Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Molecular Phylogenetics and Evolution 54 (2010) 671-679

Molecular Phylogenetics and Evolution

Phylogenetic structure of the Thomomys bottae-umbrinus complex in North America

Sergio Ticul Álvarez-Castañeda*

Centro de Investigaciones Biológicas del Noroeste, S.C. Mar Bermejo 195, A.P. 128, Baja California Sur, 23090 La Paz, México

ARTICLE INFO

Article history: Received 1 July 2008 Revised 4 November 2009 Accepted 12 November 2009 Available online 29 November 2009

Keywords: Mexico mtDNA Nomenclature Pocket gophers United States

ABSTRACT

The phylogeography of the *Thomomys bottae–umbrinus* complex in the United States and Mexico was assessed with sequences of the mitochondrial cytochrome *b* gene. These sequences were obtained from 225 individuals representing 108 locations over the range, including 56 sequences from GenBank. 110 (500 bp) sequences were used for Bayesian inference and neighbor-joining analyses, and 34 (1140 bp) specimens from the main clades obtained from the Bayesian inference were used in maximum-parsimony and maximum-likelihood analyses. The different analyses indicate significant variation within the species complex that averages 13% among major groups of genetic differences among *Thomomys bottae–umbrinus*. The overall pattern of geographic variation is not concordant with the current taxonomy. To the contrary, eight monophyletic groups are supported by all analyses and can be considered phylogenetic species. Overall divergence among these groups appears influenced by historical biogeographic events active during the Pliocene and Pleistocene.

© 2009 Elsevier Inc. All rights reserved.

霐

1. Introduction

Pocket gopher *Thomomys bottae–Thomomys umbrinus* complex exhibit numerous morphotypes associated with distinct ecological conditions (Davis, 1938; Hadly, 1997; Smith and Patton, 1984) ranging from desert to alpine environments (Patton and Brylsky, 1987). Pocket gophers (Geomyidae) typically exhibit strong genetic structure among populations (Steinberg and Patton, 2000), which contributes to their evolutionary and taxonomic diversity. For the *umbrinus–bottae* complex, this diversity is extremely high (e.g., 213 subspecies recognized by Hall (1981)), led to numerous taxonomy evaluations (Anderson, 1966, 1972; Hall, 1981; Hall and Kelson, 1959; Hoffmeister, 1969, 1986; Patton, 1973, 1993; Patton and Dingman, 1968; Patton and Smith, 1981; Thaeler, 1980).

The entire *bottae–umbrinus* complex ranges from southern Oregon in the United States to Veracruz in Mexico, and from the Pacific Ocean to the Rocky Mountains in western North America. Originally, *T. baileyi* and *T. townsendii* were considered different species from *T. umbrinus* (Hall, 1981). Later, on the basis of limited hybridization (Patton, 1973; Patton et al., 1972) and differences in chromosomal fundamental chromosome (Patton and Dingman, 1968), *T. bottae* was considered distinct from *T. umbrinus*.

Much is known about the genetic architecture of pocket gopher populations. This knowledge is based on numerous studies of morphological and allozymic variation, including detailed geographic surveys of local populations (e.g., Álvarez-Castañeda and Patton, 2004; Daly and Patton, 1986; Patton and Feder, 1981; Patton and Smith, 1990; Wickliffe et al., 2005). Genetic structure, as revealed

* Fax: +52 612 125 3635.

1055-7903/\$ - see front matter \odot 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2009.11.012

by mitochondrial DNA sequences (matrilineally inherited), is particularly evident in pocket gophers, because female pocket gophers are strongly phylopatric (Daly and Patton, 1986). Under such conditions, mitochondrial sequences exhibit more detailed levels of geographic structure than nuclear genes.

A number of cytogenetic, protein electrophoretic, and DNA analyses have drawn attention to the presence of several geographic groups in the *Thomomys bottae–umbrinus* complex. This study is designed to address the current taxonomy within the *T. bottae–T. umbrinus* complex by the inclusion of populations throughout the range of the complex and the incorporation of an extensive amount of nucleotide sequence data.

2. Materials and methods

2.1. Geographical sampling

A total of 225 specimens from 110 named subspecies (110 localities) from the *Thomomys bottae–umbrinus* complex are either deposited in the Centro de Investigaciones Biológicas del Noroeste (CIB) or Museum of Vertebrate Zoology, University of California (MVZ). These specimens are distributed throughout the range of the complex (Fig. 1; Table 1). The specimens that were examined were representative samples of the populations from all the range of *Thomomys bottae–umbrinus*.

2.2. Laboratory and sequence protocols

Genomic DNA was extracted from liver tissue originally preserved in 95% ethanol or frozen and maintained in the laboratory

E-mail address: sticul@cibnor.mx

Author's personal copy

S.T. Álvarez-Castañeda/Molecular Phylogenetics and Evolution 54 (2010) 671-679

Fig. 1. Location of specimens examined for sequencing of *Thomomys*. The numbers of locality, latitude and longitude, catalog number of the specimen, and museum in which the specimens are housed are in Table 1.

at -80 °C using the DNeasy kit (QIAGEN Inc., Valencia, California). The chelex method was used to extract DNA from dried skins of one population. Samples were placed in 5% chelex, incubated at 55 °C for 20 min, and boiled for 10 min. Two phases were implemented. First, 500 bp were obtained for 110 individuals, and second, 1140 bp were obtained for 37 individuals. All PCR was performed with the primer pairs MVZ05/MVZ16, MVZ69/MVZ16, MZV127/MVZ14 (primer sequences given in Smith, 1998). The following conditions for initial double-strand amplifications were used: 12.5 μl of template (10 ng), 4.4 μl of ddH_2O, 2.5 μl of each primer (10 µM concentration), 0.474 µl (0.4 nM) dNTPs, 0.5 µl $(3 \mu M)$ MgCl₂, 0.125 μ l of $(5 U/\mu$ l) Taq polymerase (platinum, invitrogen, Carlsbad, California), and $1 \times Taq$ buffer to a final volume of 25 µl. Amplification conditions consisted of 3 min of initial denaturation at 94 °C followed by 37 cycles of denaturation at 94 °C for 45 s, 1-min annealing at 50 °C, and 1-min extension at 72 °C. Amplicons were purified using the QIAquick PCR purification kit (Qiagen, Inc., Valencia, California), and primers MVZ05, MVZ69 or MVZ127 were used with Big Dye terminator chemistry (Applied Biosystems Inc., Foster City, California) to sequence all amplicons on an ABI 377 automated sequencer. Representative haplotypes of each main branch of the phylogenetic analyses generated from this study have been deposited in GenBank (Accession Numbers in Table 1).

Nucleotide sequences were aligned using Sequencher ver. 3.1 software (Gene Codes Corp., Ann Arbor, Michigan), checked by eye, and translated into amino acids for confirmation of alignment.

2.3. Phylogenetic analyses

Two separate analyses were conducted. One based on a 500 bp fragment from 110 specimens (sequences beginning at base pair 81 in relation to the start codon, Table 1) to improve as much as possible the phylogenetic resolution of the largest number of populations. A second analysis was undertaken based on 1140 bp from 34 individuals representing the major lineages identified in trees derived from the shorter sequences.

Previously published sequences were obtained from GenBank (Álvarez-Castañeda and Patton, 2004; Patton and Smith, 1990; Smith, 1998; Wickliffe et al., 2005). The catalog number, locality, GenBank Accession Numbers, and geographic locations of the specimens used in this study are in Table 1.

Author's personal copy

S.T. Álvarez-Castañeda/Molecular Phylogenetics and Evolution 54 (2010) 671-679

Table 1

List of specimens used in the study (each specimen has a unique haplotype). The localities are north-south. Inside each locality are the subspecies recognized for that population, the official acronym of the states in USA and Mexico represent the locality, latitude and longitude, catalog number of the specimen, museum in which the specimens are housed, and the GenBank is the Accession Number of the Cyt *b* sequence. Pop, population, CI, group, Cat No, number of catalog, Mus, museum. The museum acronyms are: Centro de Investigaciones Biológicas del Noroeste (CIB), Museum of Vertebrate Zoology, University of California Berkeley (MVZ); Texas Tech University (TTU).

