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What is a zero-sum matrix game?
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

I Defined by A ∈ Rm×n

I Two players—the row player and
the column player

A =

[
2 0 0
−1 3 1

]
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How is it played?

I A matrix game is a one-shot game

I The row player selects a row
i ∈ [m] and his opponent a column
j ∈ [n]

I We call (i, j) the game’s outcome

A =

[
2 0 0
−1 3 1

]
(i, j) = (2, 1)
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Why is it played?

I The row player receives utility
ux(i, j) = −ai,j

I The column player gets
uy(i, j) = ai,j

I The game is zero-sum since
ux(i, j) + uy(i, j) = 0

I Let L = maxi,j |ai,j |

A =

[
2 0 0
−1 3 1

]

ux(i, j) = −a2,1 = 1

uy(i, j) = a2,1 = −1
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Strategies and Profiles

I A strategy for the row player is a
probability distribution over the
rows of A, x ∈ ∆m = {x |∑m

i=1 xi = 1, x ≥ 0}
I A strategy profile is a pair of

strategies, one for each player
(x, y) ∈ ∆m ×∆n

A =

[
2 0 0
−1 3 1

]
x =

(
1

3
,
2

3

)
y =

(
1

2
,
1

4
,
1

4

)
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Expected Utility

The expected utility for the row player
under profile (x, y) is

ux(x, y) =

m∑
i=1

n∑
j=1

−xiyjai,j

= −x′Ay
uy(x, y) = x′Ay

A =

[
2 0 0
−1 3 1

]

x =

(
1

3
,
2

3

)
y =

(
1

2
,
1

4
,
1

4

)
ux(x, y) =

−2

3
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Optimal play against a known opponent

A best response to the row player’s
strategy x is a pure strategy that
maximizes the column player’s utility:

brvy(x) = max
y∈[j]

uy(x, y) := x′Ay

Note:

brvy(x) ≥ x′Ay,∀y ∈ ∆n

A =

[
2 0 0
−1 3 1

]
x =

(
1

3
,
2

3

)
max
y∈[j]

[
0 2 2

3

]
= 2
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Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

brvx(y) = ux(x, y),

brvy(x) = uy(x, y)

equivalently

ux(x, y) ≥ ux(x̄, y), ∀x̄ ∈ ∆m

uy(x, y) ≥ uy(x, ȳ) ∀ȳ ∈ ∆n

Theorem (Nash 1950)

For any matrix game, a Nash equilibrium exists.
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Example—a strategy for y

A =

[
2 0 0
−1 3 1

]

I If x = (1, 0) then y responds j = 1

I If x = (0, 1) then y responds j = 2

I If x = (p, 1− p) when is y indifferent 1 and 2?

uy(x, 1) = uy(x, 2)

2p− 1(1− p) = 0p+ 3(1− p)

p =
2

3
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Example—a strategy for x

A =

[
2 0 0
−1 3 1

]

I If y = (q, 1− q, 0) when is x indifferent 1 and 2?

ux(1, y) = ux(2, y)

−2q + 0(1− q) = q − 3(1− q)

q =
1

2
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Example—checking our work

A =

[
2 0 0
−1 3 1

]
x =

(
2

3
,
1

3

)
, y =

(
1

2
,
1

2
, 0

)

brvx(y) = max
i∈[n]
{−1,−1}

brvy(x) = max
j∈[m]

{
1, 1,

1

3

}
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Nash Equilibrium—computational complexity
(Papadimitriou 1994, Daskalakis et. al. 2009)

For general sum games:

I Finding a Nash equilibrium is PPAD-complete

I Simplex-like algorithm (Lemke and Howson 1964)

I Newton-like algorithm (Nisan et. al. 2007)

I Guess and check (Lipton et. al. 2003)
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Minimax Setup

Claim:

(x, y) is Nash equilibrium

⇔
(x, y) is a saddle-point of min

x∈∆m

max
y∈∆n

x′Ay
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Minimax Setup—proof

(x, y) is Nash equilibrium ⇒

−x′Ay = ux(x, y) ≥ ux(x̄, y) = −x̄′Ay, ∀x̄ ∈ ∆m

x′Ay = uy(x, y) ≥ uy(x, ȳ) = x′Aȳ ∀ȳ ∈ ∆n

therefore ∀x̄ ∈ ∆m, ȳ ∈ ∆n

x′Aȳ ≤ x′Ay ≤ x̄′Ay

Reverse direction is just as obvious.
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Minimax Theorem

