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Abstract— In this article, we explore the feasibility of 

applying proximal policy optimization, a state-of-the-art 

deep reinforcement learning algorithm for continuous 

control tasks, on the dual-objective problem of controlling 

an under actuated autonomous surface vehicle to follow an a 

priori known path while avoiding collisions with non-

moving obstacles along the way. The AI agent, which is 

equipped with multiple rangefinder sensors for obstacle 

detection, is trained and evaluated in a challenging, 

stochastically generated simulation environment based on 

the OpenAI gym Python toolkit. Notably, the agent is 

provided with real-time insight into its own reward function, 

allowing it to dynamically adapt its guidance strategy. 

Depending on its strategy, which ranges from radical path-

adherence to radical obstacle avoidance, the trained agent 

achieves an episodic success rate close to 100%.  

Keywords: Collision, Reinforcement, Python, 

Transportation. 

I. INTRODUCTION 

Autonomy offers surface vehicles the opportunity to 

improve the efficiency of transportation while still cutting 

down on greenhouse emissions. However, for safe and 

reliable autonomous surface vehicles (ASV), effective path 

planning is a pre-requisite which should cater to the two 

important tasks of path following and collision avoidance 

(COLAV). In the literature, a distinction is typically made 

between reactive and deliberate COLAV methods. In short, 

reactive approaches, most notably artificial potential field 

method, dynamic window methods, velocity obstacle 

methods and optimal control-based methods, base their 

guidance decisions on sensor readings from the local 

environment, whereas deliberate methods, among them 

popular graph-search algorithms such as A* and Voronoi 

graphs as well as randomized approaches such as rapidly-

exploring random tree and probabilistic roadmap, exploit a 

priori known characteristics of the global environment in 

order to construct an optimal path in advance, which is to be 

followed using a low-level steering controller. By utilizing 

more data than just the current perception of the local 

neighborhood surrounding the agent, deliberate methods are 

generally more likely to converge to the intended goal, and 

less likely to suggest guidance strategies leading to dead 

ends, which is frequently observed with reactive methods 

due to local minima. However, in the case where the 

environment is not perfectly known, as a result of either 

incomplete or uncertain mapping data or due to the 

environment having dynamic features, purely deliberate 

methods often fall short. The block diagram for 

Autonomous boat driving system is shown in figure 1. 

 

Figure.1: Example diagram for Autonomous boat driving 

system. 

II. RELATED WORK 

2.1 The vector field histogram-fast obstacle avoidance 

for mobile robots: 

A new real-time obstacle avoidance method for mobile 

robots has been developed and implemented. This method, 

named the vector field histogram (VFH), permits the 

detection of unknown obstacles and avoids collisions while 

simultaneously steering the mobile robot toward the target. 

The VFH method uses a two-dimensional Cartesian 

histogram grid as a world model. This world model is 

updated continuously with range data sampled by on-board 
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range sensors. The VFH method subsequently employs a 

two-stage data reduction process in order to compute the 

desired control commands for the vehicle. In the first stage 

the histogram grid is reduced to a one-dimensional polar 

histogram that is constructed around the robot’s momentary 

location. Each sector in the polar histogram contains a value 

representing the polar obstacle density in that direction. In 

the second stage, the algorithm selects the most suitable 

sector from among all polar histogram sectors with a low 

polar obstacle density, and the steering of the robot is 

aligned with that direction. Experimental results from a 

mobile robot traversing densely cluttered obstacle courses in 

smooth and continuous motion and at an average speed of 

0.6-0.7 m/s demonstrate the power of the VFH method.  

2.2 Motion planning and collision avoidance using 

navigation vector fields: 

This paper presents a novel method on the motion and 

path planning for unicycle robots in environments with 

static circular obstacles. The method employs a family of 2- 

dimensional analytic vector fields, which have singular 

points of high-order type and whose integral curves exhibit 

various patterns depending on the value of a parameter λ. 

More specifically, for a known value of λ the vector field 

has a unique singular point of dipole type and its integral 

curves are suitable for steering the unicycle to a goal 

configuration. Furthermore, for the value of λ that the vector 

field has a continuum of singular points, the integral curves 

can be used to define flows around circular obstacles. An 

almost global feedback motion plan is then constructed by 

suitably blending attractive and repulsive vector fields in a 

static obstacle environment. The proposed motion planning 

and control design is also extended to the multi-agent case, 

where each agent needs to converge to a desired 

configuration while avoiding collisions with other agents. 

The efficacy of the approach is demonstrated via simulation 

results. 

