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What is a zero-sum matrix game?
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

» Defined by A € R™*™

» Two players—the row player and A

the column player

75



How is it played?

> A matrix game is a one-shot game

> The row player selects a row A 2
i € [m] and his opponent a column | -1
J &€ nl (i,5) = (2.1)

» We call (i,7) the game's outcome

w O

i)
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Why

is it played?

The row player receives utility
g (i, ) = —ai; A [ 2 0
The column player gets

uy(1,7) = ai

The game is zero-sum since ug(i,j) = —agq =1
Uz (i, J) + uy(i, j) =0 uy(i,5) = agq = —1
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Why

is it played?

The row player receives utility
g (i, ) = —ai; A_[2 00
The column player gets N

uy (i, j) = a;

The game is zero-sum since ug(i,j) = —agq =1
ux(l,])Jruy(’L,]):O uy(i,j):aglz—l
Let L = max; j |am-|



Strategies and Profiles

» A strategy for the row player is a 9 0 0
probability distribution over the A= [ 103 1 ]
rows of A, x € A, = {z |
i =1,2>0} x:(1,2)

> A strategy profile is a pair of 33
strategies, one for each player y = (1 1 1>
(z,y) € A x Ay, 2747 4
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Expected Utility

The expected utility for the row player
under profile (z,y) is

m n
ugp(z,y) = Z Z — Ty

i=1 j=1
=—a2'Ay
uy(,y) = 2’ Ay
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Optimal play against a known opponent

A best response to the row player's
strategy x is a pure strategy that

maximizes the column player's utility:

brvy(z) = max uy(z,y) = 2’ Ay
yelj]

Note:
brv,(z) > 2’ Ay,Vy € A,

-1 3 1
_ (12
T=\3'3

max| 0 2 2

vel] 5 |
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Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

brv,(y) = uz(x,y),
brv,(z) = uy(x,y)
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Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

brv,(y) = ua(z,y),
brvy () = uy(z,y)
equivalently
> uy(Z,y), VT € Ay,
uy(z,y) = uy(z, ) vy € A,
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Nash equilibrium

A Nash equilibrium is a pair of mutual best responses:

brv,(y) = ua(z,y),
brvy () = uy(z,y)
equivalently
> ug(Z,Y), VZ € A,
uy(z,y) > uy(z, ) vy € A,

Theorem (Nash 1950)

For any matrix game, a Nash equilibrium exists.
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Example—a strategy for y

» If x = (1,0) then y responds j = 1
» If x = (0,1) then y responds j = 2
» If x = (p,1 — p) when is y indifferent 1 and 27
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Example—a strategy for y

» If x = (1,0) then y responds j = 1
» If x = (0,1) then y responds j = 2
» If x = (p,1 — p) when is y indifferent 1 and 27

uy(z,1) = uy(x,2)

2p—1(1—p) =0p+3(1 —p)
2

ng
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Example—a strategy for «

» If y =(q,1 — q,0) when is x indifferent 1 and 27

11/75



Example—a strategy for «

» If y =(q,1 — q,0) when is x indifferent 1 and 27

ug(1,y) = uzr(2,y)
—2¢+0(1-¢q)=q—3(1—q)

q:§
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Example—checking our work
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Example—checking our work
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Example—checking our work
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Nash Equilibrium—computational complexity
(Papadimitriou 1994, Daskalakis et. al. 2009)

For general sum games:
» Finding a Nash equilibrium is PPAD-complete
» Simplex-like algorithm (Lemke and Howson 1964)
» Newton-like algorithm (Nisan et. al. 2007)
» Guess and check (Lipton et. al. 2003)
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Matrix Games

Formulation as Minimax Problem

Extensive-form Games

Tips and Tricks
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Minimax Setup

Claim:

(z,y) is Nash equilibrium
=

(7,%) is a saddle-point of min max 2’Ay
TEA, yEAn
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Minimax Setup—proof

(x,y) is Nash equilibrium =

—2' Ay = ug(z,y)
a' Ay = uy(z,y)
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Minimax Setup—proof

(x,y) is Nash equilibrium =

ug(Z,y) = —7 Ay, VT € Ay,
uy(z,y) = ' Ay A TRSIANS

—2' Ay = ug(z,y)
a' Ay = uy(z,y)

therefore VZ € A, 7 € A,

2 Ay < 2’ Ay < 7' Ay
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Minimax Setup—proof

(x,y) is Nash equilibrium =

—2' Ay = ug(z,y)
a' Ay = uy(z,y)

therefore VZ € A, 7 € A,
2 Ay < 2’ Ay < 7' Ay

Reverse direction is just as obvious.

