Solution Techniques for Zero-sum Extensive-form
 Games

Kevin Waugh
kevin.waugh@gmail.com
Carnegie Mellon University
University of Alberta

AAAI 2017

Matrix Games
Definitions-What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods Solutions via Smoothing and Gradient Methods Solutions via Online Learning

Extensive-form Games

Tips and Tricks

What is a zero-sum matrix game?
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined by $A \in \mathbb{R}^{m \times n}$
- Two players-the row player and the column player

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

How is it played?

- A matrix game is a one-shot game
- The row player selects a row $i \in[m]$ and his opponent a column $j \in[n]$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right] \\
(i, j) & =(2,1)
\end{aligned}
$$

- We call (i, j) the game's outcome

Why is it played?

- The row player receives utility

$$
u_{x}(i, j)=-a_{i, j}
$$

- The column player gets

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

$$
u_{y}(i, j)=a_{i, j}
$$

- The game is zero-sum since $u_{x}(i, j)+u_{y}(i, j)=0$

$$
\begin{aligned}
& u_{x}(i, j)=-a_{2,1}=1 \\
& u_{y}(i, j)=a_{2,1}=-1
\end{aligned}
$$

Why is it played?

- The row player receives utility $u_{x}(i, j)=-a_{i, j}$
- The column player gets

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

$$
u_{y}(i, j)=a_{i, j}
$$

- The game is zero-sum since $u_{x}(i, j)+u_{y}(i, j)=0$
- Let $L=\max _{i, j}\left|a_{i, j}\right|$

$$
\begin{aligned}
& u_{x}(i, j)=-a_{2,1}=1 \\
& u_{y}(i, j)=a_{2,1}=-1
\end{aligned}
$$

Strategies and Profiles

- A strategy for the row player is a probability distribution over the rows of $A, x \in \Delta_{m}=\{x \mid$ $\left.\sum_{i=1}^{m} x_{i}=1, x \geq 0\right\}$
- A strategy profile is a pair of strategies, one for each player $(x, y) \in \Delta_{m} \times \Delta_{n}$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right] \\
x & =\left(\frac{1}{3}, \frac{2}{3}\right) \\
y & =\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

Expected Utility

The expected utility for the row player under profile (x, y) is

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

$$
\begin{aligned}
u_{x}(x, y) & =\sum_{i=1}^{m} \sum_{j=1}^{n}-x_{i} y_{j} a_{i, j} \\
& =-x^{\prime} A y \\
u_{y}(x, y) & =x^{\prime} A y
\end{aligned}
$$

$$
\begin{aligned}
x & =\left(\frac{1}{3}, \frac{2}{3}\right) \\
y & =\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \\
u_{x}(x, y) & =\frac{-2}{3}
\end{aligned}
$$

Optimal play against a known opponent

A best response to the row player's strategy x is a pure strategy that maximizes the column player's utility:

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

$$
\operatorname{brv}_{y}(x)=\max _{y \in[j]} u_{y}(x, y):=x^{\prime} A y
$$

Note:

$$
\operatorname{brv}_{y}(x) \geq x^{\prime} A y, \forall y \in \Delta_{n}
$$

$$
\begin{aligned}
x & =\left(\frac{1}{3}, \frac{2}{3}\right) \\
\max _{y \in[j]} & {\left[\begin{array}{lll}
0 & 2 & \frac{2}{3}
\end{array}\right] } \\
& =2
\end{aligned}
$$

Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

$$
\begin{aligned}
& \operatorname{brv}_{x}(y)=u_{x}(x, y) \\
& \operatorname{brv}_{y}(x)=u_{y}(x, y)
\end{aligned}
$$

Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

$$
\begin{aligned}
\operatorname{brv}_{x}(y) & =u_{x}(x, y), \\
\operatorname{brv}_{y}(x) & =u_{y}(x, y)
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& u_{x}(x, y) \geq u_{x}(\bar{x}, y), \\
& u_{y}(x, y) \geq u_{y}(x, \bar{y})
\end{aligned}
$$

$$
\begin{aligned}
& \forall \bar{x} \in \Delta_{m} \\
& \forall \bar{y} \in \Delta_{n}
\end{aligned}
$$

Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

$$
\begin{aligned}
& \operatorname{brv}_{x}(y)=u_{x}(x, y) \\
& \operatorname{brv}_{y}(x)=u_{y}(x, y)
\end{aligned}
$$

equivalently

$$
\begin{aligned}
& u_{x}(x, y) \geq u_{x}(\bar{x}, y) \\
& u_{y}(x, y) \geq u_{y}(x, \bar{y})
\end{aligned}
$$

$$
\begin{aligned}
& \forall \bar{x} \in \Delta_{m} \\
& \forall \bar{y} \in \Delta_{n}
\end{aligned}
$$

Theorem (Nash 1950)
For any matrix game, a Nash equilibrium exists.

Example-a strategy for y

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

- If $x=(1,0)$ then y responds $j=1$
- If $x=(0,1)$ then y responds $j=2$
- If $x=(p, 1-p)$ when is y indifferent 1 and 2 ?

Example-a strategy for y

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

- If $x=(1,0)$ then y responds $j=1$
- If $x=(0,1)$ then y responds $j=2$
- If $x=(p, 1-p)$ when is y indifferent 1 and 2 ?

$$
\begin{aligned}
u_{y}(x, 1) & =u_{y}(x, 2) \\
2 p-1(1-p) & =0 p+3(1-p) \\
p & =\frac{2}{3}
\end{aligned}
$$

Example—a strategy for x

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

- If $y=(q, 1-q, 0)$ when is x indifferent 1 and 2 ?

Example—a strategy for x

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

- If $y=(q, 1-q, 0)$ when is x indifferent 1 and 2 ?

$$
\begin{aligned}
u_{x}(1, y) & =u_{x}(2, y) \\
-2 q+0(1-q) & =q-3(1-q) \\
q & =\frac{1}{2}
\end{aligned}
$$

Example—checking our work

$$
\begin{array}{r}
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right] \\
x=\left(\frac{2}{3}, \frac{1}{3}\right), y=\left(\frac{1}{2}, \frac{1}{2}, 0\right)
\end{array}
$$

Example—checking our work

$$
\begin{array}{r}
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right] \\
x=\left(\frac{2}{3}, \frac{1}{3}\right), y=\left(\frac{1}{2}, \frac{1}{2}, 0\right)
\end{array}
$$

$$
\operatorname{brv}_{x}(y)=\max _{i \in[n]}\{-1,-1\}
$$

Example—checking our work

$$
\begin{array}{r}
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1
\end{array}\right] \\
x=\left(\frac{2}{3}, \frac{1}{3}\right), y=\left(\frac{1}{2}, \frac{1}{2}, 0\right)
\end{array}
$$

$$
\begin{aligned}
\operatorname{brv}_{x}(y) & =\max _{i \in[n]}\{-1,-1\} \\
\operatorname{brv}_{y}(x) & =\max _{j \in[m]}\left\{1,1, \frac{1}{3}\right\}
\end{aligned}
$$

Nash Equilibrium—computational complexity

(Papadimitriou 1994, Daskalakis et. al. 2009)

For general sum games:

- Finding a Nash equilibrium is PPAD-complete
- Simplex-like algorithm (Lemke and Howson 1964)
- Newton-like algorithm (Nisan et. al. 2007)
- Guess and check (Lipton et. al. 2003)

Matrix Games

Definitions-What is a Nash Equilibrium?

Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods
Solutions via Online Learning

Extensive-form Games

Tips and Tricks

Minimax Setup

Claim:

(x, y) is Nash equilibrium

\Leftrightarrow
(x, y) is a saddle-point of $\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y$

Minimax Setup—proof

(x, y) is Nash equilibrium \Rightarrow

$$
\begin{array}{rlrl}
-x^{\prime} A y & =u_{x}(x, y) \geq u_{x}(\bar{x}, y) & =-\bar{x}^{\prime} A y, & \\
x^{\prime} A y & =u_{y}(x, y) \geq u_{y}(x, \bar{y}) & =x^{\prime} A \bar{y} & \\
y
\end{array}
$$

Minimax Setup—proof

(x, y) is Nash equilibrium \Rightarrow

$$
\begin{array}{rlrl}
-x^{\prime} A y & =u_{x}(x, y) \geq u_{x}(\bar{x}, y) & =-\bar{x}^{\prime} A y, & \\
x^{\prime} A y & =u_{y}(x, y) \geq u_{y}(x, \bar{y}) & =x^{\prime} A \bar{y} & \\
\hline y
\end{array}
$$

therefore $\forall \bar{x} \in \Delta_{m}, \bar{y} \in \Delta_{n}$

$$
x^{\prime} A \bar{y} \leq x^{\prime} A y \leq \bar{x}^{\prime} A y
$$

Minimax Setup—proof

(x, y) is Nash equilibrium \Rightarrow

$$
\begin{array}{rlrl}
-x^{\prime} A y & =u_{x}(x, y) \geq u_{x}(\bar{x}, y) & =-\bar{x}^{\prime} A y, & \\
x^{\prime} A y & =u_{y}(x, y) \geq u_{y}(x, \bar{y}) & =x^{\prime} A \bar{y} & \\
y
\end{array}
$$

therefore $\forall \bar{x} \in \Delta_{m}, \bar{y} \in \Delta_{n}$

$$
x^{\prime} A \bar{y} \leq x^{\prime} A y \leq \bar{x}^{\prime} A y
$$

Reverse direction is just as obvious.

Minimax Theorem

Theorem (von Neumann 1928)

$$
\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y=\max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}} x^{\prime} A y
$$

Minimax Theorem

Theorem (von Neumann 1928)

$$
\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y=\max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}} x^{\prime} A y
$$

Let $v^{*}=\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} \quad x^{\prime} A y$

Minimax Theorem

Theorem (von Neumann 1928)

$$
\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y=\max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}} x^{\prime} A y
$$

Let $v^{*}=\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} \quad x^{\prime} A y$
Max-min inequality:
Theorem (Boyd and Vandenberghe 2004)

$$
\max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}} x^{\prime} A y \leq \min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y
$$

Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

$$
\min _{\bar{x} \in \Delta_{m}} \max _{\bar{y} \in \Delta_{n}} \bar{x}^{\prime} A \bar{y} \leq \max _{\bar{y} \in \Delta_{n}} x^{\prime} A \bar{y}
$$

Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

$$
\begin{aligned}
\min _{\bar{x} \in \Delta_{m}} \max _{\bar{y} \in \Delta_{n}} \bar{x}^{\prime} A \bar{y} & \leq \max _{\bar{y} \in \Delta_{n}} x^{\prime} A \bar{y} \\
& =x^{\prime} A y
\end{aligned}
$$

Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

$$
\begin{aligned}
\min _{\bar{x} \in \Delta_{m}} \max _{\bar{y} \in \Delta_{n}} \bar{x}^{\prime} A \bar{y} & \leq \max _{\bar{y} \in \Delta_{n}} x^{\prime} A \bar{y} \\
& =x^{\prime} A y \\
& =\min _{\bar{x} \in \Delta_{m}} \bar{x}^{\prime} A y
\end{aligned}
$$

Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

$$
\begin{aligned}
\min _{\bar{x} \in \Delta_{m}} \max _{\bar{y} \in \Delta_{n}} \bar{x}^{\prime} A \bar{y} & \leq \max _{\bar{y} \in \Delta_{n}} x^{\prime} A \bar{y} \\
& =x^{\prime} A y \\
& =\min _{\bar{x} \in \Delta_{m}} \bar{x}^{\prime} A y \\
& \leq \max _{\bar{y} \in \Delta_{n}} \min _{\bar{x} \in \Delta_{m}} \bar{x}^{\prime} A \bar{y}
\end{aligned}
$$

Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

$$
\begin{aligned}
\min _{\bar{x} \in \Delta_{m}} \max _{\bar{y} \in \Delta_{n}} \bar{x}^{\prime} A \bar{y} & \leq \max _{\bar{y} \in \Delta_{n}} x^{\prime} A \bar{y} \\
& =x^{\prime} A y \\
& =\min _{\bar{x} \in \Delta_{m}} \bar{x}^{\prime} A y \\
& \leq \max _{\bar{y} \in \Delta_{n}} \min _{\bar{x} \in \Delta_{m}} \bar{x}^{\prime} A \bar{y}
\end{aligned}
$$

Max-min inequality implies inequalities must hold at equality.

Approximate Nash equilibrium

An ε-Nash equilibrium is a pair of mutual ε-best responses:

$$
\begin{aligned}
\operatorname{brv}_{x}(y) & \leq u_{x}(x, y)+\varepsilon \\
\operatorname{brv}_{y}(x) & \leq u_{y}(x, y)+\varepsilon
\end{aligned}
$$

Approximate Nash equilibrium

An ε-Nash equilibrium is a pair of mutual ε-best responses:

$$
\begin{aligned}
\operatorname{brv}_{x}(y) & \leq u_{x}(x, y)+\varepsilon \\
\operatorname{brv}_{y}(x) & \leq u_{y}(x, y)+\varepsilon
\end{aligned}
$$

The exploitability of a strategy is:

$$
\begin{aligned}
\epsilon_{x}(x) & =\operatorname{brv}_{y}(x)-v^{*} \\
\epsilon_{y}(y) & =\operatorname{brv}_{x}(y)+v^{*}
\end{aligned}
$$

Matrix Games
Definitions-What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods
Solutions via Online Learning

Extensive-form Games

Tips and Tricks

Linear programming solution

Consider

$$
\begin{gathered}
\max _{y \in \Delta} w^{\prime} y \\
=\min _{t} t \text { subject to: } \\
w \leq t e
\end{gathered}
$$

where $e=(1, \ldots, 1)$.