Theorem (von Neumann 1928)

min
x∈∆m

max
y∈∆n

x′Ay = max
y∈∆n

min
x∈∆m

x′Ay

Let v∗ = minx∈∆m maxy∈∆n x′Ay
Max-min inequality:

Theorem (Boyd and Vandenberghe 2004)

max
y∈∆n

min
x∈∆m

x′Ay ≤ min
x∈∆m

max
y∈∆n

x′Ay
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Minimax Theorem—proof

Let (x, y) be a Nash equilibrium,

min
x̄∈∆m

max
ȳ∈∆n

x̄′Aȳ ≤ max
ȳ∈∆n

x′Aȳ

= x′Ay

= min
x̄∈∆m

x̄′Ay

≤ max
ȳ∈∆n

min
x̄∈∆m

x̄′Aȳ

Max-min inequality implies inequalities must hold at equality.
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= x′Ay

= min
x̄∈∆m

x̄′Ay

≤ max
ȳ∈∆n

min
x̄∈∆m

x̄′Aȳ
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Approximate Nash equilibrium

An ε-Nash equilibrium is a pair of mutual ε-best responses:

brvx(y) ≤ ux(x, y) + ε

brvy(x) ≤ uy(x, y) + ε

The exploitability of a strategy is:

εx(x) = brvy(x)− v∗

εy(y) = brvx(y) + v∗
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Linear programming solution

Consider

max
y∈∆

w′y

= min
t

t subject to:

w ≤ te

where e = (1, . . . , 1).
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Linear programming solution

Letting w = A′x:

min
x∈∆m

max
y∈∆n

x′Ay

= min
x,t

t subject to:

A′x ≤ te
e′x = 1

x ≥ 0
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Linear programming—polynomial time solution

Can solve linear programming with:

I Simplex method (Dantzig 1987)

I Interior point algorithms (Boyd and Vandenberghe 2004)

I Ellipsoid algorithm (Khachiyan 1979, Lovasz 1988)
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Non-smooth convex objective

Consider,
min
x∈∆m

brvy(x) = min
x∈∆m

max
y∈∆n

x′Ay

This objective is convex, albiet non-smooth, and

∂

∂x
brvy(x) = {Ay∗ | y∗ is a best response to x}
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Projected Subgradient Method

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy

[Ayt ∈ ∂ brvy(xt)]

z = xt − αAyt
xt+1 = argmin

x∈∆n

‖x− z‖2 = Π∆m(z)

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.

26 / 75



Projected Subgradient Method

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy [Ayt ∈ ∂ brvy(xt)]

z = xt − αAyt
xt+1 = argmin

x∈∆n

‖x− z‖2 = Π∆m(z)

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.

26 / 75



Projected Subgradient Method

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy [Ayt ∈ ∂ brvy(xt)]

z = xt − αAyt

xt+1 = argmin
x∈∆n

‖x− z‖2 = Π∆m(z)

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.

26 / 75



Projected Subgradient Method

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy [Ayt ∈ ∂ brvy(xt)]

z = xt − αAyt
xt+1 = argmin

x∈∆n

‖x− z‖2 = Π∆m(z)

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.

26 / 75



Projected Subgradient Method

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy [Ayt ∈ ∂ brvy(xt)]

z = xt − αAyt
xt+1 = argmin

x∈∆n

‖x− z‖2 = Π∆m(z)

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.

26 / 75



Projecting onto the simplex

x∗ = argmin
x∈∆

‖x− z‖2

= argmax
x∈∆

−‖x‖2 + 2x′z − ‖z‖2

= argmax
x∈∆

x′z − 1

2
‖x‖2

x∗ = (z + λ)+ = max{0, z + λ}

where λ is chosen so that x ∈ ∆.

27 / 75



Projecting onto the simplex

x∗ = argmin
x∈∆

‖x− z‖2 = argmax
x∈∆

−‖x‖2 + 2x′z − ‖z‖2

= argmax
x∈∆

x′z − 1

2
‖x‖2

x∗ = (z + λ)+ = max{0, z + λ}

where λ is chosen so that x ∈ ∆.