VI € Ay,
Yy € A,

16
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Minimax Theorem

Theorem (von Neumann 1928)

min max z’Ay = max min 2'Ay
TEA, YEA, YEA, TEA
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Minimax Theorem

Theorem (von Neumann 1928)
min max z’Ay = max min 2'Ay

TEA, YEA, YEA, TEA

Let v* = mingena,, maxyea, z'Ay
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Minimax Theorem

Theorem (von Neumann 1928)

min max z’Ay = max min 2'Ay
TEA, YEA, YEA, TEA

Let v* = mingena,, maxyea, z'Ay
Max-min inequality:

Theorem (Boyd and Vandenberghe 2004)

max min z’Ay < min max 2’ Ay
YEA, TEA,, TEA, YEA,
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Minimax Theorem—proof

Let (z,y) be a Nash equilibrium,

min max z'Ay < max 2’ Ay
TEAmM YEA, YEARL
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Minimax Theorem—proof

Let (z,y) be a Nash equilibrium,
min max z'Ay < max 2’ Ay
TEAmM YEA, YEARL
=2’ Ay
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Minimax Theorem—proof

Let (z,y) be a Nash equilibrium,
min max z'Ay < max 2’ Ay
TEAmM YEA, YEARL
=2’ Ay

= min Z'Ay
TEA,
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Minimax Theorem—proof

Let (z,y) be a Nash equilibrium,
min max z'Ay < max 2’ Ay
TEAmM YEA, YEARL
=2’ Ay

= min Z'Ay
TEA,

< max min Z'Ay
GEA, TEA,
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Minimax Theorem—proof

Let (z,y) be a Nash equilibrium,
min max z'Ay < max 2’ Ay
TEAm YEA, YEARL
=2’ Ay

= min Z'Ay
TEA,

< max min Z'Ay
YEA, TEA

Max-min inequality implies inequalities must hold at equality.
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Approximate Nash equilibrium

An e-Nash equilibrium is a pair of mutual e-best responses:

brv(y) < ug(z,y) +¢
brvy(x) < uy(z,y) + ¢
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Approximate Nash equilibrium

An e-Nash equilibrium is a pair of mutual e-best responses:

brve(y) < ug(z,y) + ¢

brvy(x) < uy(z,y) + ¢
The exploitability of a strategy is:

€x(x) = brvy(xz) —v*
ey(y) = brva(y) +v*
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Matrix Games

Formulation as Linear Program

Extensive-form Games

Tips and Tricks
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Linear programming solution

Consider

max w'y
yeA

= mtin t subject to:

w < te

where e = (1,...,1).
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Linear programming solution

Letting w = A'x:

min max z’Ay
TEA, yEAn

= min ¢ subject to:

x,t
Alx < te
dr=1

x>0
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Linear programming—polynomial time solution

Can solve linear programming with:
» Simplex method (Dantzig 1987)
» Interior point algorithms (Boyd and Vandenberghe 2004)
» Ellipsoid algorithm (Khachiyan 1979, Lovasz 1988)
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Matrix Games

Solutions via Subgradient Methods

Extensive-form Games

Tips and Tricks
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Non-smooth convex objective

Consider,

min  brv,(z) = min max z’Ay
rEAmM €A, YyEA,

This objective is convex, albiet non-smooth, and

5) brv,(z) = {Ay" | y* is a best response to x}
x
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Projected Subgradient Method

Initialize 1 = e¢/m,a > 0
Fort=1,...,T:

y; € argmax z} Ay
yEA,
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Projected Subgradient Method

Initialize 1 = e¢/m,a > 0
Fort=1,...,T:

y € argmax x; Ay [Ay, € Obrvy(zy)]
yEA,
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Projected Subgradient Method