Рор	Cl	State	Locality	Lat	Long	Cat No.	Mus	Subspecies	GenBank
1	SR	ID	Weiser	44.2601	-116.9564	163685	MVZ	t. townsendii	U65282
2	NC	CA	Coyote Peak	41.1585	-123.8504	160661	MVZ	silvifugus	EU240734
3	NC	CA	Adin	41.1573	-120.9906	160751	MVZ	leucodon	U65248
4	PG	NV	Deep Hole	40.7192	-119.4822	175674	MVZ	canus	U65265
5	NC	CA	Rio Dell	40.4993	-124.1043	160618	MVZ	laticeps	U65247
6	PG	UI CA	South Willow Creek	40.4832	-112.5958	148825	INIVZ	stansburyı	EU240765
0	INC.		Lovelock	40.3788	-120.7023	126074	IVIVZ MVZ	suxutilis t. bachmani	065250
0	PG		Milford	40.1451	-116.4905	175650	IVI V Z MVZ	t. pucificani t. relictus	1165280
10	NC	CA	Redwood Valley	39 2640	-120.3150 -123.2057	160579	MV7	acrirostratus	FU240735
11	PG	NV	Monitor Valley	39.1544	-116.6936	163235	MVZ	concisor	U65264
12	SR	CA	Skull Rock Pass	38.9625	-113.4180	179591	MVZ	centralis	U65266
13	SW	UT	Moab	38.7309	-109.5339	150383	MVZ	osgoodi	EU240737
14	PG	NV	Meadow Creek	38.6753	-116.9059	163307	MVZ	vescus	EU240749
15	PG	NV	Big Smoky Valley	38.4608	-117.3028	163290	MVZ	curtatus	EU240750
16	NC	CA	Lagoon Valley	38.3372	-122.0176	160299	MVZ	agricolaris	EU240736
17	PG	UT	Kingston	38.1615	-112.0235	150406	MVZ	lenis	EU240751
18	SR	NV	Kawich Mts.	37.9157	-116.4742	144245	MVZ	brevidens	EU240752
19	PG		Benton Fish Lako Vallov	37.8185	-118.4/61	160383	IVIVZ MVZ	amargosae lacrumalis	EU240753
20	rG SW/	CO	Walsenhurg	37 5898	-1048716	150317	MVZ	internatus	EU240734 FU240738
22	PG	0	Bayfield	37 2256	-107.5975	150358	MVZ	מוודפווג	EU240755
23	PG	CA	Independence	36.8252	-118.2176	165118	MVZ	melanotis	U65263
24	PG	CA	Jackass Spring	36.5425	-117.5184	166344	MVZ	argusensis	EU240756
25	PG	CA	Keeler	36.4597	-117.8445	175631	MVZ	operarius	U65262
26	PG	CA	Kingsburg	36.4423	-119.4800	162868	MVZ	pascalis	U65255
27	PG	CA	Harrisburg Flats	36.3951	-117.1354	166334	MVZ	scapterus	EU240757
28	PG	CA	Hastings Res.	36.3809	-121.5617	166821	MVZ	bottae	U65253
29	SW	NM	Des Moines	36.0889	-106.0531	150298	MVZ	cultellus	U64980
30	SW	NM	Alcalde	36.0889	-106.0531	150272	MVZ	pervagus	U64979
31	PG	CA	Coso junction	36.0444	-117.9502	175637	MVZ	perpes	U65256
32	PG	CA	Parkneid	36.0379	-120.4722	156196	IVIVZ	angularis	EU240758
33 24	PG	CA CA	FOIK KEITI KIVEI	30.0241	-118.1313	166202	IVIVZ MVZ	arpinus	EU240759
35	BC	CA	Walker Basin	35 3800	-118 5500	164137	MVZ	niutensis	EU240700 FU240776
36	SR	CA	Bakersfield	35 3648	-119.0177	146970	MVZ	ingens	EU240761
37	PG	CA	Gold Valley	35.0914	-115.4003	155968	MVZ	providentialis	EU240762
38	SW	NM	San Rafael	35.0507	-107.8683	158511	MVZ	morulus	EU240739
39	PG	CA	Harvard	34.9366	-116.6639	175587	MVZ	mohavensis	U65261
40	SW	NM	Tajique	34.7916	-106.3765		MVZ	actuosus	U64970
41	SW	AZ	Bradshaw Mts	34.4547	-112.4564	146880	MVZ	fulvus	U65269
42	SW	CA	La Joya	34.3180	-106.8661	158634	MVZ	connectens	U65270
43	BC	CA	San Bernardino Mts.	34.2739	-116.8133	165053	MVZ	altivallis	EU240777
44	BC	CA	Cabazon	33.9151	-116.8046	166264	MVZ	cabezonae	EU240778
45 46	SVV	AZ AZ	Siorra Ancha	33.9141	-112.0720	136002	IVIVZ MVZ	pututus	EU240740
40	BC	CA	Palm Springs	33 8284	-1165334	166255	MVZ	nernallidus	EU240741 FU240779
48	PG	AZ.	Ehrenberg	33 6042	-1145244	154192	MVZ	chrysonotus	EU240763
49	SW	CA	Mecca	33.5728	-116.0668	156074	MVZ	boregoensis	EU240742
50	BC	CA	San Juan Capistrano	33.5143	-117.5688	164070	MVZ	pallescens	EU240780
51	PG	CA	Ripley	33.4403	-114.6557	148289	MVZ	riparius	EU240764
52	SW	NM	Otero	33.3317	-105.6725	TK49858	TTU	ruidosae	AF445062
53	SW	CA	Niland	33.1842	-115.5175	156105	MVZ	crassus	EU240743
54	BC	CA	Julian	32.9819	-116.5976	164091	MVZ	nigricans	U65257
55	SW	CA	Gila Bend	32.9534	-112.7813	156025	MVZ	cervinus	U65267
56	SW	CA	Holtville	32.7835	-115.3796	156116	MVZ	albatus	U65260
5/	SVV	AZ	Tacha Graham Mto	32./111	-113.9532	156062	IVIVZ MVZ	pnasma	EU240744
28 50	SVV		Graffalli Mils.	32.0000	-109.8754	140901	IVIVZ MVZ	granamensi	U05208 U64091
59	SW	TX	Otero	32.4803	-100.9102 -105.7476	TK51802	TTU	tularosae	AF445053
61	SW	AZ	Santa Catalina Mts	32,4301	-110.7368	146822	MVZ	catalinae	EU240745
62	SW	NM	Whites City	32.1940	-104.7731		MVZ	guadalupensis	U64978
63	BC	BC	Juárez	32.1100	-115.9258	8260	CIB	juarezensis	EU240781
64	BC	BC	Ojos Negros	31.9333	-116.2500	8271	CIB	jojobae	EU240782
65	BC	BC	Punta Banda	31.7167	-116.5667	8274	CIB	sanctidiegi	EU240783
66	BC	BC	San Isidro	31.5672	-116.4290	8277	CIB	aphrastus	EU240784
67	BC	BC	Santo Tómas	31.5543	-116.6081	8298	CIB	proximarinus	EU240785
68	BC	BC	Trinidad	31.4000	-115.5700	153689	MVZ	xerophilus	U65275
69 70	SW	AZ AZ	Patagonia Mts.	31.3870	-110.7545	184977	MVZ	moaicus	EU240786
70	IVIA SM/	TY	Culberson:	31.3809	-110.7437	TK5/100	TTU	scotophilus	000283
/ 1	377	IA	cuiberson,	51.2705	-104.9102	1104190	110	scotopinius	AI:443033

(continued on next page)

