．Should we add，subtract，multiply， or divide？＂

＂How did you know we want to add？＂
＂There＇s a plus sign．＂

"20 plus 70 equals 90. Let's write 90 right here below the equal line. What will we write?"
" 90 is the partial
sum when you add the tens. What does 90 represent?"

"Now, let's add the ones. What should we add?"
"6 plus 9."

"Let's write 15 below the 90. Where do we write the 15?"

" 15 is the partial
sum when you add
the ones. Now, let's add the partial sums together. What will we add?"
"90 plus 15."

Modeling needs to include planned examples.	MODELING Step-by-step explanation	PRACTICE Guided practice
	Planned examples	Independent practice
These examples should be sequenced so easier skills lead to more difficult skills.	SUPP Ask high-level and Eliciting frequ Providing affirmative	RTS W-level questions t responses corrective feedback

Talk about your modeling.
What math do you model? How do you model?

MODELING

Step-by-step explanation
Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

MODELING	PRACTICE
Step-by-step explanation	Guided practice
Planned examples	Independent practice
SUPPORTS	
Ask high-level and low-level questions	
Eliciting frequent responses	
Providing affirmative and corrective feedback	

MODELING	PRACTICE	Guided practice is practice in
Step-by-step explanation	Guided practice	
Planned examples	Independent practice	teacher and students
SUPPORTS		problems
Ask high-level and low-level questions		together.
Eliciting frequent responses		
Providing affirmative and corrective feedback		

MODELING

Step-by-step explanation
Planned examples

PRACTICE

Guided practice

SUPPORTS

Ask high-level and low-level questions

Eliciting frequent responses

Providing affirmative and corrective feedback

Independent practice is practice in which the students practice independently with teacher support.

"Now, you'll practice a problem on your own. Use your attack strategy!"

MODELING	PRACTICE
Step-by-step explanation	Guided practice
Planned examples	Independent practice

MODELING

Step-by-step explanation
Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
These Supports should be used in both Modeling and Practice.

| | MODELING | PRACTICE |
| ---: | :---: | :---: | :---: |
| | Step-by-step explanation | Guided practice |
| Planned examples | Independent practice | |

- Oral
- Written
- With manipulatives
- With drawings
- With gestures

MODELING
 PRACTICE

Step-by-step explanation
Planned examples
Guided practice
Independent practice

During Modeling and Practice, students should receive immediate feedback on their responses.

MODELING	PRACTICE
Step-by-step explanation	Guided practice

MODELING	PRACTICE
Step-by-step explanation	Guided practice
Planned examples	Independent practice

MODELING

Step-by-step explanation
Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback
Which of these supports do you use most often?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings

variable vs. variably cloudy

divide vs. Continental Divide

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math

4. Some math terms have more than one meaning

5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs

sum vs. some
base vs. bass

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
factor vs. multiple
hundreds vs. hundredths
numerators vs. denominator

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
mesa vs. tabla
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math

4. Some math terms have more than one meaning

5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
four vs. forty

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way

$$
\begin{aligned}
& \text { skip count vs. } \\
& \text { multiples }
\end{aligned}
$$

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way
rhombus vs.
diamond

vertex vs.
 corner

1. Some math terms are shared with English but have different meanings

2. Some math words are shared with English with similar meanings
(but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms have more than one meaning
5. Some math terms are similar to other content-area terms with different meanings
6. Some math terms are homographs
7. Some math terms are related but have distinct meanings
8. An English math term may translate into another language with different meanings
9. English spelling and usage may have irregularities
10. Some math concepts are verbalized in more than one way
11. Informal terms may be used for formal math terms

Which of these cause difficulty for your students?

