Grid-Side AC line Filter Design of a Current Source Rectifier with Analytical Estimation of Input Current Ripple

Kaushik Basu, Member, IEEE, Ashish Kumar Sahoo, Student Member, IEEE, Visweshwar Chandrasekaran, and Ned Mohan, Fellow, IEEE

Abstract—This paper presents a systematic step by step design procedure for the input filter of a current source rectifier (CSR). The design is based on the specifications of allowable ripple in the input voltage of the CSR and high frequency harmonic components in the grid current. Analytical techniques have been developed to estimate the ripple present in the input current and to model the converter for fundamental or grid frequency. The analysis is done for carrier based and space vector modulation of the current source rectifier and the model at grid frequency is used to evaluate the design of the filter for grid power factor, voltage drop across filter, etc. A damping resistance is designed ensuring minimum power loss. The analysis and design of the input filter have been verified by simulations in MATLAB/Simulink and experimental tests on a laboratory prototype.

Index Terms—Current Source Rectifier (CSR), Space vector modulation, Carrier based Modulation, Total Harmonic Distortion (THD), Input power factor, EMI filter.

I. LIST OF SYMBOLS

\[
\begin{align*}
&i_t \quad \text{Instantaneous} \\
&\overline{i} \quad \text{Averaged over } T_s \\
&\langle i \rangle_{RMS,T} \quad \text{RMS over } T_s \\
&\mathbf{I}_s \quad \text{Instantaneous space vector} \\
&I_i \quad \text{Ripple component} \\
&i_1 \quad \text{Fundamental component}
\end{align*}
\]

II. INTRODUCTION

DC current link AC/AC converter, as shown in Fig. 1, employs a Current Source Rectifier (CSR) to interface with the grid and a Current Source Inverter (CSI) to generate adjustable frequency and magnitude balanced three phase current at the load end. This converter is used for high voltage AC motor drives due to the following advantages 1) Inherent short circuit protection 2) Easier fault management (no over current fault) 3) Fast dynamic response due to direct current control 4) Regenerative capability 5) High quality waveforms resulting in reduced EMI and torque pulsations 6) No unreliable DC-link capacitor, etc [1]–[4]. Current Source Converters (CSR and CSI) have been considered for wind power generation [5]–[7] and hybrid electric vehicles [8]. Due to its inherent step up capability Current Source Converters (CSC) can be used to interface renewable energy sources with the grid [9]. One disadvantage of current link system leading to its limited use is the loss in the DC-link inductor (\(L_{dc}\) in Fig. 1). Further advancement in Super Conducting Magnetic Energy Storage (SMES) technology may help to overcome this limitation [10] [11]. Another significant drawback is that the current always has to pass through two semiconductors.

A CSR generates three phase PWM current waveform from a DC current source. It is possible to align the average input current vector with the input voltage vector to draw current at a high power factor from the grid. The PWM current waveform is discontinuous and has harmonic components at the multiples of the switching/carrier frequency. An \(LC\) filter is used to minimize these unwanted high frequency components from the grid current. Design and implementation of DC voltage link based AC/AC converters (back to back converter) [12]–[15] and direct link matrix converters [16] [17] has been studied extensively in the literature. Due to its limited use, the input filter design of DC current link systems is less developed.

The design of the input \(LC\) filter requires an estimation of the higher harmonic ripple component present in the PWM line current. It is indicated in [18] that it is possible to compute the spectrum of the PWM line current but no explicit method is mentioned. Analytical estimation using modulation theory has been used in the case of matrix converters [19] and back to back converters [20]. However such an approach requires computation with complicated Bessel function. Input current ripple for a matrix converter has been estimated from a simulation model in [21] [22]. In this paper a closed form expression for the RMS of the ripple component of line current has been derived. The computation is done for both carrier based modulation (CM) and space vector modulation (SVM). In comparison with off-line techniques such as Selective Harmonic Elimination (SHE), CM or SVM can achieve fast dynamic response, high input power factor, etc [23]–[25]. Design of input filter for CSR modulated with SHE can be found in [26]–[28]. High voltage IGBTs can be used to switch at a relatively higher frequency to implement CM or SVM [29] [30]. It has been shown that the results are identical for both CM and SVM. A simple expression of the RMS current ripple as a function of modulation index and magnitude of the DC-link current obviates need for computation with special functions or using a simulation model for ripple estimation.