Initialize 1 = e¢/m,a > 0
Fort=1,...,T:

y € argmax x; Ay [Ay, € Obrvy(zy)]
yEA,
z=x — Ay
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Projected Subgradient Method

Initialize 1 = e¢/m,a > 0
Fort=1,...,T:

y € argmax x; Ay [Ay, € Obrvy(zy)]
yEA,
z=x — Ay

Ty = argmin ||z — z||? = TIa,, (2)
TEAR
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Projected Subgradient Method

Initialize 1 = e¢/m,a > 0
Fort=1,...,T:

y; € argmax 2, Ay [Ay: € dbrvy(xy)]
yEA,
z=x — Ay
Ty = argmin ||z — z||? = TIa,, (2)

TEAR

1 T 1 T
Output = 5> 1 Tt,Y = 7 D1 Yt
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Projecting onto the simplex

z* = argmin ||z — z|?
TzEA
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Projecting onto the simplex

z* = argmin ||z — z||? = argmax —||z||? + 22"z — ||2]?
rEA TEA
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Projecting onto the simplex

z* = argmin ||z — z|* = argmax —||z||* + 22"z — ||2|?
rEA TEA

1
= argmax 2’z — —|z||?
€A 2
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Projecting onto the simplex

z* = argmin ||z — z|* = argmax —||z||* + 22"z — ||2|?
rEA TEA

1
= argmax 2’z — —|z||?
€A 2

" = (2 + ) = max{0,z + A}

where ) is chosen so that z € A.
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Projecting onto the simplex
see (Duchi et. al. 2008) for O(n) solution

Let ¢ =sort(z) and Z1 =) 1" | %
For i € [n]:

Solve Z4+ (n—i+1)y=1
if ¢ +~ > 0 then A = ~; break
Zit1 =2 — qi

Output 7" = (2 + )
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Subgradient method convergence
extending (Zinkevich 2003)

Without loss of generality n > m:

Theorem

n + nmL2Ta?

(@) + e(y) < T
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Subgradient method convergence
extending (Zinkevich 2003)

Without loss of generality n > m:

Theorem

n + nmL2Ta?

ela) +e(y) <

Choosing o = 1/LvmT

ex(x) + €y(y) < 2nL\/?
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Towards mirror descent
(Nemirovski 2012)

Initialize ;1 = ¢/m,a > 0
Fort=1,...,T:

yr € argmax T} Ay
yEA,
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Towards mirror descent
(Nemirovski 2012)

Initialize ;1 = ¢/m,a > 0
Fort=1,...,T:

yr € argmax T} Ay
yEA,

Tyy1 = argmin ||z, — aAy; — z||?
TEA,
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Towards mirror descent
(Nemirovski 2012)

Initialize z; = e/m,a >0
Fort=1,...,T:

yr € argmax T} Ay
yEA,

Tyy1 = argmin ||z, — aAy; — z||?
ISTANS

. 1 1
= argmin ' (cAy; — x;) + inHZ — §||th”2
CCEATL
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Towards mirror descent
(Nemirovski 2012)

Initialize z; = e/m,a >0
Fort=1,...,T:

yr € argmax T} Ay
yeEA,

Tyy1 = argmin ||z, — aAy; — z||?
€A,

. 1 1
= argmin ' (cAy; — x;) + inHZ — §||th”2
€A,

= argmin ' (aAy; — Vh(xy)) + h(x) — h(xy)
TEA,
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Towards mirror descent
(Nemirovski 2012)

Initialize z; = e/m,a >0
Fort=1,...,T:
yr € argmax T} Ay
yeEA,
Tyy1 = argmin ||z, — aAy; — z||?
€A,
. / 1 2 1 2
= argmin ' (ady, — ) + 5 Jal? — 3l
TEA,
= argmin ' (aAy; — Vh(xy)) + h(x) — h(xy)
TEA,

With mirror descent choose an alternative h(x)
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Bregman divergences and distance generating functions
(Bregman 1967)

A distance generating function is a 1-strongly convex function
h(z) on A such that Vz € A:

» 2h(z) > ||z|%, Yo € A, and
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Bregman divergences and distance generating functions
(Bregman 1967)