27 / 75



Projecting onto the simplex

x∗ = argmin
x∈∆

‖x− z‖2 = argmax
x∈∆

−‖x‖2 + 2x′z − ‖z‖2

= argmax
x∈∆

x′z − 1

2
‖x‖2

x∗ = (z + λ)+ = max{0, z + λ}

where λ is chosen so that x ∈ ∆.

27 / 75



Projecting onto the simplex

x∗ = argmin
x∈∆

‖x− z‖2 = argmax
x∈∆

−‖x‖2 + 2x′z − ‖z‖2

= argmax
x∈∆

x′z − 1

2
‖x‖2

x∗ = (z + λ)+ = max{0, z + λ}

where λ is chosen so that x ∈ ∆.

27 / 75



Projecting onto the simplex
see (Duchi et. al. 2008) for O(n) solution

Let q = sort(z) and Z1 =
∑n

i=1 zi
For i ∈ [n]:

Solve Z + (n− i+ 1)γ = 1

if qi + γ ≥ 0 then λ = γ; break

Zi+1 = Zi − qi

Output x∗ = (z + λ)+
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Subgradient method convergence
extending (Zinkevich 2003)

Without loss of generality n ≥ m:

Theorem

ε(x) + ε(y) ≤ n+ nmL2Tα2

Tα

Choosing α = 1/L
√
mT

εx(x) + εy(y) ≤ 2nL

√
m

T
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Towards mirror descent
(Nemirovski 2012)

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy

xt+1 = argmin
x∈∆n

‖xt − αAyt − x‖2

= argmin
x∈∆n

x′ (αAyt − xt) +
1

2
‖x‖2 − 1

2
‖xt‖2

= argmin
x∈∆n

x′ (αAyt −∇h(xt)) + h(x)− h(xt)

With mirror descent choose an alternative h(x)
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Bregman divergences and distance generating functions
(Bregman 1967)

A distance generating function is a 1-strongly convex function
h(x) on ∆ such that ∀x ∈ ∆:

I 2h(x) ≥ ‖x‖2, ∀x ∈ ∆, and

I h(x) ≥ h(x0) = 0.

We say h(x) fits ∆ if we can efficiently solve

min
x∈∆

g′x+ h(x)

We define the Bregman divergence as

D(x, y) = h(x)− h(y)−∇h(y)′(x− y)
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I h(x) ≥ h(x0) = 0.

We say h(x) fits ∆ if we can efficiently solve

min
x∈∆

g′x+ h(x)

We define the Bregman divergence as

D(x, y) = h(x)− h(y)−∇h(y)′(x− y)
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Negative entropy distance generating function

Let h(x) = x log(x) + log(n)− e′x+ 1

∇h(x) = log(x)

Let Z =
n∑
i=1

exp(−gi)

min
x∈∆

g′x+ h(x)

= log(Z)− log(n)

x∗ = argmin
x∈∆

g′x+ h(x)

= exp(−g)/Z
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Exponentiated Subgradient Method
(Kivinen and Warmuth 1994)

Initialize x1 = e/m,α > 0
For t = 1, . . . , T :

yt ∈ argmax
y∈∆n

x′tAy

[Ayt ∈ ∂ brvy(xt)]

xt+1 = xt exp(−αAyt)/Z

Output x = 1
T

∑T
t=1 xt, y = 1

T

∑T
t=1 yt.
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Exponentiated Subgradient method convergence

Without loss of generality n ≥ m:

Theorem

ε(x) + ε(y) ≤ log(n) + nmL2Tα2

Tα

Choosing α =
√

log(n)/nmTL2

εx(x) + εy(y) ≤ 2L

√
nm log(n)

T
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Further reading on Subgradient methods

I Primal-dual subgradient methods for convex problems
(Nesterov 2009)

I Universal gradient methods for convex optimization problems
(Nesterov 2013)
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Matrix Games
Definitions—What is a Nash Equilibrium?
Formulation as Minimax Problem
Formulation as Linear Program
Solutions via Subgradient Methods
Solutions via Smoothing and Gradient Methods
Solutions via Online Learning

