8 O 2013

Frame Fields for the Higgs Sector: Goldstone Generalities k}

. Intraduction

This note is devoted to exploration of a certain class of Higgs potentials, which seem to be
attractive candidates for application to the idea of large Higgs representations of the family
group. The motivation came from examining how an electroweak-doublet, family-nonet
multiplet of Higgs bosons might fit into the Big Picture at the grand unification level (GUT) level
of consideration. Surprisingly to me, it appears to be not too easy to find an economical
scenario, even when the family symmetry is considered to be an enlargement of the GUT
symmetry of the standard model.

What | take as a working hypothesis is the idea that the family symmetry should be part of an
extension of the generic O{10) GUT theory {without supersymmetry). As a first exploratory
attempt, | have chosen to stay within the sequence of orthogonal groups and to go up to O(16)
for both practical and esthetic reasons. Extending the rank of the group from 5 to 8 seems to be
about the right size for accommodating three more families. And O(16) Is a maximal subgroup

of E(8). So from the point of view of string-theory esthetics, it also feels like a politically correct
choice.

If we view this O(16) in terms of the obvious O(6) x O(10) subgroup, we see that the 120 gauge
bosons inhabiting the O(16) adjoint representation break down into 15 “dark gluons” , 45
“visible” gauge bosons, only 12 of which are experimentally seen, and a remaining 6 x 10 = 60
coset bosons. It seems necessary to give all the coset bosons mass. Together with the 36
massive gauge bosons within the 45 of O(10), this means that at least 96 of the 120 members of
the adjoint representation of 0(16) must be massive. Presumably, these nonvanishing masses
are the consequence of a generalized Higgs mechanism at work. This means that in the

gaugeless limit, where we temporarily set the GUT gauge coupling constant to zero, the Higgs
sector must contain at least 96 Goldstone modes.

This result seems to require, first, that the Higgs sector has to be large. But it also implies that in
some sense this large Higgs sector has to be well-organized. If the O{16) symmetry were to be
shattered into tiny pieces, why should there be so many Goldstone modes? In fact, the more
we eliminate the large number of massless gauge bosons via the Higgs mechanism, the more
we enlarge the Goldstone-bason portion of the Higgs sector. It would seem that either the
Higgs sector Is rich in massless modes, or otherwise the gauge sector is largely unbroken.

This inference does, however, depend upon application of Occam’s razor. If one allows a
limitless number of Higgs representations into the game just to give the sundry gauge bosons
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their masses, there Is no limit to the complications that can in principle be introduced. So the
name of this game will be to search for the simplest and smallest Higgs sector necessary to do
the job.

This note is devoted to such a candidate description. The game will be to extend the symmetry
to O(16) x O(16), with the new 0O(16) ungauged, and to place the Higgs representation into a
256 = (16, 16 ). It will turn out that as long as the gauged O(16) is not explicitly broken, one
can apply quite a lot of explicit symmetry-breaking mutilation to the ungauged O(16) without
losing Goldstone modes.

This kind of structure is not unfamiliar in the context of general relativity. The Einstein-Cartan
first-order formalism is an O(3,1) gauge theory living in Minkowski spacetime. The degrees of
freedom are 24 connection variables a)“(gauge potentials), supplemented by 16 vierbein
variables e? . it is these vierbein variables, or frame fields, whlch are the prototype for this
Higgs structure (arXiv 1212.0585).

| find further encouragement for this choice from the work of Hong-Mo Chan and his
collaborators (arXiv 1206.0199). They have produced a phenomenologically successful
description of quark and lepton masses and mixings, conceptually based on this kind of frame-
field hypothesis for their Higgs sector. However, despite their very attractive set of initlal
hypotheses, they have not yet succeeded in providing a detailed realization of the Higgs sector.

There are additional potential benefits present in this basic architecture. It is natural to
presume that the 15 members of the adjoint representation of the gauge-sector O(6) are
colorless, electrically neutral, and electroweak singlet. They can therefore serve as building
blocks for the dark-matter sector of the standard model. indeed, it is even tempting to leave
some or all of these 15 members as massless and confined. This “dark gauge group” could be as
large as the full O(6) = SU(4) itself, or as small as an Q{3) = SU(2) subgroup thereto. If such
“dark gluons” exist, a dark-confinement scale /\ Jarlt should be anticipated. It would be
awkward to place such a confinement scale f\ o, 3t @ mass scale lower than the QCD
confinement scale chg-zoo MeV. But it seems prudent to at least consider A, dork 2 A

There is another positive byproduct of this “dark-gluon” hypothesis. The electroweak-doublet,
family-nonet of Higgs bosons we have introduced in previous notes does not easily fit into the
256-plet of Higgs’ considered above. This prablem iIs mitigated if one assumes that this nonet is
in fact a composite of a family triplet with its anti-triplet, bound together via exchange of the
“dark gluons”. There is a historical precedent for this kind of thing—in particular the of, o,
and 1 nonets containing, e.g. S, W, and P respectively.