Linear programming solution

Letting $w=A^{\prime} x$:

$$
\begin{array}{rl}
\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y \\
=\min _{x, t} & t \text { subject to: } \\
A^{\prime} x & \leq t e \\
e^{\prime} x & =1 \\
x & \geq 0
\end{array}
$$

Linear programming-polynomial time solution

Can solve linear programming with:

- Simplex method (Dantzig 1987)
- Interior point algorithms (Boyd and Vandenberghe 2004)
- Ellipsoid algorithm (Khachiyan 1979, Lovasz 1988)

Matrix Games
Definitions-What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods Solutions via Online Learning

Extensive-form Games

Tips and Tricks

Non-smooth convex objective

Consider,

$$
\min _{x \in \Delta_{m}} \operatorname{brv}_{y}(x)=\min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y
$$

This objective is convex, albiet non-smooth, and

$$
\frac{\partial}{\partial x} \operatorname{brv}_{y}(x)=\left\{A y^{*} \mid y^{*} \text { is a best response to } x\right\}
$$

Projected Subgradient Method

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y
$$

Projected Subgradient Method

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} \quad x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right]
$$

Projected Subgradient Method

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
& y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right] \\
& z=x_{t}-\alpha A y_{t}
\end{aligned}
$$

Projected Subgradient Method

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right] \\
z & =x_{t}-\alpha A y_{t} \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\|x-z\|^{2}=\Pi_{\Delta_{m}}(z)
\end{aligned}
$$

Projected Subgradient Method

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right] \\
z & =x_{t}-\alpha A y_{t} \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\|x-z\|^{2}=\Pi_{\Delta_{m}}(z)
\end{aligned}
$$

Output $x=\frac{1}{T} \sum_{t=1}^{T} x_{t}, y=\frac{1}{T} \sum_{t=1}^{T} y_{t}$.

Projecting onto the simplex

$$
x^{*}=\underset{x \in \Delta}{\operatorname{argmin}}\|x-z\|^{2}
$$

Projecting onto the simplex

$$
x^{*}=\underset{x \in \Delta}{\operatorname{argmin}}\|x-z\|^{2}=\underset{x \in \Delta}{\operatorname{argmax}}-\|x\|^{2}+2 x^{\prime} z-\|z\|^{2}
$$

Projecting onto the simplex

$$
\begin{aligned}
x^{*}=\underset{x \in \Delta}{\operatorname{argmin}}\|x-z\|^{2} & =\underset{x \in \Delta}{\operatorname{argmax}}-\|x\|^{2}+2 x^{\prime} z-\|z\|^{2} \\
& =\underset{x \in \Delta}{\operatorname{argmax}} x^{\prime} z-\frac{1}{2}\|x\|^{2}
\end{aligned}
$$

Projecting onto the simplex

$$
\begin{gathered}
x^{*}=\underset{x \in \Delta}{\operatorname{argmin}}\|x-z\|^{2}=\underset{x \in \Delta}{\operatorname{argmax}}-\|x\|^{2}+2 x^{\prime} z-\|z\|^{2} \\
=\underset{x \in \Delta}{\operatorname{argmax}} x^{\prime} z-\frac{1}{2}\|x\|^{2} \\
x^{*}=(z+\lambda)_{+}=\max \{0, z+\lambda\}
\end{gathered}
$$

where λ is chosen so that $x \in \Delta$.

Projecting onto the simplex

 see (Duchi et. al. 2008) for $O(n)$ solutionLet $q=\operatorname{sort}(z)$ and $Z_{1}=\sum_{i=1}^{n} z_{i}$
For $i \in[n]$:
Solve $Z+(n-i+1) \gamma=1$

$$
\begin{gathered}
\text { if } q_{i}+\gamma \geq 0 \text { then } \lambda=\gamma ; \text { break } \\
Z_{i+1}=Z_{i}-q_{i}
\end{gathered}
$$

Output $x^{*}=(z+\lambda)_{+}$

Subgradient method convergence

extending (Zinkevich 2003)

Without loss of generality $n \geq m$:
Theorem

$$
\epsilon(x)+\epsilon(y) \leq \frac{n+n m L^{2} T \alpha^{2}}{T \alpha}
$$

Subgradient method convergence

extending (Zinkevich 2003)

Without loss of generality $n \geq m$:
Theorem

$$
\epsilon(x)+\epsilon(y) \leq \frac{n+n m L^{2} T \alpha^{2}}{T \alpha}
$$

Choosing $\alpha=1 / L \sqrt{m T}$

$$
\epsilon_{x}(x)+\epsilon_{y}(y) \leq 2 n L \sqrt{\frac{m}{T}}
$$

Towards mirror descent

(Nemirovski 2012)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y
$$

Towards mirror descent

(Nemirovski 2012)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} & x_{t}^{\prime} A y \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\left\|x_{t}-\alpha A y_{t}-x\right\|^{2}
\end{aligned}
$$

Towards mirror descent

(Nemirovski 2012)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\left\|x_{t}-\alpha A y_{t}-x\right\|^{2} \\
& =\underset{x \in \Delta_{n}}{\operatorname{argmin}} x^{\prime}\left(\alpha A y_{t}-x_{t}\right)+\frac{1}{2}\|x\|^{2}-\frac{1}{2}\left\|x_{t}\right\|^{2}
\end{aligned}
$$

Towards mirror descent

(Nemirovski 2012)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\left\|x_{t}-\alpha A y_{t}-x\right\|^{2} \\
& =\underset{x \in \Delta_{n}}{\operatorname{argmin}} x^{\prime}\left(\alpha A y_{t}-x_{t}\right)+\frac{1}{2}\|x\|^{2}-\frac{1}{2}\left\|x_{t}\right\|^{2} \\
& =\underset{x \in \Delta_{n}}{\operatorname{argmin}} x^{\prime}\left(\alpha A y_{t}-\nabla h\left(x_{t}\right)\right)+h(x)-h\left(x_{t}\right)
\end{aligned}
$$

Towards mirror descent

(Nemirovski 2012)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \\
x_{t+1} & =\underset{x \in \Delta_{n}}{\operatorname{argmin}}\left\|x_{t}-\alpha A y_{t}-x\right\|^{2} \\
& =\underset{x \in \Delta_{n}}{\operatorname{argmin}} x^{\prime}\left(\alpha A y_{t}-x_{t}\right)+\frac{1}{2}\|x\|^{2}-\frac{1}{2}\left\|x_{t}\right\|^{2} \\
& =\underset{x \in \Delta_{n}}{\operatorname{argmin}} x^{\prime}\left(\alpha A y_{t}-\nabla h\left(x_{t}\right)\right)+h(x)-h\left(x_{t}\right)
\end{aligned}
$$

With mirror descent choose an alternative $h(x)$

Bregman divergences and distance generating functions (Bregman 1967)

A distance generating function is a 1-strongly convex function $h(x)$ on Δ such that $\forall x \in \Delta$:

- $2 h(x) \geq\|x\|^{2}, \forall x \in \Delta$, and

Bregman divergences and distance generating functions (Bregman 1967)

A distance generating function is a 1-strongly convex function $h(x)$ on Δ such that $\forall x \in \Delta$:

- $2 h(x) \geq\|x\|^{2}, \forall x \in \Delta$, and
- $h(x) \geq h\left(x_{0}\right)=0$.

Bregman divergences and distance generating functions (Bregman 1967)

A distance generating function is a 1-strongly convex function $h(x)$ on Δ such that $\forall x \in \Delta$:

- $2 h(x) \geq\|x\|^{2}, \forall x \in \Delta$, and
- $h(x) \geq h\left(x_{0}\right)=0$.