To design the filter, CSR as shown in Fig. 2, has been modeled for the high frequency component using the analytical estimation of the RMS current ripple. The values of different filter components are obtained from the specifications of the allowable THD in the grid current and distortion in the input voltage. The converter has been modeled for the fundamental
component of the grid voltage in order to evaluate the design for 1) minimum voltage drop across the filter 2) high grid power factor. A damping resistance is needed to eliminate oscillation at the \(LC \) resonant frequency and to improve stability [31]. Virtual damping techniques are loss less but require additional computation and sensing [32]–[35]. In this paper a damping resistance is designed for minimum power loss.

The organization of this paper is as follows: In section II, the RMS value of the ripple component of the line current of a CSR has been computed for both space vector and carrier based modulation. A detailed step by step design of the input filter has been presented in Section III by modeling the CSR for different frequency components. The key simulation and experimental results are given in Section IV and V respectively, and the paper concludes in Section VI.

![CSR topology](image)

Fig. 1: Topology of the DC current link AC/AC converter

\[v_{Gan} = V \cos \omega_G t \approx v_{an} \]
\[v_{Gbn} = V \cos \left(\omega_G t - \frac{2\pi}{3} \right) \approx v_{bn} \]
\[v_{Gcn} = V \cos \left(\omega_G t + \frac{2\pi}{3} \right) \approx v_{cn} \] (1)
\[d_{ai} + d_{bi} + d_{ci} = 1 \quad i \in [A, B] \] (2)

Four offset duty cycles \(D_a, D_b, D_c \) and \(\Delta \) are defined as in (3) and (4). These duty cycles are added to fundamental component of the duty cycle (for example \(m \cos \omega_G t \) for \(d_{aA} \)) in order to satisfy (2) and to keep the duty cycles between 0 and 1. Modulation index \(m \) is defined as the ratio of the peak of the average synthesized input current to the DC-link current and can have a maximum value of 1 (\(m = \frac{I_{dc}}{I} \)). The duty ratios for the array of switches \(S_{aA}, S_{bA}, S_{cA} \) and of \(S_{aB}, S_{bB}, S_{cB} \) are given in (5) and (6) respectively. Fig. 3 shows the pulse generation for switches \(S_{aA}, S_{bA}, S_{cA} \) (top leg). A triangular carrier of frequency \(f_s = \frac{I}{T} \) is used to generate the switching signals. \(Q_{aA} \) is 1 when switch \(S_{aA} \) is ON and 0 otherwise. The switching signals of the bottom leg are generated in the same way.

\[
D_a = 0.5 \left| \cos \omega_G t \right|
\]
\[
D_b = 0.5 \left| \cos \left(\omega_G t - \frac{2\pi}{3} \right) \right|
\]
\[
D_c = 0.5 \left| \cos \left(\omega_G t + \frac{2\pi}{3} \right) \right|
\] (3)
\[
\Delta = \frac{1 - (D_a + D_b + D_c)}{2}
\] (4)

Fig. 2: CSR topology

III. ANALYSIS

The CSR is modeled for different frequency components for filter design. For the switching frequency component, the input RMS current ripple is analytically computed. This computation along with modeling of the converter is dependent on the modulation strategy used. In this paper two different commonly used modulation techniques CM and SVM are considered, as described in the next two subsections. The list of symbols shows the convention used to represent different states of a particular variable.