A distance generating function is a 1-strongly convex function
h(z) on A such that Vz € A:

» 2h(z) > ||z|%, Yo € A, and
> h(x) > h(xg) =0.
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Bregman divergences and distance generating functions
(Bregman 1967)

A distance generating function is a 1-strongly convex function
h(z) on A such that Vz € A:

» 2h(z) > ||z|%, Yo € A, and
> h(x) > h(xg) =0.
We say h(z) fits A if we can efficiently solve

. !/ h
min g'z + h(x)

31/75



Bregman divergences and distance generating functions
(Bregman 1967)

A distance generating function is a 1-strongly convex function
h(z) on A such that Vz € A:

» 2h(z) > ||z|%, Yo € A, and
> h(x) > h(xg) =0.
We say h(z) fits A if we can efficiently solve

. !/ h
min g'z + h(x)

We define the Bregman divergence as

D(z,y) = h(z) — h(y) — Vh(y)' (z — y)
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Negative entropy distance generating function

Let h(z) = zlog(z) +log(n) — 'z +1

Vh(z) = log(x)
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Negative entropy distance generating function

Let h(z) = zlog(z) +log(n) — 'z +1
Vh(z) = log(x)

Let Z = Zexp(—gi)
i=1
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Negative entropy distance generating function

Let h(z) = zlog(z) +log(n) — 'z +1
Vh(z) = log(x)

Let Z = Zexp(—gi)
i=1

. / h
min g'z + h(z)

— log(2) — log(n)
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Negative entropy distance generating function

Let h(z) = zlog(z) +log(n) — 'z +1
Vh(z) = log(x)

Let Z = Zexp(—gi)
i=1

. / h
min g'z + h(z)

— log(2) — log(n)

" = argmin ¢’z + h(x)
€A

= exp(—g)/Z
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Exponentiated Subgradient Method
(Kivinen and Warmuth 1994)

Initialize 21 = e/m,a > 0
Fort=1,...,T:

y; € argmax 1z} Ay
yeEA,
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Exponentiated Subgradient Method
(Kivinen and Warmuth 1994)

Initialize 21 = e/m,a > 0
Fort=1,...,T:

Yt € argrilax Ay [Ay € Obrvy(zy)]
ye n
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Exponentiated Subgradient Method
(Kivinen and Warmuth 1994)

Initialize 21 = e/m,a > 0
Fort=1,...,T:

y; € argmax 2, Ay [Ay; € Obrvy(xy)]
yeEA,
Ti41 = xpexp(—ady)/Z
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Exponentiated Subgradient Method
(Kivinen and Warmuth 1994)

Initialize 21 = e/m,a > 0
Fort=1,...,T:

Yt € argrilax Ay [Ay € Obrvy(zy)]
ye n

Ti41 = xpexp(—ady)/Z

1 T 1 T
Output x = T Etzl Ty, Y =71 Et:l Yt
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Exponentiated Subgradient method convergence

Without loss of generality n > m:

Theorem

log(n) + nmL*Ta?
<
(@) + ) < B
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Exponentiated Subgradient method convergence

Without loss of generality n > m:

Theorem

log(n) + nmL*Ta?
<
() +cfy) < B0

Choosing a = y/log(n)/nmT L?

nmlog(n)

@) + (1) < 2L/ 2
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Further reading on Subgradient methods

» Primal-dual subgradient methods for convex problems
(Nesterov 2009)

» Universal gradient methods for convex optimization problems
(Nesterov 2013)
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Matrix Games

Solutions via Smoothing and Gradient Methods

Extensive-form Games

Tips and Tricks
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Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve

f(@) = f@@*) € 0 (VT)
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Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve
f(@) = f@@*) € 0 (VT)
For smooth f, gradient descent achieves

flx) = f(«") € O(1/T)
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Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve
f(@) = f@@*) € 0 (VT)
For smooth f, gradient descent achieves

flx) = f(«") € O(1/T)

For smooth f, accelerated gradient methods achieve (Nesterov
1984)

f(z) = f(z*) € O (1/T7)
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Smooth vs. non-smooth optimization

For non-smooth f, subgradient methods achieve
f(@) = f@@*) € 0 (VT)
For smooth f, gradient descent achieves

flx) = f(«") € O(1/T)

For smooth f, accelerated gradient methods achieve (Nesterov
1984)

f(z) = f(a") € O (1/T?)