S.T. Álvarez-Castañeda/Molecular Phylogenetics and Evolution 54 (2010) 671-679

72 BC BC Martin 31.0101 -115.3406 8303 ClB matriemsis EU240787 73 SW CIIIII Janos 30.9669 -108.1450 150183 MVZ totecus EU240787 74 SW TX London 30.6331 -99.6906 TK24996 TTU caterias EU240787 75 SW TX London 30.6331 -99.6906 TK24996 TTU caterias At445048 76 SW TX Wild Rose Pass 30.0833 -115.6333 8319 ClB abotti EU240787 78 BC RC Rotanic 20.9994 -118.2443 8319 ClB abotti EU240788 EU240788 80 BC BC Catavina 22.9194 -114.9417 8337 ClB catavinensis EU240789 81 BC BC Catavina 22.9104 -108.2147 8332 ClB trutonis At445052 <	Рор	Cl	State	Locality	Lat	Long	Cat No.	Mus	Subspecies	GenBank
73 500 CHIH Janos 30.9669 -108.1420 150183 MUZ totexas EU24074 74 SW TX Jef Davis 30.6448 -104.1627 TK26956 TU confinalis AF445069 75 SW TX London 30.6331 -103.8942 TK75201 TU confinalis AF445058 77 SW SON Huachinera 30.2189 -108.2497 146661 MUZ divergens E1240748 78 BC BC Rosario 30.033 -103.3206 156066 MUZ madrensis U524078 80 BC BC Can Fernando 29.9694 -115.2434 8322 CIB brazierhowelli E1240780 81 BC BC Catarines 29.9193 -114.9417 8337 CIB catarinesis E1240791 82 NX SON Motezuma 29.9193 -114.9171 TK46425 TTU catarinesis E1240793	72	BC	BC	Mártir	31 0101	_115 3406	8303	CIB	martirensis	FI1240787
74 SW TX Leff Davis 30.6448 -104.1627 TK26996 TTU recensis AT445090 75 SW TX Undon 30.6331 -96.066 TK26996 TTU ergensis AT445090 76 SW SN TX Wild Bose Pass 30.5811 -108.9497 146601 MVZ divergens EU240747 78 BC BC Rosancia 30.0033 -115.2643 8319 CIB abbortit EU240747 81 BC SC Son Frrando 29.994 -115.243 8322 CIB brazierhowelit EU240790 82 MX SON Motezuma 29.9191 -114.9417 833 HC Btotation EU240790 83 BC BC Catavina 29.9191 -104.917 RK46625 TTU pervarius AF445057 84 SW TX Big Rend Rach 29.3669 -106.3717 TK646425 TTU pervarius	73	SW	СНІН	lanos	30.9669	-108.1450	150183	MVZ	toltecus	EU240746
75 SW TX London 30.6331 -99.0096 TK2.0906 TTU confinitis A7445034 776 SW SW SN Huachinera 30.2189 -108.9497 H6461 NVZ divergens EU200784 78 BC BC Roserio 30.0833 -115.6833 8319 ClB obbrit EU20788 80 BC BC Catavina 29.9904 -115.2343 8322 ClB madrensis EU20790 81 BC BC Catavina 29.9914 -115.333 8332 ClB madrensis EU240790 82 MX SON Moctezuma 29.8014 -109.9883 147093 NVZ sometensis EU240712 83 BC BC Catavina 29.5006 -104.3717 TK46427 TU limitais A7445052 843 SW TX Brewster 29.439 -103.7814 Kt54479 TU limitais A7445052 85 SW TX Brewster 29.4389 -103.716 TV	74	SW	TX	leff Davis	30.6448	-104.1627	TK84860	TTU	texensis	AF445060
76 SW TX Wild Rose Pass 30.5881 -103.8942 TYT.2011 TTU Implae At44505 77 SW SON Huachinera 30.2180 -108.4947 146861 MVZ divergens EU240747 78 BC BC Ro Rosario 30.0303 -115.833 8319 CIB babtati EU240789 80 BC BC Catavina 29.9913 -114.5417 8337 CIB catavinensis EU240789 81 BC BC Catavina 29.9913 -114.5417 8337 CIB catavinensis EU24072 82 MX SON Maccuruma 29.8014 -103.7814 TK44725 TU pervarius AF445052 84 SW TX Big Bend Ranch 29.3669 -104.3717 TK464252 TU pervarius AF445052 85 SW TX Big Bend Ranch 29.369 -104.3718 TK342506 MVZ juntee	75	SW	TX	London	30.6331	-99.6096	TK26996	TTU	confinalis	AF445048
77 SW SON Huachinera 30.2189 -108.9497 44881 MVZ divergens EU20074 78 BC BC Resario 30.0833 -115.833 8319 CB abbetti EU240748 80 BC BC Sar Fernando 29.9193 -114.5417 8337 CB BC CAtavina 29.9193 -114.5417 8337 CB BC CAtavina 29.9193 -114.9417 8337 CB EU24078 EU24078 81 BC BC CAtavina 29.8014 -109.8683 147093 MVZ sonoriensis EU24071 83 BC BC CAtavina 29.8490 -103.711 TK6425 TTU Initravia AF445052 84 SW TX Big Bend Ranch 29.5666 -104.3717 TK6425 TTU Initravia AF445057 85 SW TX Brewster 29.3669 -106.5722 1470483 MVZ coconbilus <td>76</td> <td>SW</td> <td>TX</td> <td>Wild Rose Pass</td> <td>30.5881</td> <td>-103.8942</td> <td>TK75201</td> <td>TTU</td> <td>limpiae</td> <td>AF445058</td>	76	SW	TX	Wild Rose Pass	30.5881	-103.8942	TK75201	TTU	limpiae	AF445058
78 BC Resario 30.0833 -115.8833 8319 CIB abbotti EU24078 79 MX BC Colonia García 30.0030 -108.2306 150606 MVZ madrensis U520784 80 BC BC Catavina 29.919 -114.9417 8337 CIB catavinensis EU240780 81 BC BC Catavina 29.919 -114.9417 8337 CIB catavinensis EU240771 82 MX SON Motezuma 29.9000 -115.133 8332 CIB ruricola EU240731 84 SW TX Bitg Bend Ranch 29.3669 -106.5722 147083 MVZ juntae EU240732 85 SW TX Bitg Bend Ranch 28.5787 -114.022 153706 MVZ jantae EU240732 86 BC SC Gasarito 28.785 -113.2516 7719 CIB botjasenis EU240732 89	77	SW	SON	Huachinera	30.2189	-108.9497	146861	MVZ	divergens	EU240747
79 MX BC Colonia Carcía 30.0030 - 108.3206 150606 MVZ madrensis U65284 80 BC BC San Fernando 29.9193 - 114.9417 8327 CIB brazierhowelli EU240780 81 BC BC catavina 29.9193 - 114.9417 8337 CIB brazierhowelli EU240790 82 MX SON Motetzuma 29.9014 - 109.6883 147903 MVZ sonoriensis EU240791 84 SW TX Big Bend Ranch 29.5606 - 104.3717 TK46425 TTU pervarius AF445057 86 MX BC Canon Santa Clara 29.3669 - 106.5722 147083 MVZ junitae EU240793 87 BC BC EL Elosarito 28.3785 - 113.7516 7719 CIB borjasensis EU240793 90 SW SON Navojoa 27.1136 - 109.4439 H46813 MVZ	78	BC	BC	Rosario	30.0833	-115.6833	8319	CIB	abbotti	EU240788
80 BC EC San Fernando 29.9694 -115.2343 3322 CIB brazierhowelli EU24078 81 BC BC Catavina 29.9193 -114.9417 8337 CIB catavinensis EU240771 82 MX SON Mottezuma 29.8014 -109.6883 147093 MVZ sonoriensis EU240771 83 BC BC Catarina 29.7000 -115.1333 8322 CIB ruticola EU240773 84 SW TX Big Bend Ranch 29.9449 -103.7814 TtX46425 TTU pervarius AF445052 85 SW TX Brewster 29.4439 -103.7814 TtX46425 TTU pirutaris AF445052 86 BC BC BC BC BC Son Santa Clara 28.737 -114.022 153706 MVZ catorphilus U65276 88 BC BC Son Navoja 27.1136 -100.8171 TSON	79	MX	BC	Colonia García	30.0030	-108.3206	150606	MVZ	madrensis	U65284
81 BC BC Catavina 29.9193 -114.9417 8337 CIB catavinensis EU240790 82 MX SON Motezuma 29.8014 -109.6883 147093 MVZ sonoriensis EU240790 83 BC BC Catarina 29.7000 -115.1333 8332 CIB ruricola EU240791 84 SW TX Brewster 29.4569 -104.3717 TK46425 TTU pervarius AF445052 85 SW TX Brewster 29.3669 -106.5722 114.020 153706 MVZ juntae EU240773 86 BC BC BC BC Basarito 28.7385 -113.7516 7719 CIB bojgensis EU240793 90 SW SON Navoja 27.152 -114.0567 7719 CIB bojgensis EU240793 91 MX DCO Las Nieves 26.5377 -105.4925 MVZ anologus	80	BC	BC	San Fernando	29.9694	-115.2343	8322	CIB	brazierhowelli	EU240789
B2 MX SON Moctezuma 29.8014 -109.6883 147093 MVZ sonoriensis EU240772 83 BC BC Catarina 29.7000 -115.1333 8332 CIB ruricola EU240791 84 SW TX Big Bend Ranch 29.666 -104.5717 TK4425 TTU pervarius AF445057 85 SW TX Brewster 29.4439 -103.7814 TK54879 TTU limitaris AF445057 86 BC BC EI consanto Clara 29.459 -114.1022 147003 MVZ catophilus U6240732 88 BC BC BC Son Navojoa 27.1532 -114.0567 7721 CIB tacobal EU240748 91 MX DCO Las Nieves 26.517 -105.4925 150465 MVZ acalogus U65273 92 BC BCS Cat Constitución 25.0356 -1117.169 153777 malogus	81	BC	BC	Catavina	29.9193	-114.9417	8337	CIB	catavinensis	EU240790
83 BC BC Catarina 29,7000 -115,133 8332 CIB rurcola EU24071 84 SW TX Big Bend Ranch 29,506 -104,3717 TK46425 TIU pervarius AF445057 85 SW TX Brewster 29,4439 -103,7814 TK54679 TIU limitaris AF445057 86 BC BC El Rosarito 28,377 -114,1022 153706 MVZ catophilus U65276 88 BC BC BC El Rosarito 28,3785 -113,7516 7719 CIB borjasensis EU240793 90 SW SON Navojoa 27,1136 -109,4439 146813 MVZ canoac EU24074 91 MX DGO Las Nieves 26,537 -105,4495 150465 MVZ canoac EU24074 92 BC BCS Cal Constitución 25,536 -112,110 7680 CIB incomptus AY58	82	MX	SON	Moctezuma	29.8014	-109.6883	147093	MVZ	sonoriensis	EU240772
84 SW TX Big Bend Ranch 29,5606 -104,3717 TK 46425 TTU pervarius AF445027 85 SW TX Brewster 29,4439 -103,7814 TK54879 TTU limitaris AF445057 86 MX BC Canon Santa Clara 29,3669 -106,5722 147083 MVZ cactophilus U240743 87 BC BC San Borja 28,3375 -113,7516 7719 CIB borjasensis EU240793 980 BC BCS Guerrero Negro 27,5132 -114,0567 7721 CIB borjasensis EU240738 91 MX DGO Las Nieves 26,512 -102,4439 146813 MVZ nanoaus MYS8039 93 SW COAH Bel Unión 25,0356 -111,7169 CIB incomptus MYS8039 94 BC BCS San Carlos 24,1479 -104,7088 150454 MVZ durangi EU240775 <td>83</td> <td>BC</td> <td>BC</td> <td>Catarina</td> <td>29.7000</td> <td>-115.1333</td> <td>8332</td> <td>CIB</td> <td>ruricola</td> <td>EU240791</td>	83	BC	BC	Catarina	29.7000	-115.1333	8332	CIB	ruricola	EU240791