A. Ripple Computation for Carrier based modulation

The topology of the CSR along with the input \(LC \) filter is shown in Fig. 2. For this analysis lets assume the voltage drop across the inductor is small and the distortion in the input voltage is small. (1) gives the grid and input voltages, where \(V \) is the peak and \(\omega_G \) is the angular frequency. The converter consists of two legs, upper and lower. Each leg of the CSR consists of three switches i.e. the switches in the top leg are \(S_{aA}, S_{bA}, S_{cA} \). In any one leg, no two switches can be ON simultaneously (to avoid short circuit between the grid phases) and at least one switch has to be ON (to avoid open circuit of inductive DC side current). In order to satisfy the second condition the duty ratios of the switches \(S_{aA}, S_{bA}, S_{cA}, S_{aB}, S_{bB}, S_{cB} \) should satisfy (2). The first condition is met by placing the pulses according to Fig. 3. \(T_s \) is the sampling or equivalent carrier period.

Drop computation for CM is given by

\[
v_{Gan} = V \cos \omega_G t \approx v_{an} \]
\[
v_{Gbn} = V \cos \left(\omega_G t - \frac{2\pi}{3} \right) \approx v_{bn} \]
\[
v_{Gcn} = V \cos \left(\omega_G t + \frac{2\pi}{3} \right) \approx v_{cn} \] (1)

\[
d_{ai} + d_{bi} + d_{ci} = 1 \quad i \in [A, B] \] (2)

Four offset duty cycles \(D_a, D_b, D_c \) and \(\Delta \) are defined as in (3) and (4). These duty cycles are added to fundamental component of the duty cycle (for example \(m \cos \omega_G t \) for \(d_{aA} \)) in order to satisfy (2) and to keep the duty cycles between 0 and 1. Modulation index \(m \) is defined as the ratio of the peak of the average synthesized input current to the DC-link current and can have a maximum value of 1 (\(m = \frac{I_{dc}}{I} \)). The duty ratios for the array of switches \(S_{aA}, S_{bA}, S_{cA} \) and of \(S_{aB}, S_{bB}, S_{cB} \) are given in (5) and (6) respectively. Fig. 3 shows the pulse generation for switches \(S_{aA}, S_{bA}, S_{cA} \) (top leg). A triangular carrier of frequency \(f_s = \frac{I}{T} \) is used to generate the switching signals. \(Q_{aA} \) is 1 when switch \(S_{aA} \) is ON and 0 otherwise. The switching signals of the bottom leg are generated in the same way.

\[
D_a = 0.5 \left| \cos \omega_G t \right|
\]
\[
D_b = 0.5 \left| \cos \left(\omega_G t - \frac{2\pi}{3} \right) \right|
\]
\[
D_c = 0.5 \left| \cos \left(\omega_G t + \frac{2\pi}{3} \right) \right|
\] (3)
\[
\Delta = \frac{1 - (D_a + D_b + D_c)}{2}
\] (4)
As \(i_a = (Q_{aA} - Q_{aB})I_{dc} \), the average input current of phase \(a \) over a sampling period \(T_s \) is given in (7). Using (5) and (6) it is possible to note that the average input current is in phase with the input voltage. So for the fundamental component, the CSR can be modeled as an equivalent resistance \(R_e \), (8).

\[
\begin{align*}
\bar{i}_a & = (d_{aA} - d_{aB})I_{dc} \\
& = mI_{dc}\cos\omega_gt \\
& = I\cos\omega_gt \\
R_e & = \frac{V\cos\omega_gt}{I\cos\omega_gt} = \frac{V}{mI_{dc}}
\end{align*}
\]

(7) (8)

Fig. 4 shows the instantaneous \(i_a \) current over \(k \)th carrier cycle. The pattern may change from cycle to cycle but the current will always have an amplitude of \(I_{dc} \) and will be flowing for \(|d_{aA} - d_{aB}|T_s = m|\cos\omega_G(kT_s)|T_s \) amount of time. So the RMS of this current over a switching cycle is given by (9). Provided \(T_s << T \), the RMS of the input current over \(k \)th fundamental cycle \((T = \frac{2\pi}{\omega_G}) \) is given by (10). Using (9) and (10) we get an expression for the RMS value of the input current, (11). The square RMS value of the ripple component of current \(\langle \tilde{i}_a \rangle_{RMS,T} \) is then given by the difference of square RMS value of total current and that of fundamental component of the current (12).