We say $h(x)$ fits Δ if we can efficiently solve

$$
\min _{x \in \Delta} g^{\prime} x+h(x)
$$

Bregman divergences and distance generating functions (Bregman 1967)

A distance generating function is a 1-strongly convex function $h(x)$ on Δ such that $\forall x \in \Delta$:

- $2 h(x) \geq\|x\|^{2}, \forall x \in \Delta$, and
- $h(x) \geq h\left(x_{0}\right)=0$.

We say $h(x)$ fits Δ if we can efficiently solve

$$
\min _{x \in \Delta} g^{\prime} x+h(x)
$$

We define the Bregman divergence as

$$
D(x, y)=h(x)-h(y)-\nabla h(y)^{\prime}(x-y)
$$

Negative entropy distance generating function

Let $h(x)=x \log (x)+\log (n)-e^{\prime} x+1$

$$
\nabla h(x)=\log (x)
$$

Negative entropy distance generating function

$$
\text { Let } h(x)=x \log (x)+\log (n)-e^{\prime} x+1
$$

$$
\begin{aligned}
\nabla h(x) & =\log (x) \\
\text { Let } Z & =\sum_{i=1}^{n} \exp \left(-g_{i}\right)
\end{aligned}
$$

Negative entropy distance generating function

Let $h(x)=x \log (x)+\log (n)-e^{\prime} x+1$

$$
\begin{aligned}
& \nabla h(x)=\log (x) \\
& \text { Let } Z=\sum_{i=1}^{n} \exp \left(-g_{i}\right) \\
& \begin{aligned}
\min _{x \in \Delta} & g^{\prime} x+h(x) \\
& =\log (Z)-\log (n)
\end{aligned}
\end{aligned}
$$

Negative entropy distance generating function

Let $h(x)=x \log (x)+\log (n)-e^{\prime} x+1$

$$
\begin{aligned}
& \nabla h(x)=\log (x) \\
& \begin{aligned}
\text { Let } Z & =\sum_{i=1}^{n} \exp \left(-g_{i}\right) \\
\min _{x \in \Delta} & g^{\prime} x+h(x) \\
& =\log (Z)-\log (n) \\
x^{*} & =\underset{x \in \Delta}{\operatorname{argmin}} g^{\prime} x+h(x) \\
& =\exp (-g) / Z
\end{aligned}
\end{aligned}
$$

Exponentiated Subgradient Method

(Kivinen and Warmuth 1994)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y
$$

Exponentiated Subgradient Method

(Kivinen and Warmuth 1994)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
y_{t} \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right]
$$

Exponentiated Subgradient Method

(Kivinen and Warmuth 1994)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right] \\
x_{t+1} & =x_{t} \exp \left(-\alpha A y_{t}\right) / Z
\end{aligned}
$$

Exponentiated Subgradient Method

(Kivinen and Warmuth 1994)

Initialize $x_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
y_{t} & \in \underset{y \in \Delta_{n}}{\operatorname{argmax}} x_{t}^{\prime} A y \quad\left[A y_{t} \in \partial \operatorname{brv}_{y}\left(x_{t}\right)\right] \\
x_{t+1} & =x_{t} \exp \left(-\alpha A y_{t}\right) / Z
\end{aligned}
$$

Output $x=\frac{1}{T} \sum_{t=1}^{T} x_{t}, y=\frac{1}{T} \sum_{t=1}^{T} y_{t}$.

Exponentiated Subgradient method convergence

Without loss of generality $n \geq m$:
Theorem

$$
\epsilon(x)+\epsilon(y) \leq \frac{\log (n)+n m L^{2} T \alpha^{2}}{T \alpha}
$$

Exponentiated Subgradient method convergence

Without loss of generality $n \geq m$:
Theorem

$$
\epsilon(x)+\epsilon(y) \leq \frac{\log (n)+n m L^{2} T \alpha^{2}}{T \alpha}
$$

Choosing $\alpha=\sqrt{\log (n) / n m T L^{2}}$

$$
\epsilon_{x}(x)+\epsilon_{y}(y) \leq 2 L \sqrt{\frac{n m \log (n)}{T}}
$$

Further reading on Subgradient methods

- Primal-dual subgradient methods for convex problems (Nesterov 2009)
- Universal gradient methods for convex optimization problems (Nesterov 2013)

Matrix Games
Definitions-What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods
Solutions via Online Learning

Extensive-form Games

Tips and Tricks

Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve

$$
f(x)-f\left(x^{*}\right) \in O(1 / \sqrt{T})
$$

Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve

$$
f(x)-f\left(x^{*}\right) \in O(1 / \sqrt{T})
$$

For smooth f, gradient descent achieves

$$
f(x)-f\left(x^{*}\right) \in O(1 / T)
$$

Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve

$$
f(x)-f\left(x^{*}\right) \in O(1 / \sqrt{T})
$$

For smooth f, gradient descent achieves

$$
f(x)-f\left(x^{*}\right) \in O(1 / T)
$$

For smooth f, accelerated gradient methods achieve (Nesterov 1984)

$$
f(x)-f\left(x^{*}\right) \in O\left(1 / T^{2}\right)
$$

Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve

$$
f(x)-f\left(x^{*}\right) \in O(1 / \sqrt{T})
$$

For smooth f, gradient descent achieves

$$
f(x)-f\left(x^{*}\right) \in O(1 / T)
$$

For smooth f, accelerated gradient methods achieve (Nesterov 1984)

$$
f(x)-f\left(x^{*}\right) \in O\left(1 / T^{2}\right)
$$

Can we smooth our objective for better asymptotic convergence?

An accelerated gradient method

(Auslender and Teboulle 2006)

Initialize $x_{1}=u_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
v_{t}=\frac{(t-1) x_{t}+2 u_{t}}{t+1}
$$

Output x_{T+1}

An accelerated gradient method

(Auslender and Teboulle 2006)

Initialize $x_{1}=u_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
v_{t} & =\frac{(t-1) x_{t}+2 u_{t}}{t+1} \\
u_{t+1} & =\underset{x \in \Delta}{\operatorname{argmin}} \alpha(t+1) \nabla f\left(v_{t}\right)^{\prime} x+D\left(x, u_{1}\right)
\end{aligned}
$$

Output x_{T+1}

An accelerated gradient method

(Auslender and Teboulle 2006)

Initialize $x_{1}=u_{1}=e / m, \alpha>0$
For $t=1, \ldots, T$:

$$
\begin{aligned}
v_{t} & =\frac{(t-1) x_{t}+2 u_{t}}{t+1} \\
u_{t+1} & =\underset{x \in \Delta}{\operatorname{argmin}} \alpha(t+1) \nabla f\left(v_{t}\right)^{\prime} x+D\left(x, u_{1}\right) \\
x_{t+1} & =\frac{(t-1) x_{t}+2 u_{t+1}}{t+1}
\end{aligned}
$$

Output x_{T+1}

Further reading

- Linear coupling: An ultimate unification of gradient and mirror descent (Allen-Zhu and Orecchia 2014)
- Templates for convex cone problems with applications to sparse signal recovery (Becker et. al. 2010)
- On accelerated proximal gradient methods for convex-concave optimization (Tseng 2008)