The existence of such an analogy Invites its extension. Our O(16) gauge group breaks down
intoa “dark O(6) “, a “visible (Pati-Salam) O(6)“, linked by an “electroweak O(4)". Perhaps the
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“dark O(6)” should be viewed in a way that is parallel to how the “visible O(6)" is viewed. In
particular, suppose the dark-confinement scale is no larger than, say, 1 TeV . Above this scale,
the description will be in terms of “dark partons”. Below this scale the description will be in
terms of “dark hadrons”. In the visible sector, the corresponding description is very complex at
distance scales large compared to the confinement scale. While it is not hopelessly difficult to
anticipate that there will be a rich spectrum of hadrons, it is much harder to anticipate the
existence of nuclear matter with the very small binding energy of 8 MeV per nucleon. Still more.
difficult is to anticipate the existence of a single charged-lepton degree of freedom with a mass
of 0.5 MeV. But the consequences of such minor details within the Grand Scheme are, needless
to say, profound. Given that there is 6 times as much dark matter as visible matter in the
universe, it would seem prudent to be prepared for essential complications to also emerge in
the Infrared limit of the dark-sector description.

il O(2N) Generalities

The most straightforward way of approaching this general problem seems to be to explicitly
introduce the O(2N) gauge-bosons, in particular their couplings to the Higgs sector. Once the
choice of Higgs representations has been made, a certain pattern of vevs will be assumed.
Then, just from the structure of the gauged kinetic energy term for the Higgs sector, it is
straightforward to determine which gauge bosons are massive and which remain massless. In
addition, the linear combinations of Higgs flelds which are Goldstone can also be read off
reasonably easily. Having done this, the gauge coupling constant can be set to zero, leaving
behind a putative set of Goldstone modes-—one for each massive gauge-boson degree of
freedom. The final task is then to construct a Higgs potential which generates this pattern. It is
of course this last step which is trickiest.

The Higgs multiplets which will turn out to be relevant to the problem at hand appear to be
O(2N) vectors and antisymmetric second rank tensors (adjoints). This set of multiplets may or
may not suffice to create Yukawa couplings to the fermions. But, no matter what, we will in this
note set the issue of the fermion masses aside.

A single adjoint representation can go a long way in giving the gauge bosons masses, and we
begin the detailed considerations by introducing the adjoint multiplet of gauge bosons W, plus
one adjoint representation of Higgs’ $ . Our notation is as follows:
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Because W-,‘j and i i3 are real antisymmetric matrices, the quantitles W, and 4?; (i=0,1,
and 3) are N x N real antisymmetric matrices, while wzand 4'3_ are pure imaginary NxN
symmetric matrices:

(4],: = —~Wr Uz‘:'-w:‘ = —Wz_
T -4, do & =4
This means that all of these w),'s and #; ‘s are antihermitian.
f i :
Wi 2w cﬁic—%;_ CL:O)’)Z)%
Now assume that

O v v'v <4">=0 ("-"09’@
<§>=<'V oj R (B>=iv

W

Given this hypothesis, we look at the gauged kinetic term for the adjoint Higgs representation;

p=- 74'?%;, [:% F - f%’ (W) 4 %’ "ji%@‘)jk ézﬁ]m
> Congss = +é§:z}7 [m,<é>Jg[vﬁ<é>J§=~§%@f<‘fﬂl

Write

[w<&)]--§[+73),va]

It follows that
W) = ~it, [, V]+ GV} - ifid,v] -, V)
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Therefore, after taking the trace over the 2x2 T~ matrices, the mass term for the gauge-
boson sector becomes

Lppags= = ',&‘ Tr(- [w, v]+{ ,v} - [u, v]+ 3,v}z

The trace instruction tr evidently refers to the trace over the N x N matrices. Upon doing the
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If the N x N matrix of vevs v isa multiple of the unit matrix, evidently the w, and Wy
multiplets remain massless. The number of degrees of freedom contained therein is

Nﬁ:'ﬁ%ﬁ- .‘.ﬂ%’ﬂ)— =(N2;.|)+l

Evidently the corresponding gauge group will be SU(N) x U(1).

if the vev v breaks up into blocks of unit matrices of size

{VIJ N:., v Né

evidently the number of massless gauge bosons will be
NW=1) . N oo 2
N"«'ot = 2, 1‘%’1 + 111 = N, +l\),_+ '“N.’b

The gauge group in this case will be

SU) x SUNY® SU(N,) » U(’)g
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Note that no matter what the pattern of such vevs, there will be at the minimum an unbroken
U(l) symmetry which remains.

