## Early Numeracy

 November 11, 2022MA+ㅂ

MA+拉

## Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin


srpowell@utexas.edu

@sarahpowellphd

## Say hello.

Describe the mathematics you support.

November 2022

Early Numeracy

- Counting principles
- Connecting number
- Comparison of numbers
- Addition and subtraction concepts


## January 2023

Addition and Subtraction

- Addition computation
- Subtraction computation
- Addition and subtraction fluency
- Addition and subtraction word problems


## April 2023

Geometry

- Identification of shapes
- Composing and decomposing shapes
- Representing thousands, hundreds, tens, and ones
- Money




## Instructional Platform

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

## MODELING

Step-by-step explanation

## PRACTICE

## Guided practice

Independent practice

Planned examples

## SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

## What math content do you model? <br> How do you engage students in guided practice?

## Use formal math language

Use terms precisely

What's one way you support the math vocabulary of students?





## How do you support students with fact fluency?

## Total

## Difference

## Change

## Equal Groups

## Comparison

## Ratios/Proportions



Copyright 2022 Sarah R. Powell, Ph.D.


What are the difficulties your students have with counting?

## Five Counting Principles

## Stable order

## One-to-one correspondence

## Cardinality

## Abstraction

## Order irrelevance

## Stable order

Saying the number words in order "One, two, three, four, five $\cdots$ "


## Stable order

Teacher modeling with echoing
One-minute timings

- Count to 12 as many times as you can

Songs


Books

## Stable order

How do you model and practice stable order?

## One-to-One Correspondence

Ability to match number words to objects


MA+:

## One-to-One Correspondence

Ability to match number words to objects


## One-to-One Correspondence

Partitioning and tagging

- Transferred from the "to-be-counted" category to the "already-counted" category
- A distinct numeral word is assigned and not to be used again in the counting sequence



## Stable Order AND <br> One-to-One Correspondence



Model:
Count to 4.
Count to 7 .


Counting Boards


## Stable Order AND <br> One-to-One Correspondence



## Stable Order AND <br> One-to-One Correspondence



## Model:

Count to 8.
Count to 5 .

## Cardinality

The number tag used for the last object in a count symbolizes the total number of objects in a set

- Students must coordinate the stable order and one-toone correspondence


## Cardinality

Teacher asking, "How many?"

## Model:

Count to 11.
Count to 5 .

## Abstraction

Any types of objects can be counted together in a set


## Order Irrelevance

The order in which objects are counted does not matter as long as none of the other counting principles are violated

When teaching counting to "inefficient" counters, however, you should teach a strategy - like partitioning and tagging, working left to right, or using a work mat.

## Five Counting Principles

## Stable order

## One-to-one correspondence

## Cardinality

## Abstraction

## Order irrelevance


(1) Describe how you teach the three essential counting principles.
(2) Discuss whether you will teach the two additional counting principles.
(3) Provide an example of your counting instruction.

## More Counting

Counting objects/pictures

- Bears, cubes, clips, pencils
- Abacus
- Table setting
- Passing out papers

Counting with storyboards


## Counting

Counting with number lines


Counting on

- I'm hiding three. Count, starting from the hidden counters.



## Counting

Finger counting


## Counting

In virtual settings, how can you help students with finger counting?

## Ordinal Counting

Numbers relative to their position in time or space

- First, second, third, fourth, fifth…



## Ordinal Counting

Modeling and activities for counting can be used plus:

- Lining up in classroom
- Running a race and determining place
- Following steps in a recipe
- Calendar dates
- Chapters in a book



## Ordinal Counting

Ordinal Numbers
The Napping House

| First (1st) | Second (2nd) | Third (3rd) | Fourth (4th) |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| Fifth (5th) | Sixth (6th) | Seventh (7th) |  |

Ordinal Numbers


## Skip Counting

Counting by $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s

## HIS. IS.

Hundred Chart

| Hundred Chart |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |  |  |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |  |  |  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |  |  |  |  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |  |  |  |  |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |  |  |  |  |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |  |  |  |  |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |  |  |  |  |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |  |  |  |  |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |  |  |  |  |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |  |  |  |  |


$x \mathrm{~A}+\dot{1}$

## Skip Counting

Counting by $3 \mathrm{~s}, 4 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$