Conjugate smoothing

(Nesterov 2005)

Consider the function for d.g.f. $h(y)$ and $\mu>0$:

$$
\operatorname{brv}_{y}(x) \approx f_{\mu}(x)=\max _{y \in \Delta_{n}} x^{\prime} A y-\mu h(y)
$$

Conjugate smoothing

(Nesterov 2005)

Consider the function for d.g.f. $h(y)$ and $\mu>0$:

$$
\operatorname{brv}_{y}(x) \approx f_{\mu}(x)=\max _{y \in \Delta_{n}} x^{\prime} A y-\mu h(y)
$$

Let $D=\max _{y \in \Delta_{n}} h(y)$, we have

$$
\operatorname{brv}_{y}(x)-\mu D \leq f_{\mu}(x) \leq \operatorname{brv}_{y}(x)
$$

Conjugate smoothing

(Nesterov 2005)

Consider the function for d.g.f. $h(y)$ and $\mu>0$:

$$
\operatorname{brv}_{y}(x) \approx f_{\mu}(x)=\max _{y \in \Delta_{n}} x^{\prime} A y-\mu h(y)
$$

Let $D=\max _{y \in \Delta_{n}} h(y)$, we have

$$
\begin{gathered}
\operatorname{brv}_{y}(x)-\mu D \leq f_{\mu}(x) \leq \operatorname{brv}_{y}(x) \\
\nabla f_{\mu}(x)=A y_{t} \quad\left[y_{t}=\underset{y \in \Delta_{n}}{\operatorname{argmax}} x^{\prime} A y-\mu h(y)\right]
\end{gathered}
$$

Conjugate smoothing

(Nesterov 2005)

Consider the function for d.g.f. $h(y)$ and $\mu>0$:

$$
\operatorname{brv}_{y}(x) \approx f_{\mu}(x)=\max _{y \in \Delta_{n}} x^{\prime} A y-\mu h(y)
$$

Let $D=\max _{y \in \Delta_{n}} h(y)$, we have

$$
\begin{gathered}
\operatorname{brv}_{y}(x)-\mu D \leq f_{\mu}(x) \leq \operatorname{brv}_{y}(x) \\
\nabla f_{\mu}(x)=A y_{t} \quad\left[y_{t}=\underset{y \in \Delta_{n}}{\left.\operatorname{argmax}^{\prime} x^{\prime} A y-\mu h(y)\right]}\right.
\end{gathered}
$$

And $f_{\mu}(x)$ is $\frac{L}{\mu}$-smooth.

Conjugate smoothing for matrix games

(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

$$
f_{\mu}\left(x_{T+1}\right)-f_{\mu}\left(x^{*}\right) \leq \frac{L D}{\mu T^{2}}
$$

Conjugate smoothing for matrix games

(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

$$
f_{\mu}\left(x_{T+1}\right)-f_{\mu}\left(x^{*}\right) \leq \frac{L D}{\mu T^{2}}
$$

U sing $\operatorname{brv}_{y}(x)-\mu D \leq f_{\mu}(x) \leq \operatorname{brv}_{y}(x)$

$$
\epsilon\left(x_{T+1}\right)=f\left(x_{T+1}\right)-v^{*} \leq \frac{L D}{\mu T^{2}}+\mu D
$$

Conjugate smoothing for matrix games

(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

$$
f_{\mu}\left(x_{T+1}\right)-f_{\mu}\left(x^{*}\right) \leq \frac{L D}{\mu T^{2}}
$$

$U \operatorname{sing} \operatorname{brv}_{y}(x)-\mu D \leq f_{\mu}(x) \leq \operatorname{brv}_{y}(x)$

$$
\epsilon\left(x_{T+1}\right)=f\left(x_{T+1}\right)-v^{*} \leq \frac{L D}{\mu T^{2}}+\mu D
$$

Choosing $\mu=\frac{\sqrt{L}}{T}$

$$
\epsilon\left(x_{T+1}\right) \leq \frac{D \sqrt{L}}{T}
$$

An order of magnitude better than subgradient methods!

Excessive Gap Technique

 (Nesterov 2005)What if we don't know T in advance?

Excessive Gap Technique

(Nesterov 2005)

What if we don't know T in advance? Consider the smoothed pair of problems:

$$
\begin{aligned}
& \min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y-\mu_{y} h_{y}(y), \text { and } \\
& \max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}}-x^{\prime} A y+\mu_{x} h_{x}(x)
\end{aligned}
$$

Excessive Gap Technique

(Nesterov 2005)

What if we don't know T in advance? Consider the smoothed pair of problems:

$$
\begin{aligned}
& \min _{x \in \Delta_{m}} \max _{y \in \Delta_{n}} x^{\prime} A y-\mu_{y} h_{y}(y), \text { and } \\
& \max _{y \in \Delta_{n}} \min _{x \in \Delta_{m}}-x^{\prime} A y+\mu_{x} h_{x}(x)
\end{aligned}
$$

As we optimize x is using an accelerated method, we can decrease μ_{x}. Then, we switch to optimizing y and decreasing μ_{y}.

Additional optimization focused methods

- Interior-point methods (Pays 2014)
- Double-oracle methods (Bosanksy et. al. 2013, Zinkevich et. al. 2007)
- Monotone variational inequality methods (Nemirovski 2004, 2012, Juditsky et. al. 2011)

Matrix Games
Definitions-What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods
Solutions via Online Learning

Extensive-form Games

Tips and Tricks

Adversarial bandits

For $t=1, \ldots, T$:
Choose $x_{t} \in \Delta$
Adversary chooses u_{t}, subject to $\left\|u_{t}\right\|_{\infty} \leq L$
Observe u_{t}, and receive $u_{t}^{\prime} x_{t}$ utility

Adversarial bandits

For $t=1, \ldots, T$:
Choose $x_{t} \in \Delta$
Adversary chooses u_{t}, subject to $\left\|u_{t}\right\|_{\infty} \leq L$
Observe u_{t}, and receive $u_{t}^{\prime} x_{t}$ utility
The algorithm's average overall regret is the average benefit of having chosen the best single action in hindsight:

$$
R_{T}=\max _{a \in A}\left[R_{T}(a)=\frac{1}{T} \sum_{t=1}^{T} u_{t}(a)-u_{t}^{\prime} x_{t}\right]
$$

Adversarial bandits

For $t=1, \ldots, T$:

$$
\text { Choose } x_{t} \in \Delta
$$

Adversary chooses u_{t}, subject to $\left\|u_{t}\right\|_{\infty} \leq L$
Observe u_{t}, and receive $u_{t}^{\prime} x_{t}$ utility
The algorithm's average overall regret is the average benefit of having chosen the best single action in hindsight:

$$
R_{T}=\max _{a \in A}\left[R_{T}(a)=\frac{1}{T} \sum_{t=1}^{T} u_{t}(a)-u_{t}^{\prime} x_{t}\right]
$$

An algorithm is no-regret if it's average overall regret grows sublinearly in T.

No-regret algorithms: Subgradient method

Subgradient method and mirror descent are no-regret with

$$
R_{T} \in O(L \sqrt{n T})
$$

Why do we care about no-regret algorithms?