85 SW TX Brewster 29.4439 -103.7814 TK54879 TTU limitaris AF445057 86 MX BC Canon Santa Clara 29.3669 -106.5722 147083 MVZ juntee EU240773 87 BC BC BL Rosarito 28.8377 -114.1022 153706 MVZ catophilus U65276 88 BC BC San Borja 27.9532 -113.7516 7719 ClB borjasensis EU240793 90 SW SON Navojoa 27.1136 -109.4439 146813 MVZ camoae EU240748 91 MX DCO Las Nieves 26.5377 -105.4925 NVZ melsoni EU240748 92 BC BCS Los Laureles 26.0512 -112.1210 7680 ClB incomptus AY589039 93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ analguenae U65278	84	SW	TX	Big Bend Ranch	29.5606	-104.3717	TK46425	TTU	pervarius	AF445052
86 MX BC Canon Santa Clara 29.3669 106.5722 147083 MVZ juntae EU240773 87 BC BC El Rosarito 28.8377 114.102 153706 MVZ cactophilus U65276 88 BC BC San Borja 28.7385 113.7516 7719 ClB brijssensis EU240792 89 BC BCS Guerrero Negro 27.9532 114.0567 7721 ClB brijssensis EU240738 90 SW SON Navojoa 27.1136 109.4439 146813 MVZ amoae EU240748 91 MX DGO Las Nieves 26.5377 -105.4925 150465 MVZ nelsoni EU24073 92 BC BCS Los Las Lavieves 26.0512 -112.113 folso17 MVZ malogus U65273 93 SW CA Actionin 25.0356 -111.7119 f53172 MVZ daralogus U65278	85	SW	TX	Brewster	29.4439	-103.7814	TK54879	TTU	limitaris	AF445057
87 BC BC El Rosarito 28.8377 -114.1022 153706 MVZ cactophilus U65276 88 BC BC San Borja 28.7385 -113.7516 7719 CIB borjasersis EU240792 90 SW SON Navojoa 27.1136 -109.439 146813 MVZ cartophilus EU240792 90 SW SON Navojoa 27.1136 -109.439 146813 MVZ cartophilus EU240748 91 MX DGO Las Nieves 26.0512 -112.1210 7680 CIB incomptus AY589039 93 SW COAH Bela Unión 25.4466 -100.8171 158017 MVZ analgalenae U65273 94 BC BCS San Carlos 24.7916 -112.1113 6159 CIB ittoris AY589036 96 MX BCS Morcillo 24.1479 -104.794 12542 CIB chihuahuae EU240794	86	MX	BC	Canon Santa Clara	29.3669	-106.5722	147083	MVZ	iuntae	EU240773
88 BC BC San Borga 28.7385 -113.7516 7719 ClB borjasensis EU240792 89 BC BCS Guerrero Negro 27.9532 -114.0567 7721 ClB russeolus EU24073 90 SW SON Navojoa 27.136 -109.4439 146813 MVZ camoae EU240734 91 MX DGO Las Nieves 26.5377 -105.4925 150465 MVZ nelsoni EU24074 92 BC BCS Los Laureles 26.0512 -112.1210 7680 ClB incomptus AY589039 93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ madegueae U65273 95 BC BCS Son Carlos 24.7916 -112.1113 6159 ClB litoris AY589036 96 MX BCS La Paz 24.1418 -104.2794 12542 ClB chihuahuae EU240795	87	BC	BC	Fl Rosarito	28 8377	-114 1022	153706	MVZ.	cactophilus	U65276
89 BC BCS Guerrero Negro 27.9532 -114.0567 7721 CIB russeolus EU240733 90 SW SON Navoja 27.1136 -109.4439 146813 MVZ camaoae EU240743 91 MX DGO Las Nieves 26.537 -105.4925 150465 MVZ carlon EU240743 92 BC BCS Los Laureles 26.0512 -112.1210 7680 CIB incomptus AY580039 93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ madgdlenae U65273 94 BC BCS San Carlos 24.19716 -112.113 6159 CIB litoris AY58036 95 BC BCS La Paz 24.1479 -104.7944 12542 CIB chinuchuae EU24075 97 BC BCS La Ciudad 23.7048 -104.2794 12542 CIB chinuchuae EU240795	88	BC	BC	San Boria	28 7385	-113 7516	7719	CIB	horiasensis	EU240792
90 SW SON Navojoa 27.1136 -109.4439 146813 MVZ cannoa EU240748 91 MX DCO Las Nieves 26.5377 -105.4925 150465 MVZ nelsoni EU240774 92 BC BCS Los Laureles 26.0512 -112.1210 7680 ClB incomptus AV58039 93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ analogus U65273 94 BC BCS C.d. Constitución 25.0356 -111.7169 153727 MVZ magdalenae U65273 95 BC BCS San Carlos 24.7916 -112.1113 6159 ClB litoris AV589039 96 MX BCS BCS La Paz 23.7048 -104.2794 12542 ClB chinuhaluae EU240794 99 MM Dgo La Guidad 23.7048 -104.2794 12543 ClB chinuhaluae	89	BC	BCS	Guerrero Negro	27.9532	-114.0567	7721	CIB	russeolus	EU240793
91 MX DGO Las Nieves 26,5377 -105,4925 150465 MVZ nelsoni EU240774 92 BC BCS Los Laureles 26,0512 -112,1210 7680 CIB incomptus AV589039 93 SW COAH Bela Unión 25,4406 -100,8171 158017 MVZ analogus U65273 94 BC BCS Cd. Constitución 25,0356 -111,7169 153727 MVZ magdalenae U65278 95 BC BCS San Carlos 24,7916 -112,1113 6159 CIB litoris AV589036 96 MX BCS Morcillo 24,1418 -110,47339 6665 CIB imitabilis AY589017 98 MM Dgo Buenos Aires 23,7048 -104,2794 12542 CIB chihuahuae EU240796 99 MM Dgo Durango 23,7048 -104,2794 12543 CIB chihuahuae EU240761 </td <td>90</td> <td>SW</td> <td>SON</td> <td>Navoioa</td> <td>27.1136</td> <td>-109.4439</td> <td>146813</td> <td>MVZ</td> <td>camoae</td> <td>EU240748</td>	90	SW	SON	Navoioa	27.1136	-109.4439	146813	MVZ	camoae	EU240748
92 BC BCS Los Larreles 26.0512 -112.1210 7680 CIB Incomptus AY589039 93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ analogus U65273 94 BC BCS Cd. Constitución 25.0356 -111.7169 153727 MVZ magdalenae U65278 95 BC BCS San Carlos 24.7916 -112.1113 6159 CIB litoris AY589036 96 MX BCS Morcillo 24.1479 -104.7088 150454 MVZ durangi EU240775 97 BC BCS La Paz 24.1418 -104.2794 12542 CIB chihuahuae EU240794 98 MM Dgo La Ciudad 23.7322 -105.6760 150425 MVZ chihuahuae EU240795 100 MM Dgo Durango 23.7344 -104.2794 12543 CIB chihuahuae EU240766	91	MX	DGO	Las Nieves	26 5377	-105 4925	150465	MVZ	nelsoni	EU240774
93 SW COAH Bela Unión 25.4406 -100.8171 158017 MVZ analogus U65273 94 BC BCS Cd. Constitución 25.0356 -111.7169 153727 MVZ analogus U65278 95 BC BCS San Carlos 24.7916 -112.113 6159 ClB litoris AY589036 96 MX BCS Morcillo 24.1479 -104.7088 150454 MVZ durangi EU240775 97 BC BCS La Paz 24.1418 -110.4339 6665 ClB imitabilis AY589017 98 MM Dgo La Ciudad 23.7048 -104.2794 12542 ClB chihuahuae EU240794 100 MM Dgo Durango 23.7048 -104.2794 12543 ClB chihuahuae EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crasidens EU240769 <	92	BC	BCS	Los Laureles	26.0512	-112 1210	7680	CIB	incomptus	AY589039
94 BC BCA CA Constitución 25.0356 -111.7169 153727 MVZ magdelenee U65278 95 BC BCS San Carlos 24.7916 -112.1113 6159 CIB litoris AYS89036 96 MX BCS La Paz 24.1479 -104.7088 150454 MVZ durangi EU240775 97 BC BCS La Paz 24.1418 -110.4339 6665 CIB imitabilis AYS89017 98 MM Dgo Buenos Aires 23.7048 -104.2794 12542 CIB chihuahuae EU240795 100 MM Dgo Durango 23.7048 -104.2794 12542 CIB chihuahuae EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crassidens EU240796 102 BC BCS La Laguna 21.5884 -104.8298 12552 CIB atrovarius EU240796	93	SW	COAH	Bela Unión	25 4406	-1008171	158017	MVZ.	analogus	1165273
95 BC BCS San Carlos 24.7916 -112.1113 6150 CIB litoris AYS89036 96 MX BCS La Paz 24.1479 -104.7088 150454 MVZ durangi EU240775 97 BC BCS La Paz 24.1418 -110.4339 6665 CIB imitabilis AY589017 98 MM Dgo Buenos Aires 23.7048 -104.2794 12542 CIB chihuahuae EU240794 99 MM Dgo Durango 23.7048 -104.2794 12543 CIB chihuahuae EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crassidens EU240766 102 BC BCS La Laguna 23.5394 -109.9713 6516 CIB atrovarius EU240766 103b MP Nay San Blas 21.5884 -104.8298 12552 CIB atrovarius EU240766 <	94	BC	BCS	Cd Constitución	25.0356	-111 7169	153727	MVZ	magdalenae	U65278
bit bit< bit bit bit bit <td>95</td> <td>BC</td> <td>BCS</td> <td>San Carlos</td> <td>24 7916</td> <td>-112 1113</td> <td>6159</td> <td>CIB</td> <td>litoris</td> <td>AY589036</td>	95	BC	BCS	San Carlos	24 7916	-112 1113	6159	CIB	litoris	AY589036
37 BC Inform 211,118 -110,4339 6665 CIB initabilis AY589017 98 MM Dgo Buenos Aires 23,7048 -104,2794 12542 CIB chihuahuae EU240794 99 MM Dgo La Ciudad 23,7322 -105,6760 150425 MVZ chihuahuae EU240794 100 MM Dgo Durango 23,7048 -104,2794 12543 CIB chihuahuae EU240795 101 MX ZAC Sombrerete 23,6166 -103,7302 153746 MVZ crassidens EU240796 102 BC BCS La Laguna 23,5394 -109,9713 6516 CIB alticolus AY589022 103a MP Nay San Blas 21,5884 -104,8298 12552 CIB anitae AY589021 104 BC BCS Santa Anita 23,1748 -109,2514 153778 MVZ zacatecae EU240797	96	MX	BCS	Morcillo	24 1479	-104 7088	150454	MV7	durangi	FII240775