Extensive-form Games

Tips and Tricks
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Smooth vs. non-smooth optimization

For non-smooth f , subgradient methods achieve

f(x)− f(x∗) ∈ O
(

1/
√
T
)

For smooth f , gradient descent achieves

f(x)− f(x∗) ∈ O (1/T )

For smooth f , accelerated gradient methods achieve (Nesterov
1984)

f(x)− f(x∗) ∈ O
(
1/T 2

)
Can we smooth our objective for better asymptotic convergence?
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An accelerated gradient method
(Auslender and Teboulle 2006)

Initialize x1 = u1 = e/m,α > 0
For t = 1, . . . , T :

vt =
(t− 1)xt + 2ut

t+ 1

ut+1 = argmin
x∈∆

α(t+ 1)∇f(vt)
′x+D(x, u1)

xt+1 =
(t− 1)xt + 2ut+1

t+ 1

Output xT+1
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Further reading

I Linear coupling: An ultimate unification of gradient and
mirror descent (Allen-Zhu and Orecchia 2014)

I Templates for convex cone problems with applications to
sparse signal recovery (Becker et. al. 2010)

I On accelerated proximal gradient methods for convex-concave
optimization (Tseng 2008)
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Conjugate smoothing
(Nesterov 2005)

Consider the function for d.g.f. h(y) and µ > 0:

brvy(x) ≈ fµ(x) = max
y∈∆n

x′Ay − µh(y)

Let D = maxy∈∆n h(y), we have

brvy(x)− µD ≤ fµ(x) ≤ brvy(x)

∇fµ(x) = Ayt [yt = argmax
y∈∆n

x′Ay − µh(y)]

And fµ(x) is L
µ -smooth.
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Conjugate smoothing for matrix games
(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

fµ(xT+1)− fµ(x∗) ≤ LD

µT 2

Using brvy(x)− µD ≤ fµ(x) ≤ brvy(x)

ε(xT+1) = f(xT+1)− v∗ ≤ LD

µT 2
+ µD

Choosing µ =
√
L
T

ε(xT+1) ≤ D
√
L

T

An order of magnitude better than subgradient methods!
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Excessive Gap Technique
(Nesterov 2005)

What if we don’t know T in advance?

Consider the smoothed pair
of problems:

min
x∈∆m

max
y∈∆n

x′Ay − µyhy(y), and

max
y∈∆n

min
x∈∆m

− x′Ay + µxhx(x)

As we optimize x is using an accelerated method, we can decrease
µx. Then, we switch to optimizing y and decreasing µy.
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Additional optimization focused methods

I Interior-point methods (Pays 2014)

I Double-oracle methods (Bosanksy et. al. 2013, Zinkevich
et. al. 2007)

I Monotone variational inequality methods (Nemirovski 2004,
2012, Juditsky et. al. 2011)
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Adversarial bandits

For t = 1, . . . , T :

Choose xt ∈ ∆

Adversary chooses ut, subject to ‖ut‖∞ ≤ L
Observe ut, and receive u′txt utility

The algorithm’s average overall regret is the average benefit of
having chosen the best single action in hindsight:

RT = max
a∈A

[
RT (a) =

1

T

T∑
t=1

ut(a)− u′txt

]

An algorithm is no-regret if it’s average overall regret grows
sublinearly in T .
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No-regret algorithms: Subgradient method

Subgradient method and mirror descent are no-regret with

RT ∈ O
(
L
√
nT
)
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Why do we care about no-regret algorithms?
(see Waugh 2009 for proof)

Theorem
The average strategies of two no-regret algorithms in self-play with
no more than ε average overall regret form a 2ε-equilibrium.