(see Waugh 2009 for proof)

Theorem
The average strategies of two no-regret algorithms in self-play with no more than ε average overall regret form a 2ε-equilibrium.

Why do we care about no-regret algorithms?

 (see Waugh 2009 for proof)
Theorem

The average strategies of two no-regret algorithms in self-play with no more than ε average overall regret form a 2ε-equilibrium.
Let \mathcal{A} be a no-regret algorithm on Δ_{m} and \mathcal{B} on Δ_{n},
For $t=1, \ldots, T$:

$$
\begin{gathered}
x_{t}=\operatorname{Strategy}(\mathcal{A}) \\
y_{t}=\operatorname{Strategy}(\mathcal{B}) \\
\operatorname{Update}\left(\mathcal{A},-A y_{t}\right) \\
\operatorname{Update}\left(\mathcal{B}, A^{\prime} x_{t}\right)
\end{gathered}
$$

Output $\bar{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t}, \bar{y}_{T}=\frac{1}{T} \sum_{t=1}^{T} y_{t}$

No-regret algorithms: Hedge/weighted Majority (Freund and Schapire 1996)

Choose $x_{t+1}(a) \propto \exp \left(\alpha R_{t}(a)\right)$

$$
R_{T} \in O(L \sqrt{T \log (n)})
$$

Related to Nesterov's dual averaging (2009)

No-regret algorithms: Follow the perturbed leader (Kalai and Vempala 2004)

Choose $x_{t+1}=\operatorname{argmax} R_{t}-\log (\epsilon) / \lambda$, where $\epsilon \sim(0,1)$

$$
R_{T} \in O(L \sqrt{T \log (n)})
$$

Regret matching

(Blackwell 1956, Hart and Mas-Colell 1999)

Choose $x_{t+1} \propto\left(R_{t}\right)_{+}$

$$
R_{T} \in O(L \sqrt{n T})
$$

Pure regret matching

(Tammelin, Gibson 2017, Cesa-Bianchi and Lugosi 2006)

Sample $x_{t+1} \sim\left(R_{t}\right)_{+}$

$$
R_{T} \in O(L \sqrt{2 n T})
$$

Regrets are integral, and average strategies are counts. Only need to examine one row and one column of A each iteration.

Regret matching-plus

(Tammelin 2014)
Choose $x_{t+1} \propto\left(R_{t}^{+}\right)_{+}$
Update $R_{t+1}^{+}=\left(R_{t}^{+}+u_{t}-u_{t}^{\prime} x_{t}\right)_{+}$

$$
R_{T} \in O(L \sqrt{n T})
$$

Regret matching-plus

(Tammelin 2014)
Choose $x_{t+1} \propto\left(R_{t}^{+}\right)_{+}$
Update $R_{t+1}^{+}=\left(R_{t}^{+}+u_{t}-u_{t}^{\prime} x_{t}\right)_{+}$

$$
R_{T} \in O(L \sqrt{n T})
$$

$$
x_{t}=\operatorname{Strategy}(\mathcal{A})
$$

Update $\left(\mathcal{A},-A y_{t}\right)$
$y_{t}=\operatorname{Strategy}(\mathcal{B})$
Update $\left(\mathcal{B}, A^{\prime} x_{t}\right)$

Regret matching-plus

(Tammelin 2014)
Choose $x_{t+1} \propto\left(R_{t}^{+}\right)_{+}$
Update $R_{t+1}^{+}=\left(R_{t}^{+}+u_{t}-u_{t}^{\prime} x_{t}\right)_{+}$

$$
R_{T} \in O(L \sqrt{n T})
$$

$$
\begin{aligned}
& x_{t}=\operatorname{Strategy}(\mathcal{A}) \\
& \operatorname{Update}\left(\mathcal{A},-A y_{t}\right) \\
& y_{t}=\operatorname{Strategy}(\mathcal{B}) \\
& \operatorname{Update}\left(\mathcal{B}, A^{\prime} x_{t}\right)
\end{aligned}
$$

Output $\bar{x}_{T}=\frac{2}{T(T+1)} \sum_{t=1}^{T} t x_{t}, \bar{y}_{T}=\frac{2}{T(T+1)} \sum_{t=1}^{T} t y_{t}$

Matrix Games

Extensive-form Games
Sequence Form Representation
Dilated distance generating functions
Counterfactual regret minimization

Tips and Tricks

Expressiveness of Matrix Games

Kuhn Poker (Kuhn 1950)

- The players ante a single chip
- Each player is dealt a random card from a deck containing a Jack, a Queen and a King
- The first player may check, or bet one chip
- When facing a bet, a player can call or fold forfeiting the pot
- Calling leads to a showdown, player with higher card wins

Expressiveness of Matrix Games

Kuhn Poker (Kuhn 1950)

- The players ante a single chip
- Each player is dealt a random card from a deck containing a Jack, a Queen and a King
- The first player may check, or bet one chip
- When facing a bet, a player can call or fold forfeiting the pot
- Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16×16.

Expressiveness of Matrix Games

Kuhn Poker (Kuhn 1950)

- The players ante a single chip
- Each player is dealt a random card from a deck containing a Jack, a Queen and a King
- The first player may check, or bet one chip
- When facing a bet, a player can call or fold forfeiting the pot
- Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16×16.
Can be represented as a 27×64 matrix game.

Expressiveness of Matrix Games

Kuhn Poker (Kuhn 1950)

- The players ante a single chip
- Each player is dealt a random card from a deck containing a Jack, a Queen and a King
- The first player may check, or bet one chip
- When facing a bet, a player can call or fold forfeiting the pot
- Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16×16.
Can be represented as a 27×64 matrix game.
The row player's actions determine $\{$ bet, check/call, check/fold\} for each card.

Expressiveness of Matrix Games

Kuhn Poker (Kuhn 1950)

- The players ante a single chip
- Each player is dealt a random card from a deck containing a Jack, a Queen and a King
- The first player may check, or bet one chip
- When facing a bet, a player can call or fold forfeiting the pot
- Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16×16.
Can be represented as a 27×64 matrix game.
The row player's actions determine $\{$ bet, check/call, check/fold\} for each card.
Can represent any finite scenario, but often not efficiently.

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,
- $\mathcal{Z} \subseteq \mathcal{H}$ are the terminal histories—histories with no children,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,
- $\mathcal{Z} \subseteq \mathcal{H}$ are the terminal histories-histories with no children,
- $P: \mathcal{H} \rightarrow\{x, y, c\}$ is the player choice function, determining which player, or chance acts at a non-terminal history,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,
- $\mathcal{Z} \subseteq \mathcal{H}$ are the terminal histories-histories with no children,
- $P: \mathcal{H} \rightarrow\{x, y, c\}$ is the player choice function, determining which player, or chance acts at a non-terminal history,
- For each history where $P(h)=c, \sigma(h) \in \Delta_{A(h)}$ defines chance's strategy,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,
- $\mathcal{Z} \subseteq \mathcal{H}$ are the terminal histories-histories with no children,
- $P: \mathcal{H} \rightarrow\{x, y, c\}$ is the player choice function, determining which player, or chance acts at a non-terminal history,
- For each history where $P(h)=c, \sigma(h) \in \Delta_{A(h)}$ defines chance's strategy,
- $u_{i}: \mathcal{Z} \rightarrow \mathbb{R}$ is player i's utility function,

Extensive-form game

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- Defined \mathcal{H} the set of histories,
- We denote the root history as $\phi \in \mathcal{H}$,
- Let $A(h)$ be the set of actions available from $h, h a$ is the history after taking action $a \in A(h)$ from h,
- $\mathcal{Z} \subseteq \mathcal{H}$ are the terminal histories-histories with no children,
- $P: \mathcal{H} \rightarrow\{x, y, c\}$ is the player choice function, determining which player, or chance acts at a non-terminal history,
- For each history where $P(h)=c, \sigma(h) \in \Delta_{A(h)}$ defines chance's strategy,
- $u_{i}: \mathcal{Z} \rightarrow \mathbb{R}$ is player i's utility function,
- Again, the game is zero-sum: $u_{x}(z)=-u_{y}(z)$.