Can we smooth our objective for better asymptotic convergence?
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An accelerated gradient method
(Auslender and Teboulle 2006)

Initialize 1 = u1 = e/m,a > 0
Fort=1,...,T:

(t — 1)%,5 + 2’U,t

v t+1

Output z741
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An accelerated gradient method
(Auslender and Teboulle 2006)

Initialize 1 = u1 = e/m,a > 0

Fort=1,...,T:
(t — 1)%,5 + 2’U,t
V=
t+1
ugr1 = argmin a(t + 1)V f(ve)'z + D(z,uq)
€A

Output z741
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An accelerated gradient method
(Auslender and Teboulle 2006)

Initialize 1 = u1 = e/m,a > 0

Fort=1,...,T:
(t — 1)%,5 + 2ut
V=
t+1
ugr1 = argmin a(t + 1)V f(ve)'z + D(z,uq)
rEA
S (t —1)as + 2ui4q
t+1 = i1

Output z741
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Further reading

> Linear coupling: An ultimate unification of gradient and
mirror descent (Allen-Zhu and Orecchia 2014)

» Templates for convex cone problems with applications to
sparse signal recovery (Becker et. al. 2010)

» On accelerated proximal gradient methods for convex-concave
optimization (Tseng 2008)
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Conjugate smoothing
(Nesterov 2005)

Consider the function for d.g.f. h(y) and p > 0:

brvy(z) ~ fu(z) = max 2’ Ay — ph(y)
YyEA,
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Conjugate smoothing
(Nesterov 2005)

Consider the function for d.g.f. h(y) and p > 0:

brvy(z) ~ fu(z) = max 2’ Ay — ph(y)
yeAn

Let D = maxyea, h(y), we have

brvy(z) — uD < fu(z) < brvy(z)
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Conjugate smoothing
(Nesterov 2005)

Consider the function for d.g.f. h(y) and p > 0:

brvy(z) ~ fu(z) = max 2’ Ay — ph(y)
yeAn

Let D = maxyea, h(y), we have

brvy(z) — uD < fu(z) < brvy(z)

Vie)=Ay [y = argmax a' Ay — ph(y)]
ye n
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Conjugate smoothing
(Nesterov 2005)

Consider the function for d.g.f. h(y) and p > 0:

brvy(z) ~ fu(z) = max 2’ Ay — ph(y)
yeAn

Let D = maxyea, h(y), we have

brvy(z) — uD < fu(z) < brvy(z)

Vie)=Ay [y = argmax a' Ay — ph(y)]
ye n

And f,(x) is %—smooth.
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Conjugate smoothing for matrix games
(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

LD

fu(xT-i-l) - fu(x*) < m
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Conjugate smoothing for matrix games
(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

LD

fu(xT-H) - fu(x*) < m

Using brvy(z) — uD < fu(x) < brvy(x)

e@ri1) = fl@rir) —v" < + pD

pT?
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Conjugate smoothing for matrix games
(Nesterov 2005)

Typical accelerated methods have convergence bounds like:

.. LD
fu(xT-H) - fu(w ) < m
Using brvy(z) — uD < fu(x) < brvy(x)
. LD
e(xr1) = flarsr) —v* < Pkl pD
Choosing i1 = f
DVL
rr i) < u

An order of magnitude better than subgradient methods!
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Excessive Gap Technique
(Nesterov 2005)

What if we don’t know T in advance?
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Excessive Gap Technique
(Nesterov 2005)

What if we don't know 7" in advance? Consider the smoothed pair
of problems:

. /
' Ay — uyh and
Juin max @Ay = piyhy (y),

. /
—2'A h
max min - — oAy + po ()

42 /75



Excessive Gap Technique
(Nesterov 2005)

What if we don't know 7" in advance? Consider the smoothed pair
of problems:
. /
Ay — pyh d
Jnin max 2’ Ay — py y(y), an
in —a2'A h
max min - — oAy + po ()

As we optimize z is using an accelerated method, we can decrease
ftz- Then, we switch to optimizing y and decreasing fi,,.