Let A be a no-regret algorithm on ∆m and B on ∆n,
For t = 1, . . . , T :

xt = Strategy(A)

yt = Strategy(B)

Update(A,−Ayt)
Update(B, A′xt)

Output x̄T = 1
T

∑T
t=1 xt, ȳT = 1

T

∑T
t=1 yt
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No-regret algorithms: Hedge/weighted Majority
(Freund and Schapire 1996)

Choose xt+1(a) ∝ exp (αRt(a))

RT ∈ O
(
L
√
T log(n)

)
Related to Nesterov’s dual averaging (2009)
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No-regret algorithms: Follow the perturbed leader
(Kalai and Vempala 2004)

Choose xt+1 = argmaxRt − log(ε)/λ, where ε ∼ (0, 1)

RT ∈ O
(
L
√
T log(n)

)
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Regret matching
(Blackwell 1956, Hart and Mas-Colell 1999)

Choose xt+1 ∝ (Rt)+

RT ∈ O
(
L
√
nT
)
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Pure regret matching
(Tammelin, Gibson 2017, Cesa-Bianchi and Lugosi 2006)

Sample xt+1 ∼ (Rt)+

RT ∈ O
(
L
√

2nT
)

Regrets are integral, and average strategies are counts. Only need
to examine one row and one column of A each iteration.
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Regret matching-plus
(Tammelin 2014)

Choose xt+1 ∝
(
R+
t

)
+

Update R+
t+1 =

(
R+
t + ut − u′txt

)
+

RT ∈ O
(
L
√
nT
)

xt = Strategy(A)

Update(A,−Ayt)
yt = Strategy(B)

Update(B, A′xt)

Output x̄T = 2
T (T+1)

∑T
t=1 txt, ȳT = 2

T (T+1)

∑T
t=1 tyt
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Matrix Games

Extensive-form Games
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Dilated distance generating functions
Counterfactual regret minimization

Tips and Tricks
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Expressiveness of Matrix Games
Kuhn Poker (Kuhn 1950)

I The players ante a single chip

I Each player is dealt a random card from a deck containing a
Jack, a Queen and a King

I The first player may check, or bet one chip

I When facing a bet, a player can call or fold forfeiting the pot

I Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16× 16.
Can be represented as a 27× 64 matrix game.
The row player’s actions determine {bet, check/call,

check/fold} for each card.
Can represent any finite scenario, but often not efficiently.
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Extensive-form game
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

I Defined H the set of histories,

I We denote the root history as φ ∈ H,

I Let A(h) be the set of actions available from h, ha is the
history after taking action a ∈ A(h) from h,

I Z ⊆ H are the terminal histories—histories with no children,

I P : H → {x, y, c} is the player choice function, determining
which player, or chance acts at a non-terminal history,

I For each history where P (h) = c, σ(h) ∈ ∆A(h) defines
chance’s strategy,

I ui : Z → R is player i’s utility function,

I Again, the game is zero-sum: ux(z) = −uy(z).
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I P : H → {x, y, c} is the player choice function, determining
which player, or chance acts at a non-terminal history,

I For each history where P (h) = c, σ(h) ∈ ∆A(h) defines
chance’s strategy,

I ui : Z → R is player i’s utility function,

I Again, the game is zero-sum: ux(z) = −uy(z).
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Extensive-form game: Imperfect information
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

I Ii, player i’s information partition, partitions the histories
where i acts,

I I ∈ Ii is an information set, and two histories h, h′ ∈ I are
indistinguishable. This requires A(h) = A(h′).

I A strategy for player i is σi : Ii → ∆A(I).
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Extensive-form game: Perfect Recall
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

We additionally require that a player cannot be forced by the rules
of the game to forget what they at one point knew.

A game has perfect recall if all indistinguishable histories,
h, h′ ∈ Ii, share the same sequence of past decisions.
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Sequence form representation
(von Stengel 1996)

I Perfect recall implies that each information set/action pair,
(I, a), uniquely defines an entire sequence of decisions.

I Let Γi = {(I, a) | I ∈ Ii, a ∈ A(I)} ∪ {φ} be the set of player
i’s sequences, where φ is the empty sequence.

I Each information set has a unique parent sequence, which we
denote parent(I).