\[
\langle i_a \rangle^2_{RMS,T_s} (kT_s) = \int_{0}^{T_s} I_{dc}^2 \cos^2\omega_G(t)dt
\]

(9)

(10)

(11)

(12)

B. Space Vector Implementation

This subsection presents the analysis of the CSR for space vector modulation. Current space vector is defined in (13). The two switching rules described in the previous section results in nine allowable switching states. Each of these states corresponds to one current space vector. The six active and three zero vectors of CSR are shown in Fig. 5(a). These six active vectors divides the complex plane into six symmetrical sectors (I, ,VI). Here \([a \ b] \) refers to the switching state when switch \(S_{aA} \) and \(S_{bB} \) are ON. The zero vectors occur when we have \([a \ a] \), \([b \ b] \) or \([c \ c] \) as switching states. In one sampling cycle \(T_s \) (carrier frequency of \(1/T_s \)) the reference input current vector \(\mathbf{I} \) is generated using two adjacent active vectors and one zero vector, whose duty ratios are given by (14), where \(\beta \) is the angular position of the average input current space vector with respect to the lagging vector or the first vector in the corresponding sector. The reference input current vector is aligned along the average input voltage vector in order to get power factor correction.

\[
\mathbf{I} = i_a + i_b e^{j2\pi/3} + i_c e^{-j2\pi/3}
\]

(13)

\[
\begin{align*}
dI_1 & = m \sin \left(\frac{\pi}{3} - \beta \right) \\
dI_2 & = m \sin \beta \\
dI_3 & = 1 - dI_1 - dI_2
\end{align*}
\]

(14)
the position of average input current space vector to be in first sector (I) as shown in Fig. 5(a). During time period \(dI_1T_s\), vector \(I_1\) ([a b]) is applied. So the input phase \(a\) is connected to the DC-link. This implies during this time period, \(i_a\) is equal to \(I_{dc}\) as shown in Fig. 6(a). Similarly in \(dI_2T_s\) period with vectors [a c] applied, input line current is again \(i_a = I_{dc}\), Fig. 6(b). When zero vector [a a] is applied, \(i_a\) is zero.

The square RMS of the input line current \(i_a\) over one sampling cycle \(T_s\) when \(\bar{T}\) is in the first (I) sector is given by (15). Similarly it is possible to obtain the expressions for the square RMS of the input line current \(i_a\) over a sampling period when the input current space vector is in the second (II) and third (III) sector respectively, (15). In the second sector \(i_a = I_{dc}\) for \(dI_1T_s\) period of time and in third sector \(i_a = I_{dc}\) for \(dI_2T_s\) period of time respectively and it is zero otherwise. These expressions repeat for other three sectors. Note \(\bar{T}\) moves over one sector in \(T/6\) period of time. (16) shows how to relate RMS over one sampling cycle to the RMS over one sector assuming \(T \gg T_s\). Using (14) and (16), it is possible to obtain the RMS of the input line current \(i_a\) over one sector. Finally the RMS of \(i_a\) over one cycle of the fundamental component of input current can be obtained from the RMS of each sector using (17). Hence the input RMS current is obtained as a function of modulation index as shown in (18). The RMS of ripple current is obtained by subtracting the RMS of the fundamental component from total input RMS current (19). (19) provides an analytical expression for the input RMS current ripple in terms of modulation index and the DC-link current. Note that this result is identical to (12). Fig. 7 shows a plot of \(\bar{\langle i_a^2 \rangle}_{RMS,T}/I_{dc}\) as a function of \(m\) and it is maximum at \(m = \frac{2}{\pi} \approx 0.6366\).
It is necessary that the grid current must be drawn close to its line currents. To eliminate these switching frequency components and draw smooth continuous sinusoidal currents from the grid, a passive LC filter is employed. This section presents a step by step design procedure of this filter. In this design, the CSR is modeled using the analysis given in the previous sections.