98 MM Dgo Buenos Aires 23.7048 -104.2794 12542 CIB chihuahuae EU240794 99 MM Dgo La Ciudad 23.7048 -104.2794 12542 CIB chihuahuae EU240795 100 MM Dgo Durango 23.7048 -104.2794 12543 CIB chihuahuae EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crassidens EU240766 102 BC BCS La Laguna 23.5394 -109.9713 6516 CIB altrovarius EU240766 103a MP Nay San Blas 21.5884 -104.8298 12542 CIB atrovarius EU240796 103b MP Nay San Blas 21.5884 -104.8298 12542 CIB atrovarius EU240767 104 BC BCS Sant Anita 23.1748 -109.717 6220 CIB anitae AY589021	97	BC	BCS	La Paz	24 1418	-1104339	6665	CIB	imitahilis	AY589017
99 MM Dgo La Ciudad 23.7322 -105.6760 150425 MVZ chihuahuae U65289 100 MM Dgo Durango 23.7048 -104.2794 12543 ClB chihuahuae EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crassidens EU240766 102 BC BCS La Laguna 23.5394 -109.9713 6516 ClB alticolus AY589021 103a MP Nay San Blas 21.5884 -104.8298 12548 ClB atrovarius EU240796 103b MP Nay San Blas 21.5884 -104.8298 12552 ClB atrovarius EU240797 104 BC BCS Santa Anita 23.1748 -109.7177 6220 ClB anitae AY589021 105 MX ZAC Ojocaliente 22.5971 -102.2514 153792 MVZ potosinus EU2407676	98	MM	Dgo	Buenos Aires	23 7048	-104 2794	12542	CIB	chihuahuae	FU240794
100 MM Dgo Durango 23.7048 -104.2794 12543 CIB chihuahuac EU240795 101 MX ZAC Sombrerete 23.6166 -103.7302 153746 MVZ crassidens EU240795 102 BC BCS La Laguna 23.5394 -109.9713 6516 CIB alticolus AY589022 103a MP Nay San Blas 21.5884 -104.8298 12522 CIB atrovarius EU240796 103b MP Nay San Blas 21.5884 -104.8298 12552 CIB atrovarius EU240797 104 BC BCS Santa Anita 23.1748 -109.7177 6220 CIB anitae AY589021 105 MX ZAC Ojocaliente 22.5971 -102.2514 153778 MVZ zacatecae EU240767 106 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ potosinus EU240769<	99	MM	Dgo	La Ciudad	23 7322	-1056760	150425	MVZ.	chihuahuae	LI65289
100 MX ZAC Sombrerete 23.6166 -103.7302 133746 MVZ crassidens EU240766 102 BC BCS La Laguna 23.5394 -109.9713 6516 CIB alticolus AY589022 103a MP Nay San Blas 21.5884 -104.8298 12548 CIB atrovarius EU240766 103b MP Nay San Blas 21.5884 -104.8298 12552 CIB atrovarius EU240797 104 BC BCS Santa Anita 23.1748 -109.7177 6220 CIB anitae AY589021 105 MX ZAC Ojocaliente 22.5971 -102.2514 153778 MVZ zacatecae EU240767 106 MX SLP Ventura 22.3397 -100.8045 153792 MVZ potosinus EU240768 107 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ pullus EU240769 108 MX MICH Pátzcuaro 19.4212 -101.6094	100	MM	Dgo	Durango	23 7048	-104 2794	12543	CIB	chihuahuae	FU240795
101 Introduction 103 introduction 109.0713 105 introduction 101 introduction 102 introduction	100	MX	7AC	Sombrerete	23,6166	-103 7302	153746	MV7	crassidens	FU240766
102 DC DA Description	102	BC	BCS	La Laguna	23 5394	-109 9713	6516	CIB	alticolus	AY589022
103L MP Nay San Blas 21.5884 -104.8298 1252 CIB atroatility EU240797 104 BC BCS Santa Anita 23.1748 -109.7177 6220 CIB anitae AY589021 105 MX ZAC Ojocaliente 22.5971 -102.2514 153778 MVZ zacatecae EU240767 106 MX SLP Ventura 22.3397 -100.8045 153792 MVZ potosinus EU240768 107 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ arriagensis EU240769 108 MX MICH Pátzcuaro 19.4212 -101.6094 153825 MVZ pullus EU240770 109 MX MEX Amecameca 19.0775 -98.6314 153851 MVZ umbrinus U62526 Outgroups Utgroups Image: Size and Size	102	MP	Nav	San Blas	21 5884	-104 8298	12548	CIB	atrovarius	FU240796
104 BC BCS Santa Anita 23.1748 -109.7177 6220 CIB anitae AY589021 105 MX ZAC Ojocaliente 22.5971 -102.2514 153778 MVZ zacatecae EU240767 106 MX SLP Ventura 22.3397 -100.8045 153792 MVZ potosinus EU240768 107 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ arriagensis EU240769 108 MX MICH Pátzcuaro 19.4212 -101.6094 153825 MVZ pullus EU240770 109 MX MEX Amecameca 19.0775 -98.6314 153871 MVZ umbrinus U65240711 110 MX PUE Esperanza 18.8303 -97.3289 153877 MVZ umbrinus U6524071 0utgroups - - -97.3289 153877 MVZ umbrinus U65285 Outgroups - - - -97.3289 153877 MVZ umbrinus AY3	103a 103b	MP	Nav	San Blas	21,5004	-104.8298	12540	CIB	atrovarius	EU240790
105 MX ZAC Ojocaliente 22.5971 -102.2514 153778 MVZ zacatecae EU240767 106 MX SLP Ventura 22.3397 -100.8045 153792 MVZ potosinus EU240768 107 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ arriagensis EU240769 108 MX MICH Pátzcuaro 19.4212 -101.6094 153825 MVZ pullus EU240770 109 MX MEX Amecameca 19.0775 -98.6314 153851 MVZ vulcanius EU240771 110 MX PUE Esperanza 18.8303 -97.3289 153877 MVZ vulcanius U65286 Outgroups Ugroups - - -97.3289 153877 MVZ pullus Af215813 Outgroups - - - -97.3289 153877 MVZ pulcanius Af215813 Outgroups - - - - - - Fousterensis Af2393959	1035	BC	BCS	Santa Anita	23 1748	-109.0250 -109.7177	6220	CIB	anitae	AV589021
106 MX SLP Ventura 22.337 -100.8045 153792 MVZ potosinus EU240768 107 MX SLP Arriaga 21.9192 -101.3743 153810 MVZ arriagensis EU240769 108 MX MICH Pátzcuaro 19.4212 -101.6094 153825 MVZ pullus EU240770 109 MX MEX Amecameca 19.0775 -98.6314 153851 MVZ vulcanius EU240771 100 MX PUE Esperanza 18.8303 -97.3289 153877 MVZ umbrinus U65286 Outgroups Ugroups - - -97.3289 153877 MVZ umbrinus U65286 Outgroups - - -97.3289 153877 MVZ umbrinus Af215813 Outgroups - - - - - MZ umbrinus Af2393959 Outgroups - - - - - - - - - - - - -	101	MX	ZAC	Oiocaliente	22 5971	-102 2514	153778	MV7	zacatecae	FU240767
100MXSLPArriaga21.9192-100.0043153752MVZprosinitsE0240700107MXSLPArriaga21.9192-101.3743153810MVZarriagensisEU240770108MXMICHPátzcuaro19.4212-101.6094153825MVZpullusEU240770109MXMEXAmecameca19.0775-98.6314153851MVZvulcaniusEU240771110MXPUEEsperanza18.8303-97.3289153877MVZumbrinusU65286OutgroupsUdgroupsImage: Seperanza18.8303-97.3289153877MVZumbrinusU65286OutgroupsImage: SeperanzaImage: SeperanzaImage: SeperanzaImage: SeperanzaAY393959OutgroupsImage: SeperanzaImage: SeperanzaImage: SeperanzaImage: SeperanzaOutgroupsImage: SeperanzaImage: SeperanzaImage: SeperanzaImage: Sep	105	MX	SLP	Ventura	22.5571	-100 8045	153792	MVZ	notosinus	EU240768
107MAXSLIMing215152-101.50213505MVZanneginsE0240750108MXMICHPátzcuaro19.4212-101.6094153825MVZpullusEU240770109MXMEXAmecameca19.0775-98.6314153851MVZvulcaniusEU240771110MXPUEEsperanza18.8303-97.3289153877MVZumbrinusU65286Outgroups	100	MX	SLP	Arriaga	21,9192	-100.0043 -101.3743	153810	MVZ	arriagensis	EU240760
100MXMEXAmecaneca19.0775-98.6314153851MVZpandsE0240771100MXPUEEsperanza19.0775-98.6314153851MVZvulcaniusU65286Outgroups0utgroups-97.3289153877MVZumbrinusU65286Outgroups-97.3289153877MVZambrinusAF215813Outgroups-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.3289-97.328953877MVZambrinusAF215813Outgroups-97.3289-97.3289-97.328953877AV393959AY393959Outgroups-97.3289-97.3289-97.328953877AV393965AY393965Outgroups-97.3289-97.3289-97.3289-97.328953877AY494969Outgroups-97.3289-97.3289-97.3289-97.3289-97.328953877Outgroups-97.3289-97.3289-97.3289-97.3289-97.3289-97.3289Outgroups-97.3289-97.3289-97.3289-97.3289	107	MX	MICH	Pátzcuaro	19 4212	-101.6094	153825	MVZ	nullus	EU240703
100MXMIX	100	MY	MEY	Amecameca	10.0775	08 6314	153851	MV7	vulcanius	EU240770
Outgroups Thomosys monticolus AF215813 Outgroups Geomys personatus AY393959 Outgroups Geomys texensis AY393965 Outgroups Cratogeomys fulvescens AY649459 Outgroups Cratogeomys merriami AY649466	110	MY	DUE	Feberapza	18 8303	- 33.0314	153877	MV7	umbrinus	1165286
OutgroupsGeomys personatusAY393959OutgroupsGeomys texensisAY393965OutgroupsGeomys texensisAY393965OutgroupsCratogeomys fulvescensAY649459OutgroupsCratogeomys merriamiAY649466	Outgroups	10174	TOL	Esperanza	10.0505	-57.5205	155077	141 4 2	Thomomys monticolus	AF215813
OutgroupsGeomys texensisAY393965OutgroupsCratogeomys fulvescensAY649459OutgroupsCratogeomys merriamiAY649466	Outgroups								Ceomys personatus	AV393959
OutgroupsCratogeomys fulvescensAY649459OutgroupsCratogeomys merriamiAY649466	Outgroups								Geomys texensis	AY393965
Outgroups Cratogeomys julyestens A1049435 Outgroups Cratogeomys merriami AY649466	Outgroups								Cratogeomys fulvescens	AY649459
	Outgroups								Cratogeomys merriami	AY649466
	Sutgroups								cratogeomys merrianti	11043400