Use formal math language

Use terms precisely

Use formal math language

Use formal math language

Use terms precisely

Use terms precisely

$\frac{8}{5}$	$\frac{2}{5}=\frac{8}{20}$
Mixed number fraction	Proportion
$1 \frac{3}{5}$	$4: 3$
Proper fraction	Unit fraction
$\frac{2}{9}$	$\frac{1}{6}$

Use terms precisely

Equation $9 x-4=7 x$
Expression $9 x-4$
Formula $a^{2}+b^{2}=c^{2}$
Function $f(x)$
Inequality $9 x-4>6 x$

Straight angle B

Adjacent angles

Alternate angles

Complementary angles

Corresponding angles

Supplementary angles

Vertical angles

Use terms precisely

Use terms precisely

PEOPLE PUIPOSE PASSION

Use formal math language

Use terms precisely

Word	Lightbulb Word
Definition	Picture

Numerator: how many parts of the whole
(4)

Ex. 10
Odd number: a number not divided evenly by 2

- Ex. 1, 3, 5, 7, 9....

Percent: a specific number in comparison to 100

- 74\%

Polygon: any enclosed shape that is made up of 3 or more straight lines

Dear Feisty Fifth Graders,

Today we have multiple opportunities to do exciting projects! For example, we are going to be doing a science experiment to see how the tilt of a ramp relates to how far a matchbox car will roll. There are several factors we will be looking at in this experiment. I look forward to hearing multiple ideas on how to set up this experiment.

One other thing that factors into our day is that we have an assembly before lunch. We will get to hear music from the high school play. I think we will hear multiple songs.

Sincerely, Ms. Livers

Here is a problem to start your day... in my letter I have used two words that are important math words for today's lesson. Can you find them and tell what they mean in this letter and what they mean when talking about numbers? (Answer this in your math notebook)

Rating	Word	Definition	Synonym(s)	Example	Sample Problem
2	$e x x^{\left(\frac{10}{s i n}\right)}$	a mathematical phrase combining operations, numbers and/or variables.	phrase algebraic expresion		Lucia earns $\$ 8$ per har for babysilting and gets a $\$ 5$ tip. Write an expression to represent the amount she would earn if she worted
2	joisole	a quantity that can change ortake many values. (reefers to the letere orsymbol representing the quantity)	unknown		The variable x represents the number of hous charlie worns in a week. Write an expression to vepresent his earnings if he carns $\$ 9$ per
	$p^{10000^{x}}$	the result when two or more numbers are multiplied	total answer	$\begin{array}{r} 3 \times 2=\frac{16}{\uparrow} \\ \text { product } \end{array}$	The product of 6 and a number is 24 . What is the number?
3	avo xiex	the result of a division crefers to the number of times the divisor divides the dividend)	answer	$\begin{aligned} & 18 \div 2=9 \\ & 2 \sqrt{9}<\text { qubticent }^{18} \end{aligned}$	Estimate the quotient when 365 is divided by 12.

The Pair of Elves are the same distance apart and will never intersect.

The Pair of Elves are on Parallel Lines

Riccomini et al. (2015)

Math Word Search \#6

Number Words 51 to 60
Use the word bank fo tind the number words in the grid below, Words appecr Use the word bank fo find the number words in the grid below, Words appe
herkontaly and vertically.

q	r	r	x	i	S	y	\dagger	f	i	f	i
U	i	x	g	k	f	b	e	f	f	i	f
y	\dagger	X	i	S	i	r	e	i	i	x	i
\$	b	W	\dagger	f	f	U	r	f	f	h	f
e	h	f	d	d	\dagger	0	h	\dagger	\dagger	Y	\dagger
C	X	i	h	n	y	f	\dagger	y	y	b	y
d	W	f	e	\$	S	y	y	n	e	j	\dagger
\bigcirc	y	\dagger	p	d	e	\dagger	\dagger	i	i	r	W
a	P	Y	U	i	V	f	f	n	g	j	\bigcirc
W	q	\bigcirc	0	y	e	i	i	e	h	a	a
X	n	n	d	m	n	f	f	C	\dagger	Y	n
\dagger	P	e	e	V	i	f	y	t	f	i	f
fifty-one fifty-five fifty- fifty-fwo fifty-six fifty- fifty-fhree fifty-seven sixty fifty-four											

ontps iliww puzzinbookninja com

Circles Vocabulary Practice

Across
4. What is an angle whose vertex is on the
ircle?
6. What is a line that place?
7. What is a segment whose endpoints are on th circle? . What is the point in the middle of the circle?
9. What is an angle whose vertex is the center the circle?
0. What is a chord that goes through the center of the circle?
11. What is a segment whose endpoints are the center and a point on the 12. What is an unbroken part of a circle?