The input current consists of higher frequency switching components along with the fundamental grid frequency component. Using principle of superposition, the CSR is modeled and analyzed independently for both these components. By appropriate modulation, the input current is aligned in phase with the input voltage. Hence for the fundamental component, the converter appears as an effective resistance R_e to the input filter, as shown in Fig. 8(a). R_e has been derived in (8). The RMS of the ripple component is analytically computed in (12) and (19). Due to pulse-width modulation, the first group of dominant harmonic components in the input current waveform appears at and around the sampling or equivalent carrier frequency $f_s = 2\pi/\omega_s$. The other harmonic components occur at and around multiples of sampling frequency. Assuming the entire energy in the input current spectrum other than the fundamental to be concentrated at the switching frequency, the CSR is modeled as a sinusoidal current source at frequency f_s with a RMS given in (12) or (19), Fig. 8(b). This results in a slight over design of the filter components. A damping resistance is introduced in parallel with the filter inductor L to mitigate oscillations near the resonance frequency of the LC network. The parallel damping resistor is designed to restrict the power loss to a minimum.

The LC filter is designed such that the RMS of the ripple component of the grid current, must be within a limit in order to maintain a particular THD. According to IEEE 519, THD in the grid current must be less than 5% of the fundamental current. For the proper operation of the CSR, the input voltage of the CSR must have a limited amount of higher harmonic ripple, $\langle v \rangle_{RMS,T}$. Analyzing the circuit as shown in Fig. 8(b) it is possible to express both of these ripple components in terms of $\langle i \rangle_{RMS,T}$ (20), (21). Fig. 9 shows the magnitude plot of the transfer function between the grid current and the input current. It has a low pass filter characteristic. The slight overshoot in the magnitude plot exists at the resonant frequency of the LC network. The damping resistor limits this resonant peak. Analyzing the circuit for the fundamental component, it is possible to compute the ratio of the power loss P_{loss} in the damping resistor to the total output power P of the converter, (22). The power loss is considered only due to the fundamental component of the current as most of the higher order harmonics of the line current passes through the filter capacitor. (20), (21) and (22) can be solved simultaneously to determine L, C and R_d.

$$\langle \tilde{i} \rangle_{RMS,T} = \frac{\langle \tilde{i} \rangle_{RMS,T}}{\left(1 + \frac{(1 - \omega_s^2LC)^2 - 1}{1 + \omega_s^2L^2}\right)^{1/2}}$$ \hspace{1cm} (20)

$$\langle \tilde{v} \rangle_{RMS,T} = \frac{\langle \tilde{v} \rangle_{RMS,T}}{(\omega_sC - 1/\omega_sL)^2 + 1/R_d^2}^{1/2}$$ \hspace{1cm} (21)

$$\frac{P_{loss}}{P} = \frac{\langle i_G1 \rangle_{RMS,T}}{\langle v_G \rangle_{RMS,T}} \left(\frac{\omega_s^2L^2R_d}{\omega_G^2L^2 + R_d^2}\right)$$ \hspace{1cm} (22)

The filter design is checked by analyzing the model at fundamental frequency. In (23), θ_G is the power factor angle. It is necessary that the grid current must be drawn close to unity power factor or the angle θ_G must be close to zero. As shown in Fig. 10, the phase angle is very close to zero at low frequency (grid frequency). The voltage drop in the
fundamental component across the filter must be small or the ratio of fundamental component of grid voltage to that of the input voltage of the CSR must be close to unity (24). If these values are not within appreciable limits then we need to go back and change the specifications and recalculate the values of L, C and R_d. If the grid power factor is below a minimum required power factor pf and does not fall within appreciable limits, then the specification of $\langle i_G \rangle_{RMS,T}$ needs to be changed, and if there is a large drop across the filter, specification of $\langle v_G \rangle_{RMS,T}$ should be modified, and filter parameters are recalculated. The entire design procedure is shown in the flowchart in Fig. 11.