Hundreds Chart

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 68 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 |  | 76 | 7 |  |  |  |


| 71 | 72 | 73 | 74 | 75 | 76 | 77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 0 | $\stackrel{\infty}{\infty}$ | $\geq$ | 9 | 9 | $\pm$ | $\underset{\sim}{\omega}$ | N | 二 | $\sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | N | \％ | N | A | $\stackrel{\sim}{N}$ | N | N | N |
| $\stackrel{\sim}{0}$ | ${ }_{\sim}^{\infty}$ | W | a | u | A | $\stackrel{\omega}{\omega}$ | N | $\vec{\omega}$ | $\omega$ |
| $\bigcirc$ | ${ }^{\infty}$ | N | a | H | A | ${ }_{\sim}^{\omega}$ | A | 呙 | $\Delta$ |
| 0 | $\sim_{0}^{\infty}$ | जै | ज | U | जे | $\sim_{u}^{*}$ | N | ज | 0 |
| 8 | \％ | －2 | の | \％ | के | － | N | $\vec{\square}$ | 0 |
| 9 | $\infty$ | $\checkmark$ | 9 | U | A | $\omega$ | N | $\vec{V}$ | $\checkmark$ |
| $\infty$ | ¢ | － | ¢ | U | के | $\stackrel{\sim}{\infty}$ | － | $\stackrel{\rightharpoonup}{\infty}$ | $\infty$ |
| $\bigcirc$ | ） | V̌ | à | U | 合 | ¢ | N | $\stackrel{\rightharpoonup}{0}$ | $\bigcirc$ |
| 8 | $\bigcirc$ | \％ | V | 8 | ¢ |  | $\omega$ |  |  |

## Counting

## Describe your skip counting activities.

## Place Value



MA+

## Place Value

"Ten, Eleven, Twelve,
Thirteen,

$x A+\dot{N}$

Place Value


므

## Model:

Count to 11.
Count to 14.

## Place Value


xA+

## Place Value

## Model:

## Count to 17.

Count to 22.

## Instructional Platform

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

## MODELING

Step-by-step explanation

## PRACTICE

Guided practice
Independent practice

Planned examples

## SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

## What are your strengths with modeling counting? <br> What are your opportunities for growth?

## Use formal math language

Use terms precisely

What are five essential math vocabulary for counting?


What are the representations you'll use to teach counting?



What are the difficulties your students have connecting numerals, number words, and quantity?

## Zero

Most important digit in Base-10 system
Typically introduced after 1, but should be introduced alongside 1


## Zero



## Describe activities to help students understand zero.

Three Representations of Number
7
seven


## Numerals and Number Words

Numerals

- $0,1,2,3,4,5,6,7,8,9 \cdots$

Number words (cardinal)

- one, two, three, four, five $\cdots$

Ordinal numerals

- $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th... }}$

Ordinal number words


- first, second, third, fourth, fifth...


## Numerals and Number Words


I

Straight down and then you're done.
That's the way to make a one!
2 Around and back on the railroad track. Two! Two! Two!
3 That's the way to make a three!
$\square$ Down and over. Down some more. That's the way to make a four!
Across the top, then take a dive. Make a big round tummy, now that's a five!
7 Make a loop, then make a hoop!Six! Six! Six!
Z Across the top, down for the win.That's the way to make seven!
8 Make an "S," but do not wait.Go back up to make an eight!
$\overline{9}$ Make a hoop and then a line.
That's the way to make a nine!
$\Omega$ Around, around, around you go.

Numerals


Describe activities to help students write their numerals.

Numeral, Number Word, and Quantity


$x A+\dot{N}$

Numeral, Number Word, and Quantity


## Literature

Literature should have three representations of number


Literature should be accurate
Objects should be easy to count
(1) Describe how you connect numerals, number words, and quantities.
(2) Provide an example for 5, five, and *****.

## Instructional Platform

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

## MODELING

Step-by-step explanation

## PRACTICE

Guided practice
Independent practice

Planned examples

## SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

## What are your strengths with modeling connecting number? <br> What are your opportunities for growth?

## Use formal math language

Use terms precisely

What are five essential math vocabulary for connecting number?


What are the representations you'll use to teach connecting number?



What are the difficulties your students have with comparison?

## Quantity Comparison

Vocabulary:

- More, greater, bigger
- Less, smaller, fewer
- Same, as many as


## Quantity Comparison

Teacher modeling

- Find the pairs
- Finish when one group runs out of items
- Figure out more than, less than, or equal



## Quantity Comparison



Circle the group that has more items.


## Quantity Comparison

Make chains
Bear compare
Counting cars


$x|x|+\omega$

## Comparison

## Describe activities to help students with comparison.

■
Subizing
|

## Subitizing

Instantly seeing how many
Young students can subitize sets of 1,2 , or 3 without counting (perceptual subitizing)

- 4 or 5 is the maximum subitizing amount Students can subitize larger amounts by combining smaller amounts (conceptual subitizing)

Subitizing
Instruction



## Subitizing

## Is it important to practice

 subitizing?How do you practice subitizing?