Non-redundant haplotypes were identified using the Collapse software (ver. 1.1, Posada, 2004, available from http://darwin.uvigo.es). The General Time Reversible model with a fraction of invariable sites and gamma-distributed among-site rate variation (GTR+I+G; Tavaré, 1985) was shown to be the most appropriate for this dataset using the model comparison software MrModeltest ver. 2 (Nylander, 2004) under the Akaike Information Criterion (AIC). A Bayesian analysis was performed using MrBayes ver. 3.1.1 software (Ronquist and Huelsenbeck, 2003). Four independent runs were performed with Markov chain Monte Carlo simulations starting from a random tree. Each run was conducted with 5 million generations and sampled at intervals of 1000 generations. The first 5000 trees (10% burn-in) were discarded as a conservative measure to avoid the possibility of including random, suboptimal trees. The remaining sampled trees were analyzed to find the posterior probability of clades. A consensus tree was generated with the 50% majority-rule algorithm in PAUP 4.0b10 (Swofford, 2001), and the percentage of samples recovered in a particular clade was assumed to be that clade's posterior probability.

Genetic distances were calculated using the General Time Reversible (GTR+I+G, Tavaré, 1985) as the best-fit model of nucleotide substitution and the Kimura 2 parameter model. The latter is the most commonly used model for comparing levels of divergence among studies (Baker and Bradley, 2006). A neighbor-joining analysis was conducted in PAUP ver. 4.0b10 (Swofford, 2001). Support for nodes was assessed with bootstrap analyses, including a fast heuristic procedure with 1000 pseudo-replicates. Sequences from *Cratogeomys merriami* (AY649466), *Cratogeomys fulvescens* (AY649459), *Geomys personatus* (AY393959), *Geomys texensis* (AY393965), and *Thomomys monticola* (AF215813) were used as outgroups. The outgroup specimens were chosen following in part the study of Wickliffe et al. (2005). Only *T. monticola* was used as outgroup in the Bayesian inference because MrBayes ver. 3.1.1 software (Ronquist and Huelsenbeck, 2003) only accepted one species as outgroup, and the maximum-likelihood shows that *T. monticola* could be considered as the sister species of the *bottae–umbrinus* complex.

Maximum-parsimony (MP) and maximum-likelihood (ML) analyses were implemented in PAUP ver. 4.0b10 (Swofford, 2001). For maximum-parsimony analysis, all characters were equally weighted, and heuristic searches were performed with 1000 random additions of sequences, and tree-bisection reconnection (TBR) algorithm for branch swapping. For all analyses that resulted in multiple most parsimonious trees, consensus trees were constructed using the 50% majority rule. The GTR+I+G model was

then used for maximum-likelihood searches consisting of 100 random replicates with TBR branch swapping. Bootstrap values $\ge 50\%$ are reported for branch support.

3. Results

3.1. Sequence variation

There were 498 variable positions in the 1140-bp dataset (418 were phylogenetically informative), which defined 37 haplotypes. In the 500-bp dataset, there were 215 variable positions and 195 were phylogenetically informative.

3.2. Phylogenetic analyses

The most appropriate model of evolution found for the short and long fragments of Cyt *b* with software MrModeltest ver. 2 (Nylander, 2004) was the GTR+I+G. The model parameters for the long fragments were: I = 0.53 and G = 1.52, $-\ln L = 10,946.05$, k = 9, AIC = 21910. Base frequencies were A = 0.344, C = 0.275, G = 0.087, T = 0.293 and relative substitution rates were A-C = 0.97, A-G = 11.47, A-T = 0.91, C-G = 0.17, C-T = 11.47, G-T = 1.0.

The Bayesian inference for the short fragments of pocket gophers shows eight monophyletic groups, all deeply divergent and strongly supported (Fig. 2). The neighbor-joining, maximum-parsimony and maximum-likelihood analyses produced a similar topology (not shown) to that obtained under Bayesian inference. The average of genetic distances (K2P) among the eight monophyletic groups of *Thomomys* were between 11.1% and 19.5% (Table 2).

The maximum-parsimony analysis of long sequences recovered one tree (CI = 0.33, RI = 0.63, length = 2,290 steps; not shown). The maximum-likelihood and Bayesian analyses of the long fragment supported the same eight monophyletic groups (Fig. 3) recovered by short-fragment analyses. The average percentage sequence distance (K2P) in the Mexico (MX) clade (10.3%) almost doubled those within the Southwest (SW, 5.6%), Peninsula of Baja California (BC, 3.8%), North of California (NC, 3.9%), Snake River (SR 3.87%) and Pacific group (PG, 5.8%) clades. The smallest average genetic distances are within the Pacific Mexico (MP, 0.4%) and Mountain Mexico (MM, 0.04%) clades (Table 2).

4. Discussion

4.1. Phylogeographic structure

All phylogenetic analyses (Bayesian inference, maximum-parsimony, maximum-likelihood and neighbor-joining) show similar topologies. I used the Bayesian analysis (Fig. 3a) as a reference for discussing relationships among clades. Additionally, I refer to each of the primary clades identified in the study as "groups".

A study of electromorphic allozyme variation of 25 polymorphic loci (Patton and Smith, 1990) showed that the *T. bottae–umbrinus* gophers of the United States and northwestern Mexico could be resolved into six main groups: Northern California (corresponding to NC in Fig. 2), Central California (corresponding to PG), Great Basin (corresponding to SW), Basin and Range (corresponding to SW), Baja California (corresponding to BC), and Sonora (corresponding to MX). Patton and Smith (1990) considered that genetic differences among these six groups are stronger than those found in separate species of many other mammal groups. These six electromorphic groups are phylogeographically structured according with the mitochondrial groups obtained from analyses performed in this study, with a few differences in the geographical borders among them (Patton and Smith, 1990). The major difference between the analyses is that the Basin and Range and Great Basin groups are distinct in the electromorphic analysis, but form one group in the mitochondrial analysis. The names assigned to these mitochondrial clades are based on their geographical range.

An analysis, based on a combination of allozymes and sequences from both mtDNA and nuclear DNA, that addressed the specific-level status of T. townsendii concluded that the following four species be recognized (Patton and Smith, 1994): (1) the northern California Group represented by T.b. saxatilis of the Patton and Smith (1994) study, equivalent to the Northern California Group of the present study; (2) the central and western Nevada (T.b. canus and T.b. concisor, including T.t. nevadensis), equivalent to the Pacific Group; (3) the eastern Great Basin (*T.b. latus* and *T.b. centralis*) equivalent to the Southwestern Group, and (4) the Snake River (T. townsendii), that considered the populations at the eastern side of the Snake River, following Fig. 1 of Patton and Smith (1994). Therefore, T. townsendii was considered as a different species of T. bottae because hybridization was essentially limited to the F₁ generation (Patton et al., 1984). Thomomys t. townsendii is in the same clade with T. bottae centralis (Figs. 3, 5 and 6, Smith, 1998), T. townsendii is nested in the T. bottae (Pacific Group of the present analysis), with the mtDNA genetic distance from T. bottae of 4.72% (0.80–7.43, Smith, 1998). Moreover, Smith (1998) mentions that T. townsendii may have had a separate origin from T. bottae of the nearby Great Basin, which could be supported by T. townsendii and T. bottae being in different allozymic genetic units (Patton and Smith, 1990).

The mtDNA results in the population of the continental part of Mexico (not including the Baja California Peninsula) are in relation to the chromosomal evidence and electrophoretical variation of proteins (Hafner et al., 1987), due that could be divided into three different species. In Hafner et al. (1987) related to different mtDNA groups found in the present study. The groups of the Mexican Pacific and Mexican Mountain are the only populations of the bottae*umbrinus* complex with a karyotype of 2n = 76, different from all the others that have 2n = 78 (Hafner et al., 1987). Besides, the phenetic clustering of allozymic data (Fig. 3, Hafner et al., 1987:23) shows strong differences between the two groups. Therefore, the pocket gophers of the coast of Sinaloa are morphologically and electromorphically very different (Hafner et al., 1987:32). Hafner et al. (1987) still considered them as the same species because they do not have evidences to suggest that the two populations are reproductively incompatible. However, if I use the phylogenetic species concept (Cracraft, 1997) or the Genetic Species Concept (Bradley and Baker, 2001), those groups could be considered as different species.

The other karyotype 2n = 78, was divided into two different groups; the north group has the presence of microchromosomes, while in the southern group they are absent; therefore, the phonetic clustering of allozymic data supports the differences between the two groups (Hafner et al., 1987). The two karyological and allozymic groups have a strong relationship with the mtDNA group. The data of the northern group present the same subdivision as that from the Southwestern group and southward with the Mexican group.

The eight groups obtained from the analyses, where each one could be considered with the geographic structure that represents evolutionary units, and with well defined geographical boundaries along the *bottae–umbrinus* complex are:

4.1.1. North California group (NC)

This group includes the populations in the mountains north of the Central Valley of California (including the Coastal Range of California from San Francisco Bay to the north) extending to southern part of Oregon (including the Cascade Range in California and the McLoughin mountain region in Oregon) and south along the northS.T. Álvarez-Castañeda/Molecular Phylogenetics and Evolution 54 (2010) 671-679

Fig. 2. Consensus of Bayesian inference from 110 specimens (500 bp) using cytochrome *b* gene sequences. The sequences represent individuals from different populations in the range of the *bottae–umbrinus* complex. This tree supports the monophyly of eight clades within the *bottae–umbrinus* complex. Each of the clades represents one geographical area: BC, Peninsula of Baja California; MM, Mountain Mexico; MX, Mexico; NC, North of California; PG, Pacific group; PM, Pacific Mexico; SR, Snake River; and SW, Southwestern. Black dots represent those specimens used in the 1140 bp analysis. The upper part of the cladogram is in the left side and the lower part is in the right side of the map. Bootstrap values are given for only the main nodes.

eastern slope of the Sierra Nevada of California. The mean percentage of genetic variation within the group is 3.94%, its average divergence from other groups of the *bottae–umbrinus* complex is 17.0% using the K2P algorithm. This group is the most geographically limited (Fig. 3) in the *bottae–umbrinus* complex and it includes only a few populations. Only two subclades were found,

S.T. Álvarez-Castañeda/Molecular Phylogenetics and Evolution 54 (2010) 671-679

Table 2

Average genetic distances (%) among (upper and lower matrices) and within (diagonal, bold) proposed species of *Thomomys* examined here. The upper-right matrix was generated under the GTR+I+G the best evolution model. Distances in the lower-left and diagonal matrix (bold) were generated using the Kimura 2 parameter model to allow comparison to traditional estimates of genetic distance in small mammals.