2.3 A modified dynamic window algorithm for 

horizontal collision avoidance for AUVs: 

Much research has been done on the subject of collision 

avoidance (COLAV). However, few results are presented 

that consider vehicles with second-order nonholonomic 

constraints, such as autonomous underwater vehicles 

(AUVs). This paper considers the dynamic window (DW) 

algorithm for reactive horizontal COLAV for AUVs, and 

uses the HUGIN 1000 AUV in a case study. The DW 

algorithm is originally developed for vehicles with first-

order nonholonomic constraints and is hence not directly 

applicable for AUVs without resulting in degraded 

performance. This paper suggests further developments of 

the DW algorithm to make it better suited for use with 

AUVs. In particular, a new method for predicting AUV 

trajectories using a linear approximation which accounts for 

second-order nonholonomic constraints is developed. The 

new prediction method, together with a modified search 

space, reduces the mean square prediction error to about one 

percent of the original algorithm. The performance and 

robustness of the modified DW algorithm is evaluated 

through simulations using a nonlinear model of the HUGIN 

1000 AUV. 

III. FRAMEWORK 

The focus of this paper is to explore how RL, given the 

recent advances in the field, can be applied to the guidance 

and control of ASV. Specifically, we look at the dual 

objectives of achieving the ability to follow a path 

constructed from a priori known way-points, while avoiding 

collision with obstacles along the way. In an end-to-end 

fashion, control signals for a simulated vessel are generated 

by a RL agent which, based on the readings from a 

rangefinder sensor suite which is attached to the vessel as 

well as rewards received from the environment, learns how 

to intelligently control the vessel in challenging obstacle 

avoidance scenarios. The resulting interplay between the 

environment, which incorporates the dynamics of the vessel 

itself, and the autonomous RL agent is illustrated in figure 

2. For simplicity, we limit the scope of this work to non-

moving obstacles of circular shapes. As RL methods are, 

model-free approaches, by their very nature, a positive 

result can bring significant value to the robotics and 

autonomous system field, where implementing a guidance 

system typically requires knowledge of the vessel dynamics, 

in the form of non-linear first-principle models with 

parameters that can only be determined experimentally at 

great cost. 

 

Figure.2: System model 

3.1 Reinforcement learning Algorithm:  

Reinforcement learning is an area of Machine Learning. 

It is about taking suitable action to maximize reward in a 

particular situation. It is employed by various software and 

machines to find the best possible behavior or path it should 

take in a specific situation. Reinforcement learning differs 

from the supervised learning in a way that in supervised 

learning the training data has the answer key with it so the 

model is trained with the correct answer itself whereas in 

reinforcement learning, there is no answer but the 
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reinforcement agent decides what to do to perform the given 

task. In the absence of a training dataset, it is bound to learn 

from its experience. 

Example: The problem is as follows: We have an agent 

and a reward, with many hurdles in between. The agent is 

supposed to find the best possible path to reach the reward. 

The following problem explains the problem more easily. 

 

Figure.3: Reinforcement algorithm working image 

The figure 3 shows the robot, diamond, and fire. The 

goal of the robot is to get the reward that is the diamond and 

avoid the hurdles that are fire. The robot learns by trying all 

the possible paths and then choosing the path which gives 

him the reward with the least hurdles. Each right step will 

give the robot a reward and each wrong step will subtract 

the reward of the robot. The total reward will be calculated 

when it reaches the final reward that is the diamond. 

IV. EXPERIMENTAL RESULTS 

To implement this project we have used OPENAI GYM 

tool from python language and sensors to detect obstacle. 

We don’t have any sensors so we will use GYM simulation 

to find path and avoid obstacle. The results are shown in 

figure 4 to figure 7.  

 

Figure.4: Find optimal path screen 

 

Figure.5: Yellow vehicle start moving 

 

Figure.6: Vehicle starts moving towards destination 

 

Figure.7: Rewards graph 

V. CONCLUSION 

In this work, we have demonstrated that RL is a viable 

approach to the challenging dual-objective problem of 

controlling a vessel to follow a path given by a priori known 

way-points while avoiding obstacles along the way without 

relying on a map. More specifically, we have shown that the 
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state-of-the-art PPO algorithm converges to a policy that 

yields intelligent guidance behavior under the presence of 

non-moving obstacles surrounding and blocking the desired 

path. By means of extensive testing, we have observed that, 

even in challenging test environments with high obstacles 

densities, the agent’s success rate is in the high 90s when λ 

is set such that it induces a strict path adherence bias, and 

close to 100% when a more defensive strategy is chosen. 
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