However, it seems that this scenarlo is a very promising one, provided the appropriate vevs can

be created via some choice of Higgs potential. This in turn will be facilitated by the introduction
of the frame fields.

mn. Frame Field Generalities

We introduce 2N vector fields Ti. , with a gauge-invarlant kinetic-energy term as follows:

L =-—-LZ‘, (3-8

We assume that the vevs of these ﬂelds follow the same pattern as that for the adjoint fields. In
general, some of them might vanish. But in this section we assume the most general case
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This leads to a mass term of the gauge bosons that can be written as
Im; = 0%;'7;‘ W< 5P><‘J»D;T>Wﬂ= + g;ﬁ W,\‘;z’wﬂ
-%fy{(w DV = 55 1wy v

Consequently, none of the gauge bosons remain massless. In oljder to reduce the gauge
symmetry from O(2N) to O(2N — 2n), the simplest scenario for implementing this will be a set of
2N independent potentials, one for each O(2N) frame vector, but with only 2n of them
Mexican-hat. If this is done, it turns out that there are more Goldstone modes than those eaten

by the gauge bosons. Straightforward arithmetic gives the number of excess uneaten Goldstone
bosons as n(2n - 1). We will return to this issue in Section V.



v. The Higgs Potential for the O(2N) Adjoint Field

Write the adjoint field as follows:

_ ) dtd N +<h-’»% N
\l—i -\ +¢>‘+1§_ 430"‘43 <§)>::I!2.’ —:-\-,‘- ~—- -:‘-—----.,Yd.
= \Ilz— <4=;, +T-F +igv) “‘Q.:VN; ©

Recall that the symmetry properties of the adjoint field are:

% % 4)
e = Pil. =" ¢ .
i-r_ﬁ}bzo’"g e t=-d (ig123)

t-¢
In particular,
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The minimum conditions are

N+ NIV, + 5V, = O

This implies that the squared vevs must be equal:
b3

lr % - f e 2. M _’
Ve = V. 4 v‘ = M e -=-¢V
')\ (VL V}) O "%3 L (N')\"'lg:)

However, these vevs will be split when they are mixed with the frame-field vevs. However, we
first have a look at the nature of the spontaneous symmetry breaking before this complication
is introduced. Imposition of the minimum condition eliminates the terms linear in the
dynamical fields, and the remaining terms of quadratic order reduce to the following:

.-"'+-O¢ -t V)[_:fr(‘f +4*4>2]—- [t‘”{" H}
PVt (4 T8 BVt (-3 +
—-M—{t»[,u M)~ FvEn FE} -3 gl
SRV D)+ (B e )
= se —'X(‘tr v -Zv [—{: (4 E]+ oo

We see that the 4’, and ¢3 fields are indeed Goldstone. The remaining Higgs fields have a
common mass, with one exception:

Imss(cﬂ m;s(#%é) 7*/\/%-2/“('4-21\:)\

The exceptional degree of freedom is the unit element of tf denoted as ‘#

g‘..,
(&)= E /.

The mass for this state is

mags () = V(¥ +20)) = 2u*
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V. Nature of the Goldstone Modes

At this point we have specified the Higgs representations which will be used, as well as the
pattern of vevs which are assumed. This has allowed us to ascertain which gauge bosons
become massive, and which remain massless. This in turn tells us the number of Goldstone
bosons which will be “eaten” in order for this to happen.

However, there is more Information which we may glean from the gauged kinetic-energy terms
for the Higgs sector. This comes from the cross term, linear in the gauge-boson field and
quadratic in the Higgs fields. If we replace one of the two Higgs-field factors by its vev, the
resulting structure is, after an integration by parts, a coupling of the divergence of the gauge
field to a linear combination of the Higgs flelds. According to the Goldstone theorem, this linear
combination will indeed be a Goldstone mode.