Extensive-form game: Imperfect information

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- \mathcal{I}_{i}, player i 's information partition, partitions the histories where i acts,

Extensive-form game: Imperfect information

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- \mathcal{I}_{i}, player i 's information partition, partitions the histories where i acts,
- $I \in \mathcal{I}_{i}$ is an information set, and two histories $h, h^{\prime} \in \mathcal{I}$ are indistinguishable. This requires $A(h)=A\left(h^{\prime}\right)$.

Extensive-form game: Imperfect information

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

- \mathcal{I}_{i}, player i 's information partition, partitions the histories where i acts,
- $I \in \mathcal{I}_{i}$ is an information set, and two histories $h, h^{\prime} \in \mathcal{I}$ are indistinguishable. This requires $A(h)=A\left(h^{\prime}\right)$.
- A strategy for player i is $\sigma_{i}: \mathcal{I}_{i} \rightarrow \Delta_{A(I)}$.

Extensive-form game: Perfect Recall

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

We additionally require that a player cannot be forced by the rules of the game to forget what they at one point knew.

Extensive-form game: Perfect Recall

(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

We additionally require that a player cannot be forced by the rules of the game to forget what they at one point knew.

A game has perfect recall if all indistinguishable histories, $h, h^{\prime} \in I_{i}$, share the same sequence of past decisions.

Sequence form representation

(von Stengel 1996)

- Perfect recall implies that each information set/action pair, (I, a), uniquely defines an entire sequence of decisions.

Sequence form representation

(von Stengel 1996)

- Perfect recall implies that each information set/action pair, (I, a), uniquely defines an entire sequence of decisions.
- Let $\Gamma_{i}=\left\{(I, a) \mid I \in \mathcal{I}_{i}, a \in A(I)\right\} \cup\{\phi\}$ be the set of player i 's sequences, where ϕ is the empty sequence.

Sequence form representation

(von Stengel 1996)

- Perfect recall implies that each information set/action pair, (I, a), uniquely defines an entire sequence of decisions.
- Let $\Gamma_{i}=\left\{(I, a) \mid I \in \mathcal{I}_{i}, a \in A(I)\right\} \cup\{\phi\}$ be the set of player i 's sequences, where ϕ is the empty sequence.
- Each information set has a unique parent sequence, which we denote parent (I).

Sequence form representation

```
(von Stengel 1996)
```

- Perfect recall implies that each information set/action pair, (I, a), uniquely defines an entire sequence of decisions.
- Let $\Gamma_{i}=\left\{(I, a) \mid I \in \mathcal{I}_{i}, a \in A(I)\right\} \cup\{\phi\}$ be the set of player i 's sequences, where ϕ is the empty sequence.
- Each information set has a unique parent sequence, which we denote parent (I).
- Let $\operatorname{Reach}(I, a)$ be the set of information sets directly reachable from taking a at I.

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,
- $x(\phi)=1$, and

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,
- $x(\phi)=1$, and
- $x(\operatorname{parent}(I))=\sum_{a \in A(I)} w(I, a), \forall I \in \mathcal{I}_{i}$.

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,
- $x(\phi)=1$, and
- $x(\operatorname{parent}(I))=\sum_{a \in A(I)} w(I, a), \forall I \in \mathcal{I}_{i}$.

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,
- $x(\phi)=1$, and
- $x(\operatorname{parent}(I))=\sum_{a \in A(I)} w(I, a), \forall I \in \mathcal{I}_{i}$.

We can encode these as linear constraints:
$\Sigma_{1}=\{x \mid E x=e, x \geq 0\}$ and $\Sigma_{2}=\{y \mid F y=f, y \geq 0\}$.

Sequence form representation

(von Stengel 1996)

We call $x: \Gamma_{x} \rightarrow \mathbb{R}$ a realization plan. We require a realization plan satisfy:

- $x(u) \geq 0, \forall u \in \Gamma$,
- $x(\phi)=1$, and
- $x(\operatorname{parent}(I))=\sum_{a \in A(I)} w(I, a), \forall I \in \mathcal{I}_{i}$.

We can encode these as linear constraints:
$\Sigma_{1}=\{x \mid E x=e, x \geq 0\}$ and $\Sigma_{2}=\{y \mid F y=f, y \geq 0\}$. We define $\sigma_{x}(I, \cdot) \propto x(I, \cdot)$.

Sequence form Minimax Problem

$$
\min _{x \in \Sigma_{1}} \max _{y \in \Sigma_{2}} y^{\prime} A x
$$

That is, the payoffs are a bi-linear product of the realization plans.

Sequence form linear programming

(Koller and Pfeffer 1995, Koller et. al. 1996)

$$
\begin{aligned}
\min _{x, u} & f^{\prime} u \text { subject to: } \\
F u & \geq-A^{\prime} x \\
E x & =e \\
x & \geq 0
\end{aligned}
$$

Sequence form linear programming

(Koller and Pfeffer 1995, Koller et. al. 1996)

$$
\begin{aligned}
\min _{x, u} & f^{\prime} u \text { subject to: } \\
F u & \geq-A^{\prime} x \\
E x & =e \\
x & \geq 0
\end{aligned}
$$

u is indexed by y 's sequences and represents the value of that sequence to the opponent.

Matrix Games

Extensive-form Games
Sequence Form Representation
Dilated distance generating functions
Counterfactual regret minimization

Tips and Tricks

Dilated prox function

(Hoda et. al. 2010)

$$
h(x)=\sum_{I \in \mathcal{I}_{i}} x(\operatorname{parent}(I)) h_{\Delta}\left(\sigma_{x}(I, \cdot)\right)
$$

Dilated prox function

(Hoda et. al. 2010)

$$
h(x)=\sum_{I \in \mathcal{I}_{i}} x(\operatorname{parent}(I)) h_{\Delta}\left(\sigma_{x}(I, \cdot)\right)
$$

We minimize h recursively, solving terminal information sets first, then adding the value of $h_{I}\left(\sigma_{x}(I, \cdot)\right)$ to the utility parent (I).