	GROUP	1	2	3	4	5	6	7	8	9	10
1	NC	3.94	16.56	16.36	17.34	20.16	17.43	18.37	19.88	25.82	17.64
2	SW	16.06	5.64	12.92	14.37	17.72	15.78	16.95	18.55	23.11	15.91
3	SR	15.90	12.65	3.87	11.33	16.97	15.94	16.23	16.93	22.70	14.39
4	PG	16.83	14.03	11.14	5.84	17.33	16.11	17.36	17.95	24.52	16.95
5	MX	19.53	17.23	16.57	16.97	10.30	18.44	17.50	17.56	25.21	17.97
6	BC	16.61	15.25	15.37	15.59	17.72	3.84	15.92	18.19	23.90	16.45
7	PM	17.71	16.39	15.87	16.91	17.07	15.57	0.40	15.99	24.81	17.14
8	MM	19.39	17.93	16.54	17.54	17.30	17.64	15.51	0.04	24.65	18.14
9	monticola	24.88	22.40	22.06	23.71	24.17	23.27	23.68	23.86		
10	Complex	17.06	15.45	14.04	16.52	17.42	15.97	16.46	17.57		

Fig. 3. Trees from 1140 bp from the cytochrome *b* gene of 34 representative individuals. These trees support eight different monophyletic groups. The model used was GTR+I+G. (A) Bayesian inference (BI). (B) Maximum-likelihood analyses (ML – Score = 10,939). At the tip of each branch, the number of locality and subspecies indicates the group following Table 1. The acronyms used for outgroup are: *Cratogeomys merriami* (C.m.), *Cratogeomys fulvescens* (C.f.), *Geomys personatus* (G.p.), *Geomys texensis* (G.t.), and *Thomomys monticola* (T.m.). Bootstrap values are given for only the main nodes.

both with strong Bayesian inference (Fig. 2). Its range includes the Coastal Range of California from San Francisco Bay to the north and throughout the southern part of Oregon, the Cascade Range in California.

4.1.2. Pacific group (PG)

It includes populations from the Central Valley of California south through the Mojave Desert and eastward north of the Colorado River to southwestern Colorado and northwestern New Mexico. The mean percentage of genetic differences within the group is 5.84%; its average divergence from other groups of *bottae–umbrinus* is 16.52% with the K2P. This clade includes some isolated populations from the northern part of the *bottae–umbrinus* complex range. The clade shows three subclades. The range is from the central valley in California to the east along the northern side of the Colorado River, with the exception of the area around the Salton Sea and the highlands of northern California. It includes the states of California, east of Idaho, Nevada, Oregon, New Mexico, Colorado and Utah in the United States.

4.1.3. Snake River Group (SR)

It includes populations from the eastern part of the Snake River in Idaho and specimens of California, Nevada and Utah. The mean percentage of genetic differences within the group is 3.87%; its average divergence from other groups of *bottae–umbrinus* is 14.04% with the K2P. The populations eastern of Snake River have been considered part of a different species, *T. townsendii* (Patton and Smith, 1994). However, the populations of California, Nevada and Utah have been considered as part of *T. bottae*.

4.1.4. Southwestern group (SW)

It includes populations in a large area of the southwestern United States and northwestern Mexico. The westernmost populations are in the Colorado Desert of California and adjacent Baja California and Sonora. In Arizona it occurs south of the Colorado River and extends south through most of Sonora west of the Sierra Madre. The range includes much of New Mexico and continues south into western Texas and Chihuahua east of the Sierra Madre Occidental. A possible disjunctive part of the range includes the Big Bend region of Texas south through much of Coahuila and reaching into Nuevo León. The mean genetic distance within the group is 5.64%; its average distance from other groups in the bottae-umbrinus complex is 15.45%. The clade includes three main subclades, each with its own geographic distribution. I did not find a geographical overlap among the subclades. The SW group represents an incongruity between the Cyt b and the electromorphic analysis (Patton and Smith, 1990). According to the electromorphic analysis (Patton and Smith, 1990), some of the populations of NW New Mexico and NE Arizona belong to the Pacific group (PG), but are part of the Southwestern group (SW) from the Cyt b data. I follow the Cyt b pattern until more detailed analyses are made. The distribution of the species includes two main ranges, one that continues from the southwestern part of the United States and northwestern Mexico and a second one in Texas, Coahuila, and Nuevo León from the Colorado River to the south and east, including the Sierra Madre Occidental and the northern part of the Sierra Madre Oriental. The second part includes the states: Arizona, SE California, New

Mexico, and Texas in the United States, and NE Baja California, Chihuahua, Coahuila, Nuevo León, and Sonora in Mexico.

4.1.5. Mexican group (MX)

It includes all the populations from north and central mainland Mexico. The mean genetic distance within the group is 10.30%; its average distance from other groups of the *bottae–umbrinus* complex is 17.42%. The clade has three main subclades that are geographically distinct. This species has a fragmentized distribution including the mountain range of the Sierra Madre Occidental, many isolated populations on the tops of high volcanoes in Central Mexico, and areas in the southwestern Mexican plateau. It includes the states of Aguascalientes, Chihuahua, Distrito Federal, Durango, Guanajuato, Jalisco, Morelos, Nayarit, Puebla, San Luis Potosí, Sinaloa, State of Mexico, Sonora, Veracruz, and Zacatecas.

Genetic distances within the Mexican group and the genetic differences among the specimens from Central Mexico, compared to those from the mountain range of Northwest Mexico and to those of south of the Mexican tableland, could indicate that more than two different groups are included under *Thomomys umbrinus*.

4.1.6. Baja California group (BC)

It includes populations from southwestern California (southern Salton Sea) south throughout most of the Baja California peninsula. The mean genetic distance within the group is 3.84%; its average distance from other groups of the *bottae–umbrinus* complex is 15.97%. The clade shows two subclades with a strong geographic pattern. The range of one subclade includes from San Bernardino Mountains to Southern California, and the range of the other subclade is the Baja California Peninsula.

4.1.7. Mexican-Pacific group (MP)

It includes populations from the Sinaloa-Nayarit costal plains. Only 2 haplotypes were found in 15 sequenced specimens. The mean genetic distance within the group is 0.4 %; its average distance to other groups in the *bottae-umbrinus* complex is 16.46%. This group only presents one clade and can be considered from only 1 population along the Sinaloa-Nayarit costal plain. Its range includes from the San Lorenzo River in Sinaloa through the costal plains continuing southward to Nayarit.

4.1.8. Mexican Mountain group (MM)

It includes populations from the western part of Durango. The mean genetic distance within the group is 0.04%; its average distance from other groups in the *bottae–umbrinus* complex is 17.57%. This group only presents one clade and can be considered from only one population along the Sierra Madre Oriental western to the city of Durango. Its range includes the highlands of the Sierra Madre Oriental from the Fuerte River Canyon in Sonora to the south, including the states of Chihuahua, Sonora, Durango and the eastern part of Sinaloa.

4.2. Haplotype diversity, genealogy, and population history

All groups defined in the phylogenetic analyses contain unique haplotypes and distributions. The Mexican (MX) group has the most genetic variation (Table 2). This is probably due to the strong isolation among populations that were range-restricted, mainly to the tops of volcanoes in central Mexico. In contrast, the Mexican Mountain group has the lowest pairwise genetic distances among populations, and is probably the most isolated population. The Southwestern and Pacific groups have similar pairwise genetic distances, similar range sizes, and continuous distributions. Thus, I suggest that similar ecological conditions can favor the genetic flow between populations, which can result in similar levels of genetic divergence.

4.3. The geography of differentiation in pocket gophers

No morphological analyses have been made to distinguish the eight monophyletic groups identified by the Cyt b analysis. However, the capacity of pocket gophers to exhibit great variation in their morphotypes in response to local ecological conditions could mean that any differences that exist among the major clades merely represent local differentiation among populations (Davis, 1938; Hadly, 1997; Ingles, 1950; Smith and Patton, 1984, 1988). Morphological variation has been associated with nutrition and habitat quality, so specimens from alfalfa fields are significantly larger that those specimens adjacent to agricultural fields (Patton and Brylsky, 1987; Smith and Patton, 1988). Such variation at the population level makes it impossible to determine which morphological characteristics of the eight groups might be used to differentiate clades. In some populations of Baja California, morphological and genetic variation within localities is as great as or greater than that between populations (Álvarez-Castañeda and Patton, 2004; Rios and Álvarez-Castañeda, 2007; Trujano-Álvarez and Álvarez-Castañeda, 2007).

4.4. Taxonomic implications

The species concepts applied to pocket gophers have changed over the last 150 years. In the early years each population was described as a different species (e.g., *Thomomys altivallis, T. bottae, T. townsendii, T. umbrinus*) mainly by C. H. Merriam. Merriam (Merriam, 1901) described 22 gopher taxa as different species (Poole and Schantz, 1942). Early in the 20th century, the point of view changed and mammalogists began to recognize differences among the populations at subspecific level. An example is Goldman who described 76 subspecies (Poole and Schantz, 1942) or Huey who described 25 (Bond, 1969).

Virtually all populations in the *bottae–umbrinus* complex were considered subspecies of *Thomomys umbrinus* in the first revision of Mammals of North America, except for *T. baileyi* and *T. townsendii*, which were retained as separate species (Hall and Kelson, 1959). Anderson (1966, 1972), Hoffmeister (1969, 1986), Patton and Dingman (1968), Patton and Smith (1981) and Patton (1973) demonstrated that *T. bottae* is a different species from *T. umbrinus*. Thaeler (1968), Patton et al. (1984) and Patton and Smith (1990) confirmed the specific status of *T. townsendii* and *T. bottae*. However, Hall (1981) combined all the species of the *bottae–umbrinus* complex as *T. umbrinus*. In the current taxonomy (Patton, 1993, 1999, 2005; Patton and Smith, 1990) *T. umbrinus* and *T. bottae* are recognized as different species. However, the present study shows that the *bottae–umbrinus* complex could be an assemblage of at least eight different species.

4.5. Conclusion

Following the phylogenetic species concept, congruent results of mtDNA and allozyme analyses show that the *bottae–umbrinus* complex consists of at least eight monophyletic groups with no apparent diagnostic morphological differences among them. In contrast to the usual pattern of cryptic species in mammals, wherein populations that are genetically distinct appear morphologically identical, pocket gophers display high levels of anatomical variation among populations within species. Whether such finescale variation in morphology is due to local adaptation or random drift, it is likely accentuated by the strong site-fidelity and consequent lack of gene flow in these burrowing rodents. In such a case, patterns of genetic differentiation are likely to be a more accurate guide to species boundaries. I therefore suggest that eight groups, each one corresponding to a monophyletic mtDNA haplogroups, be recognized in the *bottae–umbrinus* complex. To recognize these eight groups as different species, an analysis of the nuclear DNA needs to be made. However, the specific analyses between *T. bottae* and *T. townsendii* combination of allozymes, sequences from both mtDNA, and hybridization between populations show that both species could be considered different with a percentage of 4.72% in the mtDNA.