Our strategy here will be to assume the maximum possible number of vevs. This means that all
2N frame vector flelds are Mexican-hat and have distinct vevs. In addition, we will assume, as
above, the same kind of structure for the adjoint Higgs fields.
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We here see that the divergence of the gauge-boson fields

D, = J_Z(gw) —-(aH-Z"Z”)

indeed mix with the Goldstone modes.
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In this fully-broken scenario, we see that the Goldstone modes break into threefold linear
combinations, and that contributions of the different d, (a=0, 1, 2, 3) do not mix. Coefficients
of dy,d, ,and dyare NxN antisymmetric Goldstone fields, while the coefficient of d, isan
N x N symmetric array of Goldstone mades. Upon focusing in on any one of these threefold
linear combinations, two orthogonal-complement modes can be constructed which are non-
Goldstone. One of these is the linear combination of (‘P ) and ('4') £ which is orthogonal to the
Goldstone mode. it is always a symmetric Nx N matrix. On the other hand, the remaining
linear combination is easily seen to be antisymmetric. Therefore, for each choice of =0, 1, 2, 3
we find Nznon-Goldstone degrees of freedom, or ( 2N )" in all. So in this limit all Higgs
degrees of freedom are accounted for.

To obtain fewer Goldstone modes and more massless gauge bosons, we must arrange that
some of the adjoint vevs v; are equal to each other, and that this feature is shared in the
appropriate way by the frame vevs V..

We close this section with a listing of the Goldstone modes in a notation more convenient for
the material which follows.
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VI The Frame-Field Higgs Potential

I
We reintroduce the 2N x 2N frame flelds § % and again assume a vev structure which to large
extent mirrors that used for the adjoint field:

This form represents a design choice, which clearly can be generalized. it is motivated by the
resuits of Section lil. Only the first n of the above vevs V' are assumed to be nonvanishing.

Consequently we would expect the SU{N) symmetry obtained in Section IV to be reduced down
to SU(N —n) or something close to it by this construction.

As before, write
% _ ( %-f Y, V+¥-itf, 3\1"27(‘{:-?—6"{)*1@,’\‘/‘)
‘II —Vf'{’, + H;_ "Pa - \lé

The piece of the Higgs potential belonging to \I can be chosen as a sum over 2N independent
potentials. The first n of these are assumed to be Mexican hat. The remaining components are
passive and represented by mass terms:

U zpmz@@)

Lrame, 7o

t1®) =] nn){

The assumption U‘I. =U L on is made in order to enforce the symmetry structure of the vevs.
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2
Expansion of the E.t in the new variables yields the following expression:

S N 3 1 ~ L W ad I
121 4so

Expansion of U-Prme through quadratic order then yields
~ - ~N I
U, (%) - 209, Uy (%) (),
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At this level, the minimum condition, U’ = 0, leads to "k, and V’; each providing n N Goldstone
modes. in addition to these, ¥, and 'f',. each provide n ( N - 1) goldstones, leading to a grand
total of 2n (2N —1). The gauge degrees of freedom eat up N . of these, where N is

given by J 3“0‘7‘
NJ‘?‘-’ = N(av-1)- (N-ag(zt\/-zn-b = nﬁN-zu-a

This, as previously noted, leaves behind an excess of n { 2n - 1 ) frame Goldstone mades at this

level. Of course these will be influenced by the coupling of the frame fields to the adjoint fields.
We now turn to this issue.
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VIl.  Coupling the Frame Fields to the Adjoint Fields

We are finally ready to introduce a Yukawa-like coupling of the frame fields to the adjoint field.
This will evidently break the symmetry down in a way dictated by the vev structure of the frame
fields. The Yukawa coupling has the form

2N I I
U=>. Frr ?a ¢, ¥,
1,3, L= { & ¥
A general analysls appears to be cumbersome. We tentatively choose the same antisymmetric-

diagonal structure used for the vevs to describe the coupling constants F:

b 1)

Expansion of U3 to quadratic order in the dynamical fields then yields a reasonably simple
result:

Tz azo Lz
_L m 3 a T
e :Z,j‘sx:flvj ga("3 [ Cqé)j[

Note that there is no mixing between fields with different values of a=0,1,2,3.