42 /75



Additional optimization focused methods

» Interior-point methods (Pays 2014)

» Double-oracle methods (Bosanksy et. al. 2013, Zinkevich
et. al. 2007)

» Monotone variational inequality methods (Nemirovski 2004,
2012, Juditsky et. al. 2011)
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Matrix Games

Solutions via Online Learning
Extensive-form Games

Tips and Tricks
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Adversarial bandits

Fort=1,...,T:

Choose z; € A
Adversary chooses u;, subject to ||ut|lcc < L

ve U ive u,x; utili
Observe u;, and receive ujx; utilit
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Adversarial bandits

Fort=1,...,T:

Choose z; € A
Adversary chooses u;, subject to ||ut|lco < L

ve U ive u,x; utili
Observe u;, and receive ujx; utilit

The algorithm's average overall regret is the average benefit of
having chosen the best single action in hindsight:

T

RT = Imax RT
acA

*ﬂ \
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Adversarial bandits

Fort=1,...,T:

Choose z; € A
Adversary chooses u;, subject to ||ut|lco < L

ve U ive u,x; utili
Observe u;, and receive ujx; utilit

The algorithm's average overall regret is the average benefit of
having chosen the best single action in hindsight:

T
1
Ry = max Ry(a) = T ;ut(a) — Uy

An algorithm is no-regret if it's average overall regret grows
sublinearly in T'.
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No-regret algorithms: Subgradient method

Subgradient method and mirror descent are no-regret with

RreO (L\/ﬁ)
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Why do we care about no-regret algorithms?
(see Waugh 2009 for proof)

Theorem
The average strategies of two no-regret algorithms in self-play with
no more than € average overall regret form a 2e-equilibrium.
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Why do we care about no-regret algorithms?
(see Waugh 2009 for proof)

Theorem
The average strategies of two no-regret algorithms in self-play with
no more than € average overall regret form a 2e-equilibrium.

Let A be a no-regret algorithm on A, and B on A,
Fort=1,...,T:

x; = Strategy(A)
yr = Strategy(B)
Update(A, —Ay;)
Update(B, A'z;)

- 1 T _ 1 T
Output Tr = 7> /1 Zt, U7 = 7 2 11 Yt
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No-regret algorithms: Hedge/weighted Majority
(Freund and Schapire 1996)

Choose x411(a) x exp (aRy(a))

RreO (L\/Tlog(n))

Related to Nesterov's dual averaging (2009)

48 /75



No-regret algorithms: Follow the perturbed leader
(Kalai and Vempala 2004)

Choose x4+ = argmax R; — log(e)/A, where ¢ ~ (0,1)

RreO (L Tlog(n))
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Regret matching
(Blackwell 1956, Hart and Mas-Colell 1999)

Choose x411 oc (Ry),

RreO (L\/ﬁ)
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Pure regret matching
(Tammelin, Gibson 2017, Cesa-Bianchi and Lugosi 2006)

Sample w441 ~ (Ry)

RreO (L\/ﬁ)

Regrets are integral, and average strategies are counts. Only need
to examine one row and one column of A each iteration.
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Regret matching-plus
(Tammelin 2014)

Choose 411 o (R;r)+

Update R/, = (R} +u; — Uéxt)Jr

RreoO (L\/ﬁ)
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Regret matching-plus
(Tammelin 2014)
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x; = Strategy(A)
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= Strategy(B)
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Expressiveness of Matrix Games
Kuhn Poker (Kuhn 1950)

v

The players ante a single chip

v

Each player is dealt a random card from a deck containing a
Jack, a Queen and a King

v

The first player may check, or bet one chip

v

When facing a bet, a player can call or fold forfeiting the pot

v

Calling leads to a showdown, player with higher card wins
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Expressiveness of Matrix Games
Kuhn Poker (Kuhn 1950)

v

The players ante a single chip

v

Each player is dealt a random card from a deck containing a
Jack, a Queen and a King

v

The first player may check, or bet one chip

v

When facing a bet, a player can call or fold forfeiting the pot

v

Calling leads to a showdown, player with higher card wins

Natural strategy representation is 16 x 16.

Can be represented as a 27 x 64 matrix game.