$$\theta_G = \tan^{-1} \omega_G CR_e \tan^{-1} \frac{\omega_G L}{R_d} - \tan^{-1} \frac{\omega_G L(R_e + R_d)}{R_e R_d(1 - \omega_G^2 LC)}$$ \hspace{2cm} (23)

$$\frac{\langle v_1 \rangle_{RMS,T}}{\langle v_G \rangle_{RMS,T}} = \frac{R_e (R_e^2 + \omega_G^2 L^2)^{0.5}}{(\omega_G L^2(R_e + R_d)^2 + R_e^2 R_d^2(1 - \omega_G^2 LC)^2)^{0.5}}$$ \hspace{2cm} (24)

V. SIMULATION RESULTS

The current source rectifier as shown in Fig. 2 is simulated with ideal switches in MATLAB/Simulink with space vector modulation technique. The simulation results are presented in this section. The converter is supplied from a three-phase grid of 3.3 kV (line to line RMS) at 60 Hz and $I_{dc} = 124$ A. The switching frequency ($f_s = 1/T_s$) is set at 2kHz. The variation of $\langle i \rangle_{RMS,T}/I_{dc}$ with the modulation index of the CSR is shown in Fig. 12(a). The simulated points confirm the analytically predicted continuous plot. Hence this verifies the analytical estimation of the RMS input current described in Section II.

The rest of the simulation is done at a full modulation index of 1. At 3.3 kV and 0.5 MW, the peak of the fundamental component of the grid current is 123.7 A. This implies I_{dc} must be 123.7 A for $m = 1$. The DC side is simulated using an ideal current source of 124 A. Following the first step of calculation in the flowchart in Fig. 11, the effective resistance R_e of the current source rectifier is close to 21.78 Ω. The RMS of switching current ripple, $\langle i \rangle_{RMS,T}$ is 45.7A, (19). The maximum allowable ripple in the grid current and distortion in the input voltage are assumed to be 2.5% of fundamental component of input current and grid voltage respectively. The power loss in damping resistor is restricted to be 0.1% of rated power. Input filter components $L = 2.4$ mH, $C = 34.64\mu F$ and $R_d = 50\Omega$ are designed according to the procedure described in Section III. Fig. 12(b) shows the DC-link voltage and Fig. 12(c) shows the DC-link current. Fig. 12(d) shows the line to neutral voltage and Fig. 12(e) shows the line current of phase a of the CSR. The input current RMS obtained from simulation is 98.5A, which very closely matches the analytical value of 98.7A as computed from Section II. The filtered grid voltage and corresponding line current (5 times) is shown in Fig. 12(f).
The line current i_G is almost in phase with the grid voltage v_G ($\cos \phi = 0.9725$). Frequency spectrum of various voltage and current waveforms are plotted in Fig. 13. As can be seen from Fig. 12(f) and Fig. 13(d), the grid current is almost sinusoidal with a THD content of 1.91%. Also the input voltage to the CSR v_{an} is almost sinusoidal as seen from Fig. 12(d) and Fig. 13(a). From Fig. 13(a) and Fig. 13(c), it can be noted that the voltage drop across the filter at fundamental frequency (60 Hz) is negligibly small or $\frac{v_{an}}{v_{Gan}} \approx 1$.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results obtained on a laboratory prototype of the current source rectifier as shown in Fig. 14. The CSR is implemented using two Microsemi’s triple dual common source IGBT power modules, APTGT75TDU120PG. IGBT driver 2SD106AI from CONCEPT is used to generate isolated gate pulses for the switches. The entire modulation strategy is coded in verilog onto a control platform based on FPGA (Xilinx XC3S500E). The setup is operated with both the modulation schemes described in Section II. The experimental parameters are: $(v_G)_{RMS,T} = 50V$, $m = 0.5$, $f_G = 60Hz$, $f_s = 5kHz$. The DC-link current is realized with a series $R-L$ circuit, $R_{dc} = 10.4\Omega$, $L_{dc} = 27mH$. The corner frequency $\frac{R_{dc}}{2\pi L_{dc}} = 61.3Hz$ is chosen to be much lower than the switching frequency $f_s = 5kHz$ so that the current through it is close to DC.