We must now put together the various pleces of the potential, namely Ud , U ,and U

It seems to be best to use a very explicit notation. We therefore rewrite the frame potential
contributions as follows:

< 2 'M ! pov, A\ A I
%"‘m: J.Z? U (%) "ZLZU(V )Y, a'kf-):r.
D ACACHT B 2"31(%) ]

3

8 g 3 S

+ Q,i U”(Nl)’(%) (:!. v 2

The adjoint potential contrlbutlons are

U, "‘/&ZV "'21-'(2‘\/) +—-(L

st L=l )
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+ li‘ [ 1@, [ 3 150 ]

REO,2 a3
The form of the vacuum potential is

U= 2U(°‘)+[#ZZV+ 2v)+ ]-zi:%fz@;

Variation with respect to the adjoint vevs v; vields

—AV; +}(%‘Vg)v + -—v = {9“"0 (isn)

(i>w)
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Variation with respect to the frame vevs v yields

R G=ful (Tiw)
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It follows that u’("" }) _ E; Vi

Consequently Y ._\"/_,_6?) - U/ ( 9: % C‘<
M) AP "—‘{é(va it Ve) “sn)
[- )5+ g\/n)* zVJ o (i>n)

In this form we can see how the frame-field contribution drives the adjoint-field vevs to new
values, which can of course include symmetry breaking.

Upon complling the terms linear in the dynamical fields, it is easy to determine that they indeed
sum to zero:

- - ce’oy v
‘U&_ = LIZ;I(([;_); [— W0, V, + 191 VA V;_]

+ig@ -2 w2 &Y
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The terms quadratic in the dynamical fields are
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Note that we have already used the minimum condition to simplify the expression.
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With one exception, the only mixings are three-way, namely(tﬁ ) + can mix wlth( ) and @)
The exception accurs for the diagonal elements of ¢v,_ In what follows we will be mainly
interested in identifying the Goldstone modes that survive, and matching them with those
expected from the considerations in Section V. In fact the only candidates with diagonal indices

which might contribute a Goldstone mode are (‘f",) and (‘I’a) . The relevant terms in the
potential are (for i < n)

Uy, =+ U (A1 T - Aflonir-Icuir]
= oo+ Ly [CHY[F+ (e<my

]
Indeed we do find a Goldstone mode (‘f{,)‘_ does exist, and that it matches what was
anticipated in Section V.

The next easiest case is when the indices are different and both larger than n . Under these
circumstances, it follows from the vacuum minimum conditions that the relevant vevs v and v
are equal to a common value, which we denote as v . The relevant terms in the potential for J
specific choicesof | > j are

U=+ £ 2, [PEICRT 5 )
T AN AL (W
4 2 MR M N v [Cay sl

Consequently Q‘ ) and (4) (i>n; j>n ) are Goldstone modes. This again matches the
expectations from Section V

When i > n and j < n, the relevant terms in the potential are
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We use the vacuum minimum conditions to express all relevant terms in terms of f- and the

vevs: 3-

U= 5
}L(v—v’D -ﬂu:a: = 71”'\,(’3_\,,)

When lnsetted into the expresslon for the potential, one finds—after a moderate amount of
algebra—that indeed the anticipated Goldstone modes are there. Only the orthogonal

Vg -Z;o[;-cx“v]{v@ MRPREOCR{ER

This leaves only the case n > i > j. The relevant terms of the potential, quadratic in the
dynamical fields, are as follows:

ALt ANV TN R Y Oy
S A0 0 cc,es,,,ﬂr;wm,zv@]
1 f_‘. ——-Kdﬂ.,l”[% Vv +‘F§,3’~ +:6,—o +2NE vy ]

We again gﬁminate U’ and )\ Intermsofthe f's and the vevs. Thls time, the expression for
the coupling parameter 2\’ is

s[4 - 4]
VE_\2) V-
C Vi) 4

We find, after more algebra:

U= -+ 3 £F4- O T Sy~ R (RS ]

-2 )~ fnda)]-@Umee o]
+{<§ [P LIk,

L[V, - )V

Upon forminr'g the relevant 3 x 3 mass matrlx one easily ﬁnds that its determinant does vanish.
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Vill.  Summary

The next—and final--page of this note consists of a summary page containing expressions for
the masses and/or mass matrices of the sundry gauge and Higgs bosons we have considered.
The only entries therein which are not easily reconstructed from the text above have to do with
the “diagonal” Higgs fields (f, and (4);;. These are all massive modes, even in the absence of
mixing due to the Yukawa couplings f. . We will not delve further into the properties of these
states in this note, and only record here the relevant terms in the Higgs potential:

U C.B,,,«-@ 2 07 1% ‘“% Ll

(Xv +f'i’ )/(CJ6 Yl + 5 A ()l

c"l’lﬂ

f Mg V)i +3 V@)% 3 Sy

Going beyond the above expression and/or the contents of the table on the next page is to
enter the world of model building. This includes, in particular, the choice of the parameter set
determining the sundry vevs, as well as which orthogonal groups are under consideration. This
is beyond the scope of this, already rather lengthy, note. | expect to revisit these issues in the
near future.
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