The row player’s actions determine {bet, check/call,
check/fold} for each card.

Can represent any finite scenario, but often not efficiently.
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Extensive-form game
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

» Defined H the set of histories,
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Extensive-form game
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

» Defined H the set of histories,
» We denote the root history as ¢ € H,

» Let A(h) be the set of actions available from h, ha is the
history after taking action a € A(h) from h,

» Z C H are the terminal histories—histories with no children,

» P:H — {x,y,c} is the player choice function, determining
which player, or chance acts at a non-terminal history,

> For each history where P(h) = ¢, o(h) € A 4y defines
chance's strategy,

> u; : Z — R is player i's utility function,

> Again, the game is zero-sum: u,(z) = —uy(2).
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Extensive-form game: Imperfect information
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

» 7;, player ¢'s information partition, partitions the histories
where ¢ acts,
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Extensive-form game: Imperfect information
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

» 7;, player ¢'s information partition, partitions the histories
where ¢ acts,

» I € Z; is an information set, and two histories h, h’ € T are
indistinguishable. This requires A(h) = A(K).

> A strategy for player i is 0; : Z; — A (.
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Extensive-form game: Perfect Recall
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

We additionally require that a player cannot be forced by the rules
of the game to forget what they at one point knew.
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Extensive-form game: Perfect Recall
(Osborne and Rubinstein 1994, Fudenburg and Tirole 1991)

We additionally require that a player cannot be forced by the rules
of the game to forget what they at one point knew.

A game has perfect recall if all indistinguishable histories,
h,h' € I;, share the same sequence of past decisions.
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Sequence form representation
(von Stengel 1996)

» Perfect recall implies that each information set/action pair,
(I,a), uniquely defines an entire sequence of decisions.
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Sequence form representation
(von Stengel 1996)

» Perfect recall implies that each information set/action pair,
(I,a), uniquely defines an entire sequence of decisions.

» Let Ty ={(I,a) | I € Z;;a € A(1)} U{¢} be the set of player
1’s sequences, where ¢ is the empty sequence.

» Each information set has a unique parent sequence, which we
denote parent(]).

> Let Reach(7,a) be the set of information sets directly
reachable from taking a at I.
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Sequence form representation
(von Stengel 1996)

We call z : ', — R a realization plan. We require a realization
plan satisfy:

» z(u) >0,Vu €T,
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Sequence form representation
(von Stengel 1996)

We call z : ', — R a realization plan. We require a realization
plan satisfy:

» z(u) >0,Vu €T,

» z(¢) =1, and

> a(parent(l)) = > ey wl,a),VI € T;.
We can encode these as linear constraints:
Y. ={z|Ex=e,x>0}and o ={y | Fy = f,y > 0}.
We define 0,(1,-) < z(I,-).
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Sequence form Minimax Problem

min max y Az
EASNRTISI)

That is, the payoffs are a bi-linear product of the realization plans.
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Sequence form linear programming
(Koller and Pfeffer 1995, Koller et. al. 1996)

min f’u subject to:
T,u

Fu>—-Ax
Exr=ce¢
x>0
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Sequence form linear programming
(Koller and Pfeffer 1995, Koller et. al. 1996)

min f’u subject to:
T
Fu>—-Ax
FEx=e

x>0

u is indexed by y's sequences and represents the value of that
sequence to the opponent.
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Dilated prox function
(Hoda et. al. 2010)

h(z) = Z x (parent(I)) ha (0,(1,-))

I€Z;
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then adding the value of h;(o,(I,-)) to the utility parent([).
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Dilated prox function
(Hoda et. al. 2010)

h(z) = Z x (parent(I)) ha (0,(1,-))

I€Z;

We minimize h recursively, solving terminal information sets first,

then adding the value of h;(o,(I,-)) to the utility parent([).

g(I,a)=g(I,a)+ Z ;2(112) hp (O'x(]’, ))
I’eReach(I,a) ’
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Weighted dilated entropy prox functions
(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing ha(z) = zlog(x),

h(z) = Z Brx (parent(I)) ha (0x(1,+))

I€Z;

With the appropriate choice of 3, we can improve convergence of
optimization-style algorithms.
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Weighted dilated entropy prox functions
(Hoda et. al. 2010, Kroer et. al. 2015)

Choosing ha(z) = zlog(x),

h(z) = Z Brx (parent(I)) ha (0x(1,+))

I€Z;

With the appropriate choice of 3, we can improve convergence of
optimization-style algorithms.