Considering the fact that each one of the 8 groups is monophyletic, the presence of chromosomal evidence, electrophoretic variation of proteins among some of them, and a high percentage of genetic distance in the Cytochrome *b* analysis, the *bottae–umbrinus* complex may be assembled into the following eight species: *T. townsendii* eastern of the Snake River (Patton and Smith, 1994): *T. laticeps* from northern California; *T. bottae* from the rest of California, north and west of the Colorado River; *T. fulvus* from south and east of the Colorado River to the Sierra Madre Occidental in Sonora; *T. anitae* from south of the Salton Sea through the Baja California peninsula; *T. atrovarius* from the coastal lands of Sinaloa-Nayarit; *T. chihuahue* from western Chihuahua and Durango; and *T. umbrinus* from elsewhere in Mexico. The *umbrinus* group could be a complex of two species that needs to be analyzed in more detail.

Acknowledgments

I express my gratitude to J.L. Patton for the great time that we spent talking about these ideas, and for all his different comments made on the present project and paper. I thank also W. Lidicker, M. Matocq, E. Rios, A. Trujano-Álvarez, two anonymous reviewers for commenting on the manuscript, and D. Dorantes for her English revision. This study was done with research grants from the University of California MEXUS – Consejo National de Ciencia y Tecnología (CONACYT) program as well as from a UC MEXUS-CONACYT Faculty Fellowship awarded to S.T. Álvarez-Castañeda who carried out work in the Museum of Vertebrate Zoology, University of California, Berkeley.

References

- Álvarez-Castañeda, S.T., Patton, J.L., 2004. Geographic genetic architecture of pocket gopher (*Thomomys bottae*) populations in Baja California. Mexico Mol. Ecol. 13, 2287–2301.
- Anderson, S., 1966. Taxonomy of gophers, especially *Thomomys* in Chihuahua. Mexico Syst. Zool. 15, 189–198.
- Anderson, S., 1972. Mammals of Chihuahua, taxonomy and distribution. Bull. Am. Mus. Nat. Hist. 148, 149–410.
- Baker, R.J., Bradley, R.D., 2006. Speciation in mammals and the genetic species concept. J. Mamm. 87, 643–662.
- Bradley, R.D., Baker, R.J., 2001. A test of genetic species concept: cytochrome-b sequence and mammals. J. Mamm. 84, 960–973.
- Cracraft, J., 1997. Species concepts in systematics and conservation biology an ornithological viewpoint. In: Claridge, M.F., Dawah, H.A., Wilson, M.R. (Eds.), Species: the Units of Biodiversity. Chapman and Hall, London, UK, pp. 325–340.
- Bond, S.I., 1969. Type specimens of mammals in the San Diego natural history museum. Trans. San Diego Soc. Nat. Hist. 15, 252–263.
- Daly, J.C., Patton, J.L., 1986. Growth, reproduction, and sexual dimorphism in *Thomomys bottae* pocket gophers. J. Mamm. 67, 256–265.
- Davis, W.B., 1938. Relation of size of pocket gophers to soil and altitude. J. Mamm. 19, 338–342.
- Hadly, E.A., 1997. Evolutionary and ecological response of pocket gophers (*Thomomys talpoides*) to late-holocene climatic change. Biol. J. Linn. Soc. 60, 277–296.
- Hafner, M.S., Hafner, J.C., Patton, J.L., Smith, M.F., 1987. Macrogeographic patterns of genetic differentiation in the pocket gophers *Thomomys umbrinus*. Syst. Zool. 36, 18–34.
- Hall, E.R., 1981. The Mammals of North America. Wiley & Sons, NY.
- Hall, E.R., Kelson, K.R., 1959. The Mammals of North America. Ronald Press, NY.

- Hoffmeister, D.F., 1969. The species problem in the *Thomomys bottae–Thomomys umbrinus* complex of pocket gophers in arizona. Miscel. Pub. Mus. Nat. Hist., Univ. Kansas 51, 75–91.
- Hoffmeister, D.F., 1986. Mammals of Arizona. Univ. Arizona press, Tucson.
- Ingles, L.G., 1950. Pigmental variations in populations of pocket gophers. Evolution 4, 353–357.
- Merriam, C.H., 1901. Descriptions of twenty-three new pocket gophers of the genus *Thomomys*. Proc. Biol. Soc. Washington 14, 107–117.
- Nylander, J.A., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Center. Uppsala Univ..
- Patton, J.L., 1973. An analysis of natural hybridization between the pocket gophers, Thomomys bottae and Thomomys umbrinus in Arizona. J. Mamm. 54, 561–585.
- Patton, J.L., 1993. Family Geomyidae. In: Wilson, D.E., Reeder, D.M. (Eds.), The Mammals Species of the World, a Taxonomic and Geografic Reference, second ed. Smithsonian Press, Washington, DC, pp. 469–476.
- Patton, J.L., 1999. Family Geomyidae. In: Álvarez-Castañeda, S.T., Patton, J.L. (Eds.), Mamíferos del Noroeste Mexicano. Centro Invest. Biol. Noroeste, SC., La Paz Mexico, pp. 321–350.
- Patton, J.L., 2005. Family Geomyidae. In: Willson, D.E., Reeder, D.M. (Eds.), The Mammals Species of the World, a Taxonomic and Geografic Reference, third ed. Johns HopkinsUniv. Press, Baltimore, pp. 859–870.
- Patton, J.L., Brylsky, P.V., 1987. Pocket gophers in alfalfa fields: causes and consequences of habitat-related body size variation. Am. Nat. 130, 493–506.
- Patton, J.L., Dingman, R.E., 1968. Chromosome studies of pocket gophers, genus Thomomys I. The specific status of Thomomys umbrinus (Richardson) in Arizona. J. Mamm. 49, 1–13.
- Patton, J.L., Feder, J.H., 1981. Microspatial genetic heterogeneity in pocket gophers: non-random breeding and drift. Evolution 43, 12–30.Patton, J.L., Smith, M.F., 1981. Molecular evolution in *Thomomys*: phyletic
- Patton, J.L., Smith, M.F., 1981. Molecular evolution in *Thomomys*: phyletic systematics, paraphyly, and rates of evolution. J. Mamm. 62, 493–500.
- Patton, J.L., Smith, M.F., 1990. The evolution dynamics of the pocket gopher *Thomomys bottae*, with emphasis on California populations. Univ. California Pub. Zool. 123, 1–161.
- Patton, J.L., Smith, M.F., 1994. Paraphyletic, polyphyly, and the nature of species boundaries in Pocket Gophers (genus *Thomomys*). Syst. Biol. 43, 11–26.
- Patton, L.P., Selander, R.K., Smith, M.H., 1972. Genetic variation in hybridizing populations of gophers (genus *Thomomys*). Syst. Zool. 21, 263–270.
- Patton, J.L., Smith, M.F., Price, R.D., Hellenthal, R.A., 1984. Genetic of hybridization between the pocket gophers *Thomomys bottae* and *Thomomys townsendii* in northeastern California. Great Basin Nat. 44, 431–440.Poole, A.L., Schantz, V.S., 1942. Catalog of the type specimens of mammals in the
- Poole, A.J., Schantz, V.S., 1942. Catalog of the type specimens of mammals in the United States National Museum, including the biological survey. Smithsonian Inst., US. Nat. Mus. 178, 1–705.
- Posada, D., 2004. Collapse ver. 1.1. Available from http://darwin.uvigo.es/software/ collapse.html.
- Rios, E., Álvarez-Castañeda, S.T., 2007. Environmental responses to altitudinal gradients, historical spread and, subspecific validity in pocket gophers (*Thomomys bottae*) from Baja California Sur, México. J. Mamm. 88, 925–934. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Smith, M.F., 1998. Phylogenetic relationships and Geographical structure in Pocket Gophers in the Genus *Thomomys*. Mol. Phylogenet. Evol. 9, 1–14.
- Smith, M.F., Patton, J.L., 1984. Dynamics of morphological differentiation: temporal impact of gene flow in pocket gopher populations. Evolution 38, 1079–1087.
- Smith, M.F., Patton, J.L., 1988. Subspecies of pocket gophers: causal bases for geographic differentiation in *Thomomys bottae*. Syst. Zool. 37, 163–178.
- Steinberg, E.K., Patton, J.L., 2000. Genetic structure and the geographic of speciation in subterranean rodents: opportunities and constraints for evolutionary diversification. In: Lacey, E.A., Patton, J.L., Cameron, G.N. (Eds.), Life Underground: the Biology of Subterranean Rodents. Univ. Chicago Press, Chicago, pp. 301–331.
- Swofford, D.L., 2001. PAUP: Phylogenetic Analysis Using Parsimony, version 4.0b7. Sinauer, Sunderland, MA.
- Tavaré, S., 1985. Som probablilistic and stadistical problems in the analysis of DNA sequences. In: Miura, R.M. (Ed.), Some mathematics questions in biology – DNA sequences analysis. Am. Math. Soc., pp. 57–86.
- Thaeler Jr., C.S., 1968. An analysis of three hybrid populations of pocket gophers (genus Thomomys). Evolution 22, 543–555.
- Thaeler Jr., C.S., 1980. Chrmosome number and systematic relationships in the genus *Thomomys* (Rodentia: Geomyidae). J. Mamm. 61, 414–422.
- Trujano-Álvarez, A.L., Álvarez-Castañeda, S.T., 2007. Taxonomic revision of Thomomys bottae in Baja California Sur lowlands. J. Mamm. 88, 343–350.
- Wickliffe, J.K., Bradley, R.D., Stangl Jr., F.B., Patton, J.L., Parish, D.A., Jones, C., Schmidly, D., Baker, R.J., 2005. Molecular systematics and phylogeographic history of *Thomomys bottae* in Texas. In: Sánchez-Cordero, V., Medellín, R. (Eds.), Libro en Homenaje al Dr. Bernardo Villa. Inst. Biol., UNAM. Inst. Ecol., UNAM, México City, pp. 507–522.