Down

1. What is the name of the point where a tangent intersects the circle? 2. What is an arc whose endpoints are the endpoints of the diameter?
2. What is an arc that is encased on either side by two different segments? 5. What is a line that intersects the circle at 2 places?

una figura bidimensional (plana) con 4 lados, exactamente 1 par de los cuales son paralelos

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Concrete

Pictorial

Numerals and symbols and words

$34=3$ tens and 4 ones

$$
2+8=10
$$

$$
x-6=8
$$

$$
\begin{array}{r}
4,179 \\
+\quad 569 \\
\hline
\end{array}
$$

If you are left handed:

What's one of your favorite hands-on manipulatives?

If you are right handed:

What's one of your favorite virtual manipulatives?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Addition	Subtraction
Multiplication	Division

Addition	Subtraction
Multiplication	Division

It is essential to emphasize both conceptual and procedural learning.

Total (Part-Part-Whole, Combine)

Addition	Subtraction
Multiplication	Division

$$
2+3=5
$$

Join (Change Increase)

$$
2+3=5
$$

Total (Part-Part-Whole, Combine)

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Addition	Subtraction
Multiplication	Division

Join (Change Increase)

Pia had \$4. Then they earned \$5 for cleaning their room. How much money does Pia have now?

$$
3+9=
$$

If you have brown eyes:

What's a Total story to show addition?

If you don't have brown eyes:
What's a Change/Join story to show addition?

Separate (Change Decrease)

Addition	Subtraction
Multiplication	Division

$$
5-3=2
$$

Difference (Compare)

Addition	Subtraction
Multiplication	Division

$$
5-3=2
$$

Separate (Change Decrease)

Brady had 9 cookies. Then they ate 2 of the cookies. How many cookies does Brady have now?

Addition	Subtraction
Multiplication	Division

Difference (Compare)

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

$$
9-5=
$$

If you were born in North Carolina: What's a Change/Separate story to show subtraction?

If you weren't born in North Carolina: What's a Difference story to show subtraction?
Equal Groups

$$
3 \times 2=6
$$

Equal Groups (Array)

Comparison

Addition	Subtraction
Multiplication	Division

$$
3 \times 2=6
$$

Equal Groups

Diego has 2 boxes of crayons. There are 8 crayons in each box. How many crayons does Diego have altogether?

Addition	Subtraction
Multiplication	Division

Comparison

Vivienne picked 2 apples. Jessica picked 8 times as many apples as Vivienne. How many apples did Jessica pick?

$2 \times 5=$

If you aren't wearing glasses: What's an Equal Groups story to show multiplication?
If you are wearing glasses:
What's a Comparison story to show multiplication?

Partitive Division

Quotative Division

Addition	Subtraction
Multiplication	Division

Partitive

Stefanie has 12 apples. She wants to share them equally among her $\mathbf{2}$ friends. How many apples will each friend receive?

Addition	Subtraction
Multiplication	Division

Quotative

Nicole has 12 apples. She put them into bags containing 2 apples each. How many bags did Nicole use?

$$
12 \div 4=
$$

If you'd watch a comedy show:

What's a Partitive story to show division?
If you'd watch a drama how:
What's a Quotative story to show division?