Dilated prox function

(Hoda et. al. 2010)

$$
h(x)=\sum_{I \in \mathcal{I}_{i}} x(\operatorname{parent}(I)) h_{\Delta}\left(\sigma_{x}(I, \cdot)\right)
$$

We minimize h recursively, solving terminal information sets first, then adding the value of $h_{I}\left(\sigma_{x}(I, \cdot)\right)$ to the utility parent (I).

$$
\tilde{g}(I, a)=g(I, a)+\sum_{I^{\prime} \in \operatorname{Reach}(I, a)} \frac{x\left(I^{\prime}\right)}{x(I, a)} h_{I^{\prime}}\left(\sigma_{x}\left(I^{\prime}, \cdot\right)\right)
$$

Weighted dilated entropy prox functions

(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing $h_{\Delta}(x)=x \log (x)$,

$$
h(x)=\sum_{I \in \mathcal{I}_{i}} \beta_{I} x(\operatorname{parent}(I)) h_{\Delta}\left(\sigma_{x}(I, \cdot)\right)
$$

With the appropriate choice of β, we can improve convergence of optimization-style algorithms.

Weighted dilated entropy prox functions

(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing $h_{\Delta}(x)=x \log (x)$,

$$
h(x)=\sum_{I \in \mathcal{I}_{i}} \beta_{I} x(\operatorname{parent}(I)) h_{\Delta}\left(\sigma_{x}(I, \cdot)\right)
$$

With the appropriate choice of β, we can improve convergence of optimization-style algorithms.
Roughly, allow the strategy to change more rapidly towards the root of the information tree.

Matrix Games

Extensive-form Games
Sequence Form Representation
Dilated distance generating functions
Counterfactual regret minimization

Tips and Tricks

Counterfactual regret

(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using standard no-regret learning algorithms? Yes!

Counterfactual regret

(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using standard no-regret learning algorithms? Yes!

$$
u^{t}(I, a)=u^{t}(I, a)+\sum_{I^{\prime} \in \operatorname{Reach}(I, a)} u_{t}\left(I^{\prime}\right)
$$

Counterfactual regret

(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using standard no-regret learning algorithms? Yes!

$$
\begin{aligned}
u^{t}(I, a) & =u^{t}(I, a)+\sum_{I^{\prime} \in \operatorname{Reach}(I, a)} u_{t}\left(I^{\prime}\right) \\
u^{t}(I) & =\sum_{a \in A(I)} \sigma_{x}(I, a) u^{t}(I, a)
\end{aligned}
$$

Counterfactual regret

(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using standard no-regret learning algorithms? Yes!

$$
\begin{aligned}
u^{t}(I, a) & =u^{t}(I, a)+\sum_{I^{\prime} \in \operatorname{Reach}(I, a)} u_{t}\left(I^{\prime}\right) \\
u^{t}(I) & =\sum_{a \in A(I)} \sigma_{x}(I, a) u^{t}(I, a) \\
r^{t}(I, a) & =u^{t}(I, a)-u^{t}(I)
\end{aligned}
$$

Counterfactual regret

(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using standard no-regret learning algorithms? Yes!

$$
\begin{aligned}
u^{t}(I, a) & =u^{t}(I, a)+\sum_{I^{\prime} \in \operatorname{Reach}(I, a)} u_{t}\left(I^{\prime}\right) \\
u^{t}(I) & =\sum_{a \in A(I)} \sigma_{x}(I, a) u^{t}(I, a) \\
r^{t}(I, a) & =u^{t}(I, a)-u^{t}(I)
\end{aligned}
$$

We call $u^{t}(I, a)$ the counterfactual utility at time t of taking sequence (I, a), and $r^{t}(I, a)$, the immediate counterfactual regret.

Counterfactual regret minimization

(Zinkevich et. al. 2008)

Theorem
Overall regret is bounded by the sum of per information set counterfactual regret.

$$
R^{T} \leq \sum_{I \in \mathcal{I}}\left(R^{T}(I)\right)_{+}
$$

Counterfactual regret minimization

(Zinkevich et. al. 2008)

Theorem

Overall regret is bounded by the sum of per information set counterfactual regret.

$$
R^{T} \leq \sum_{I \in \mathcal{I}}\left(R^{T}(I)\right)_{+}
$$

Theorem
Two algorithms minimizing counterfactual regret in self-play converge to a Nash equilibrium.

Matrix Games

Extensive-form Games

Tips and Tricks

Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a suboptimal regret bound, why?

- Computationally cheap! (exp) is expensive

Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a suboptimal regret bound, why?

- Computationally cheap! (\exp) is expensive
- No parameter tuning (sort of)

Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a suboptimal regret bound, why?

- Computationally cheap! (\exp) is expensive
- No parameter tuning (sort of)
- Pruning! (some actions have probability zero)

Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a suboptimal regret bound, why?

- Computationally cheap! (\exp) is expensive
- No parameter tuning (sort of)
- Pruning! (some actions have probability zero)
- Paper is easier to follow (+ online resources)

Monte-Carlo counterfactual regret minimization

(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling to our advantage:

- Chance sampling-sample chance's strategy

Monte-Carlo counterfactual regret minimization

(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling to our advantage:

- Chance sampling-sample chance's strategy
- External sampling-sample chance and the opponent's strategy

Monte-Carlo counterfactual regret minimization

(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling to our advantage:

- Chance sampling-sample chance's strategy
- External sampling-sample chance and the opponent's strategy
- Outcome sampling-sample everything!

Monte-Carlo counterfactual regret minimization

(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling to our advantage:

- Chance sampling-sample chance's strategy
- External sampling-sample chance and the opponent's strategy
- Outcome sampling-sample everything!
- Public chance sampling-sample only jointly observed chance events

Warm starting

(Brown and Sandholm 2016)

If we have a good strategy profile, can we use it to start CFR in a good spot? Yes!

- Play the strategy against itself to compute initial regrets

Warm starting
 (Brown and Sandholm 2016)

If we have a good strategy profile, can we use it to start CFR in a good spot? Yes!

- Play the strategy against itself to compute initial regrets
- How long to play it against itself? Depends, just like step-size.

Regret-based pruning

(Brown and Sandholm 2015)

- Observation: our strategy at information sets that we don't reach doesn't impact our opponent's regret

Regret-based pruning

(Brown and Sandholm 2015)

- Observation: our strategy at information sets that we don't reach doesn't impact our opponent's regret
- Idea: play a best response in those information sets

Regret-based pruning

(Brown and Sandholm 2015)

- Observation: our strategy at information sets that we don't reach doesn't impact our opponent's regret
- Idea: play a best response in those information sets
- Following through with the details allows us to prune (i.e., delay updating) these information sets

Safe Endgame Solving

(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

- The naive first approach does not theoretically work

Safe Endgame Solving

(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

- The naive first approach does not theoretically work
- We need to know the counterfactual values to the opponent

Safe Endgame Solving

(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

- The naive first approach does not theoretically work
- We need to know the counterfactual values to the opponent
- Create a gadget game, where the opponent can opt out and receive those values

Safe Endgame Solving
 (Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

- The naive first approach does not theoretically work
- We need to know the counterfactual values to the opponent
- Create a gadget game, where the opponent can opt out and receive those values
- A substanial part of both DeepStack and Libratus

Questions

Thank you! Questions?
kevin.waugh@gmail.com

Tomorrow: Computer Poker Workshop
Thursday morning: Invited Panel on DeepStack and Libratus