## Instructional Platform

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

## MODELING

Step-by-step explanation

## PRACTICE

Guided practice
Independent practice

Planned examples

## SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

## What are your strengths with modeling comparison? <br> What are your opportunities for growth?

## Use formal math language

Use terms precisely

What are five essential math vocabulary for comparison?


Addition and Subtraction Concepts
$x$

Addition


MA+:

What are the difficulties your students have with comparison?

| Addition | Subtraction |
| :---: | :---: |
| Multiplication | Division |

## 100 addition facts

Single-digit addends sum to a single- or double-digit number

> | 5 | (addend) |
| ---: | :--- |
| +4 | (addend) |
| 9 | $($ sum $)$ |

## Total

## Addition

Count one set, count another set, put sets together, count sum


$$
2+3=5
$$

## Total

## Addition

Count one set, count another set, put sets together, count sum


## Model:

$$
\begin{aligned}
& 4+5 \\
& 9+3
\end{aligned}
$$

## Change

## Addition

Start with a set, add the other set, count sum


$$
2+3=5
$$

## Change

## Addition

Start with a set, add the other set, count sum


Model:

$$
\begin{aligned}
& 4+5 \\
& 9+3
\end{aligned}
$$

## Total

## Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

## Addition

Total

## Parts put together into a total

## Write a total story.

## Addition

An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

Change

Addition

An amount that increases or decreases

Write a change (increase) story.

(1) Model $3+9$ as a total problem.
(2) Model $3+9$ as a change problem.
(3) Discuss how to distinguish between total and change.

MA+:

100 subtraction facts

Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

> (minuend)
> (subtrahend)
> (difference)

## Change

Start with a set, take away from that set, count difference

$$
5-3=2
$$

## Change

## Subtraction

Start with a set, take away from that set, count difference

## Model:

$$
\begin{aligned}
& 9-3 \\
& 11-7
\end{aligned}
$$

## Difference

Compare two sets, count difference


$$
5-3=2
$$

## Difference

## Subtraction

Compare two sets, count difference

## Model:

$$
\begin{aligned}
& 9-3 \\
& 11-7
\end{aligned}
$$

## Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Change

An amount that increases or decreases

Write a change (decrease) story.

## Difference

Greater and lesser amounts compared for a
difference

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

## Difference

Greater and lesser amounts compared for a difference

Write a difference story.
(1) Model 12 - 5 as a change problem.
(2)Model 12 - 5 as a difference problem.
(3) Discuss how to distinguish between change and difference.

## Building Fluency

Fluency is doing mathematics easily and accurately.

Fluency in mathematics makes mathematics easier.

Fluency provides less stress on working memory.

Fluency helps students build confidence with mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.


## Addition <br> Subtraction

Multiplication
Division

Build fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

$$
\begin{array}{r}
5 \\
+\quad 8 \\
\hline
\end{array} \begin{array}{r}
6 \\
\times \quad 7 \\
\\
\hline
\end{array} \quad 56
$$






## Instructional Platform

INSTRUCTIONAL DELIVERY


INSTRUCTIONAL STRATEGIES
Fluency building
Problem solving
instruction

| Addition | Subtraction |
| :---: | :---: |
| Multiplication | Division |

## Describe three activities to help students with fact fluency.

## MODELING

Step-by-step explanation

## PRACTICE

## Guided practice

Independent practice

Planned examples

## SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

## What are your strengths with modeling addition and subtraction? <br> What are your opportunities for growth?

## Use formal math language

Use terms precisely

What are five essential math vocabulary for addition and subtraction?


What are the representations you'll use to teach addition and subtraction?

Explicit Instruction
Problem
Step-by-Step Explanation

1. Choose a math problem.
2. Write a step-by-step explanation. Focus on the language of math in your explanation. Consider the representations you will use.

## Explicit Instruction



1. Describe the practice opportunities you will use.
2. Write 3 high-level questions.
3. Write 3 low-level questions.
4. Write 2 ways to provide affirmative feedback.
5. Write 2 ways to provide corrective feedback.

Explicit Instruction
Problem Step-by-Step Explanation


1. Teach your problem.

What were your strengths with your teaching? What are your opportunities for growth?

November 2022

Early Numeracy

- Counting principles
- Connecting number
- Comparison of numbers
- Addition and subtraction concepts


## January 2023

Addition and Subtraction

- Addition computation
- Subtraction computation
- Addition and subtraction fluency
- Addition and subtraction word problems


## April 2023

Geometry

- Identification of shapes
- Composing and decomposing shapes
- Representing thousands, hundreds, tens, and ones
- Money


## Sarah R. Powell, Ph.D.

Associate Professor
The University of Texas at Austin


srpowell@utexas.edu

@sarahpowellphd