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

Addition	Subtraction
Multiplication	Division

Build fluency with whole-number computation

15
$+\quad 28$

$\begin{array}{r}23 \\ \times \quad 9250 \\ \hline \quad 15 \\ \hline\end{array}$

Addition	Subtraction
Multiplication	Division

Build fluency with rational-number computation

$\frac{2}{3} \times \frac{3}{4}$
$\frac{9}{4}-\frac{3}{8}$

Build fluency with integer computation

Addition	Subtraction
Multiplication	Division

$$
\begin{aligned}
& -135 \div 2= \\
& \\
& -14-(-7)= \\
& \hline-12 \\
& \hline
\end{aligned} \begin{array}{r}
1.4 \\
+\quad-3.9
\end{array}
$$

Addition	Subtraction
Multiplication	Division

What type of fluency do your students need to develop?
How will you practice that?

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Students' Favorite Subjects

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many n students chose Math than chose Writing?

J.

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many n students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

Students' Favorite Subjects

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

reading

Students' Favorite Subjects

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

The graph shows the favorite subject of third-grade students. How many more students chose Math than chose Writing?

Lincoln had 8 pencils fewer than Roscoe. If Roscoe had 18 pencils, how many pencils did Lincoln have?

- Twice Per I . Split • puotient
- Area • Product • Divisor • Gut up
- In all • Multiple 1 . Dividend • Same
- Equal groups \quad. Divided by
- Multiplied by

EMultiplication 1 Division
Lincoln had 8 pencils fewer than Roscoe. If Lincoln had 18 pencils, how many pencils did Roscoe have?

PEOPLE PURPOSE PASSION

Description of Single-Step Word Problems ($n=132$)

Schema	Occurrence of schema		Any keyword		Schemaspecific keywords ${ }^{\text {a }}$		Multiple keywords ${ }^{3}$		Keyword(s) led to correct solution ${ }^{\text {a }}$	
	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{3}$ When a problem featured a keyword.										

${ }^{3}$ Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Mr. Rivera's taxable income is $\$ 20$ each hour before taxes are taken out. Mr. Rivera worked a total of 40 hours each week for 50 weeks.

What is the dollar amount, to the nearest dollar, taken out for taxes based on Mr. Rivera's taxable income?

```
Jessica rented 1 video game and 3 movies for a total of \(\$ 11.50\).
```

- The video game cost $\$ 4.75$ to rent.
- The movies cost the same amount each to rent.

What amount, in dollars, did Jessica pay to rent each movie?

The temperature of a substance decreased by $24^{\circ} \mathrm{C}$ per minute for 3 minutes. What was the overall change of the temperature of the substance?

Important notes about keywords

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")

But, do not tie a keyword to a specific operation!

2. Presenting protems by operation

Teaching Problem Solving

Have an attack strategy
 Teach word-problem schemas

Have an attack strategy

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RIDGES

Read the problem.
I know statement.
Draw a picture. Goal statement. Equation development. Solve the equation.

Have an attack strategy

RICE

STAR

Stop and read the problem carefully.
Think about your plan and the strategy you will use.
Act. Follow your plan and solve the problem.
Review your answer.

Have an attack strategy

SUPER

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
Picture it. Draw the scenario to show what is happening.
Explain the problem with a number sentence.
Rewrite the answer in a sentence.

SHINES

> Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it. Now solve the problem. Show your work.
> Examine your work for precision, accuracy, and clarity. Share your answer by writing a sentence.

Have an attack strategy

R-CUBES

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Read the problem.
Circle key numbers. Underline the question. Box action words. Evaluate steps. Solve and check.

Verify the plan with computation.
Examine the answer.

Have an attack strategy

UPS,

Understand
Read and explain.
Plan
How will you solve the problem?
Solve
Set up and do the math!
\checkmark СНеск
Does your answer make sense?

Have an attack strategy

UPS, Understand
 Read and explain.

Plan

How will you solve the problem?
Solve
Set up and do the math!
\checkmark CHECK
Does your answer make sense?

Teach word-problem schemas

Total

Equal Groups

Difference

Comparison

Change

Ratios/Proportions

Parts put together into a total

Daniela saw 3 canoes and 8 kayaks. How many boats did Daniela see?

> Total

Daniela saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Daniela saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total

P1
 $+$
 P2
 $=$
 T

B. In March and April, it rained a total of 11.4 inches. If it rained 3.9 inches in March, how many inches did it rain in April?