I Let Reach(I, a) be the set of information sets directly
reachable from taking a at I.
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Sequence form representation
(von Stengel 1996)

We call x : Γx → R a realization plan. We require a realization
plan satisfy:

I x(u) ≥ 0, ∀u ∈ Γ,

I x(φ) = 1, and

I x(parent(I)) =
∑

a∈A(I)w(I, a),∀I ∈ Ii.
We can encode these as linear constraints:
Σ1 = {x | Ex = e, x ≥ 0} and Σ2 = {y | Fy = f, y ≥ 0}.
We define σx(I, ·) ∝ x(I, ·).
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Sequence form Minimax Problem

min
x∈Σ1

max
y∈Σ2

y′Ax

That is, the payoffs are a bi-linear product of the realization plans.
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Sequence form linear programming
(Koller and Pfeffer 1995, Koller et. al. 1996)

min
x,u

f ′u subject to:

Fu ≥ −A′x
Ex = e

x ≥ 0
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Sequence form linear programming
(Koller and Pfeffer 1995, Koller et. al. 1996)

min
x,u

f ′u subject to:

Fu ≥ −A′x
Ex = e

x ≥ 0

u is indexed by y’s sequences and represents the value of that
sequence to the opponent.
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Dilated prox function
(Hoda et. al. 2010)

h(x) =
∑
I∈Ii

x (parent(I))h∆ (σx(I, ·))

We minimize h recursively, solving terminal information sets first,
then adding the value of hI(σx(I, ·)) to the utility parent(I).

g̃(I, a) = g(I, a) +
∑

I′∈Reach(I,a)

x(I ′)

x(I, a)
hI′
(
σx(I ′, ·)

)
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Weighted dilated entropy prox functions
(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing h∆(x) = x log(x),

h(x) =
∑
I∈Ii

βIx (parent(I))h∆ (σx(I, ·))

With the appropriate choice of β, we can improve convergence of
optimization-style algorithms.

Roughly, allow the strategy to change more rapidly towards the
root of the information tree.

65 / 75



Weighted dilated entropy prox functions
(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing h∆(x) = x log(x),

h(x) =
∑
I∈Ii

βIx (parent(I))h∆ (σx(I, ·))

With the appropriate choice of β, we can improve convergence of
optimization-style algorithms.
Roughly, allow the strategy to change more rapidly towards the
root of the information tree.

65 / 75



Matrix Games

Extensive-form Games
Sequence Form Representation
Dilated distance generating functions
Counterfactual regret minimization

Tips and Tricks

66 / 75



Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

ut(I, a) = ut(I, a) +
∑

I′∈Reach(I,a)

ut(I
′)

ut(I) =
∑

a∈A(I)

σx(I, a)ut(I, a)

rt(I, a) = ut(I, a)− ut(I)

We call ut(I, a) the counterfactual utility at time t of taking
sequence (I, a), and rt(I, a), the immediate counterfactual
regret.
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Counterfactual regret minimization
(Zinkevich et. al. 2008)

Theorem
Overall regret is bounded by the sum of per information set
counterfactual regret.

RT ≤
∑
I∈I

(
RT (I)

)
+

Theorem
Two algorithms minimizing counterfactual regret in self-play
converge to a Nash equilibrium.
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Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a
suboptimal regret bound, why?

I Computationally cheap! (exp) is expensive

I No parameter tuning (sort of)

I Pruning! (some actions have probability zero)

I Paper is easier to follow (+ online resources)
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Monte-Carlo counterfactual regret minimization
(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling
to our advantage:

I Chance sampling—sample chance’s strategy

I External sampling—sample chance and the opponent’s
strategy

I Outcome sampling—sample everything!

I Public chance sampling—sample only jointly observed
chance events
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Warm starting
(Brown and Sandholm 2016)

If we have a good strategy profile, can we use it to start CFR in a
good spot? Yes!

I Play the strategy against itself to compute initial regrets

I How long to play it against itself? Depends, just like step-size.
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Regret-based pruning
(Brown and Sandholm 2015)

I Observation: our strategy at information sets that we don’t
reach doesn’t impact our opponent’s regret

I Idea: play a best response in those information sets

I Following through with the details allows us to prune (i.e.,
delay updating) these information sets
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Safe Endgame Solving
(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

I The naive first approach does not theoretically work

I We need to know the counterfactual values to the opponent

I Create a gadget game, where the opponent can opt out and
receive those values

I A substanial part of both DeepStack and Libratus
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Questions

Thank you! Questions?
kevin.waugh@gmail.com

Tomorrow: Computer Poker Workshop
Thursday morning: Invited Panel on DeepStack and Libratus
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