Roughly, allow the strategy to change more rapidly towards the
root of the information tree.
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Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

67 /75



Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

u'(I,a) = u'(I,a) + Z ug(I")

I’eReach(,a)

67 /75



Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

u'(I,a) = u'(I,a) + Z ug(I")

I’eReach(,a)

u(I)= > ou(I,a)u(1,a)

acA(I)

67 /75



Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

u'(I,a) = u'(I,a) + Z ug(I")

I’eReach(,a)
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Counterfactual regret
(Zinkevich et. al. 2008)

Can we build no-regret algorithms for realization plans, using
standard no-regret learning algorithms? Yes!

u'(I,a) = u'(I,a) + Z ug(I")

I’eReach(,a)
u(I) = Y ou(I,a)u'(I,a)
acA(I)
r'(I,a) = u'(I,a) — u'(I)

We call u!(I,a) the counterfactual utility at time ¢ of taking
sequence (I, a), and r*(I,a), the immediate counterfactual
regret.
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Counterfactual regret minimization
(Zinkevich et. al. 2008)

Theorem
Overall regret is bounded by the sum of per information set
counterfactual regret.

RT <Y (R™(D),

1€l
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Counterfactual regret minimization
(Zinkevich et. al. 2008)

Theorem
Overall regret is bounded by the sum of per information set
counterfactual regret.

RT <Y (R™(D),

1€l

Theorem
Two algorithms minimizing counterfactual regret in self-play
converge to a Nash equilibrium.
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Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a
suboptimal regret bound, why?

» Computationally cheap! (exp) is expensive
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Why regret matching? Why CFR?

CFR has an inferior iteration complexity, and regret matching a
suboptimal regret bound, why?

» Computationally cheap! (exp) is expensive
» No parameter tuning (sort of)
» Pruning! (some actions have probability zero)

» Paper is easier to follow (+ online resources)
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Monte-Carlo counterfactual regret minimization
(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling
to our advantage:

» Chance sampling—sample chance's strategy
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Monte-Carlo counterfactual regret minimization
(Zinkevich 2008, Lanctot et. al. 2009, Johanson et. al. 2012, Gibson et. al. 2012)

Like pure regret-matching, we can using different types of sampling
to our advantage:

>

>

Chance sampling—sample chance's strategy

External sampling—sample chance and the opponent's
strategy

Outcome sampling—sample everything!

Public chance sampling—sample only jointly observed
chance events
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Warm starting
(Brown and Sandholm 2016)

If we have a good strategy profile, can we use it to start CFR in a
good spot? Yes!

> Play the strategy against itself to compute initial regrets
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Warm starting
(Brown and Sandholm 2016)

If we have a good strategy profile, can we use it to start CFR in a
good spot? Yes!

> Play the strategy against itself to compute initial regrets
» How long to play it against itself? Depends, just like step-size.
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Regret-based pruning
(Brown and Sandholm 2015)

» Observation: our strategy at information sets that we don't
reach doesn't impact our opponent'’s regret
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Regret-based pruning
(Brown and Sandholm 2015)

» Observation: our strategy at information sets that we don't
reach doesn't impact our opponent'’s regret

> Idea: play a best response in those information sets

» Following through with the details allows us to prune (i.e.,
delay updating) these information sets
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Safe Endgame Solving

(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!

» The naive first approach does not theoretically work
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Safe Endgame Solving

(Burch et. al. 2014, Moravcik et. al. 2016, Brown and Sandholm 2017)

Can we reconstruct the solution to an endgame in isolation? Yes!
» The naive first approach does not theoretically work
» We need to know the counterfactual values to the opponent

» Create a gadget game, where the opponent can opt out and
receive those values

A substanial part of both DeepStack and Libratus

v
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Questions

Thank you! Questions?
kevin.waugh@gmail.com

Tomorrow: Computer Poker Workshop
Thursday morning: Invited Panel on DeepStack and Libratus
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