Difference

Greater and lesser amounts compared for a difference

Adrianna has 10 pencils. Tracy has 4 pencils. How many more pencils does Adrianna have?

Adrianna has 6 more pencils than Tracy. If Tracy has 4 pencils, how many does Adrianna have?

Greater amount
 Lesser amount

Tracy has 6 fewer pencils than Adrianna. Adrianna has 10 pencils. How many pencils does Tracy have?

Difference

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Difference

Difference

Jana has 107 wooden beads and 68 glass beads. How many more wooden beads than glass beads does Jana have?

Enter your answer in the response box.

Change

An amount that increases or decreases

Nickole had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Nickole have now?

Nickole had 6 notebooks. Then, she bought a few more notebooks. Now, Nickole has 9 notebooks. How many notebooks did she buy?

Nickole had some notebooks. Then, she bought 3 notebooks. Now, Nickole has 9 notebooks. How many notebooks did she have to start with?

Change

An amount that increases or decreases

Samantha baked 20 cookies. Then, she ate 3 of the cookies. How many cookies does Samantha have now?

Samantha baked 20 cookies. Then, she ate some of the cookies. Now, she has 17 cookies. How many cookies did Samantha eat?

Samantha baked some cookies. She ate 3 of the cookies and has 17 cookies left. How many cookies did Samantha bake?

Change amount

Start amount

Total

"Are parts put together for a total?"

Difference

"Are amounts compared for a difference?"

Change

"Does an amount increase or decrease?"

Change

$\mathrm{ST}+/-\mathrm{C}=\mathrm{E}$

Change

28 There were 25 people in a library. Some people left the library and went home. Then there were 13 people remaining in the library. Which number line represents one way to determine the number of people who left the library?
\qquad

H

25-? 13

$?=12$ people left

Groups multiplied by number in each group for a product

Toni has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Toni have altogether?

Toni has 24 crayons. They want to place them equally into 2

Number in

 boxes. How many crayons will Toni place in each box?Toni has 24 crayons. They put them into boxes with 12 crayons each. How many boxes did Toni use?

Equal Groups

"Are there groups with an equal number in each group?"

THE PATHWAY TO SUCCESS

Equal Groups

GR $\times \mathrm{N}=\mathbf{P}$

Equal Groups

Jack has 24 fish. He puts them into 4 bowls. Each bowl has an equal number of fish.

How many fish are in each bowl?

Comparison

Set multiplied by a number of times for a product

Brooke ran 6 minutes. Shaleeni ran 4 times longer than Brooke. How many minutes did Shaleeni run?

Set

Number of times

Product

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Comparison

S $\times \quad$ T $=\quad P$

Susan has 3 times as many books as Mary. Mary has 18 books. Which equation can be solved to figure out how many books Susan has?

Ratios/Proportions

Description of relationships among quantities

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Melissa baked cookies and brownies. The ratio of cookies to brownies was 3:5. If she baked 25 brownies, how many cookies did she bake?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison

"Is a set compared a number of times?"

Ratios/Proportions

"Are there relationships among quantities if this, then this?"

Ratios/Proportions

Description of relationships among quantities

Teach word-problem schemas

Total

Difference

Equal Groups

Comparison

Ratios/Proportions

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Intensive	Tools	Implementation	Intervention	Information
Intervention *	Charts v	Support •	Materials *	For...

Intensive Intervention in Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction. This content is designed to support faculty and professional development providers with instructing preservice and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

Intensive instruction was recently identified as a high-leverage practice in special educations , and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Interventions and with support from the CEEDAR Centers , developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

MODULE 4: INTENSIVE

 MATHEMATICS INTERVENTION: INSTRUCTIONAL DELIVERY

MODULE 5: INTENSIVE MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES

Sarah R. Powell, Ph.D.

Associate Professor

The University of Texas at Austin
www.sarahpowellphd.com

srpowell@utexas.edu