Assuming no voltage drop across the input LC filter and no power loss in the CSR, the DC component of the DC-link voltage will be 53 V $\left(V_{dc} = \frac{3}{2}m \left(\sqrt{2} (v_G)_{RMS,T} \right) \right)$.

Fig. 13: Simulation results: Frequency spectrum
This implies \(I_{dc} \) will be approximately 5.09 A (\(I_{dc} = \frac{V_{dc}}{R_{dc}} \)). From (18), \(\langle \hat{i} \rangle_{RMS,T} = 2.24A \). Again assuming no power loss (\(3\langle v_G \rangle_{RMS,T}\langle i_G \rangle_{RMS,T} = V_{dc}I_{dc} \)), one can estimate \(\langle i_G \rangle_{RMS,T} \) to be 1.8 A and the effective resistance of the CSR \(R_e = \frac{\langle v_G \rangle_{RMS,T}}{\langle i_G \rangle_{RMS,T}} \) to be 27.3Ω. For an allowable ripple of 2.5% in grid current \(\frac{\langle i_G \rangle_{RMS,T}}{\langle i_G \rangle_{RMS,T}} \) and line voltage \(\frac{\langle v_G \rangle_{RMS,T}}{\langle v_G \rangle_{RMS,T}} \) and a power loss \(\frac{P_{loss}}{P} \) of 0.001% in the damping resistor, the filter values are calculated using (20), (21) and (22). The designed values are \(L = 0.37\,mH \), \(C = 32.3\mu F \) and \(R_d = 12\Omega \). The current and voltage ratings

Fig. 14: Hardware setup

Fig. 15: Carrier based PWM results: (a) (top) DC current (2 A/div), (bottom) DC voltage (50 V/div) (Timescale : 2 ms/div) (b) (top) Line to neutral voltage (20 V/div), (bottom) Line current (5 A/div) (Timescale : 10 ms/div) (c) Grid voltage (20 V/div) and grid current (10 A/div) (Timescale : 10 ms/div) (d) Frequency spectrum: (top) Line current (5 A/div), (second from top) grid current (5 A/div), (third from top) line to neutral voltage (20 V/div), (bottom) grid line to neutral voltage (20 V/div). (Sampling frequency: 2 MS/sec)
of all semiconductor devices and passive components is chosen to be higher than the operating conditions.

The results corresponding to carrier based implementation are shown in Fig. 15. Fig. 15(a) shows the DC-link current and voltage of the CSR. As seen from the waveform, the experimental current magnitude of 4.94 A is slightly lower as compared to its analytical value of 5.09 A. This can be attributed to power loss in CSR and non-unity voltage gain of the LC filter at the fundamental frequency. Fig. 15(b) shows the line to neutral voltage and switched line current of one phase. The RMS value of input current is 2.7 A which closely matches the analytically calculated RMS value of 2.78 A. The grid voltage and line current are shown in Fig. 15(c) and are nearly sinusoidal. The grid power factor is close to unity \((\cos \theta_G = 0.95)\). The frequency spectrum of the four AC side waveforms are shown in Fig. 15(d). As can be seen the fundamental component of the input voltage of the CSR and grid voltage are almost equal. Thus there is negligible drop across the filter. Fig. 15(d) also confirms that the line current is almost sinusoidal.

The same setup with same set of parameters was operated with space vector modulation described in Section II. Same results are plotted for SVM in Fig. 16. It is possible to observe that the pattern of instantaneous DC-link voltage and line current are different from CM implementation. The measured RMS of the line currents is 2.6 A. This closely matches the analytically computed value of 2.78 A. Thus it verifies the claim that the analytical expression of input RMS current obtained is independent of the modulation strategy.

The system was run with different set of filters for different allowable ripple specifications in the grid current. Fig. 17 shows the grid line to neutral voltage and current for allowable THD = 1% \((L = 0.37\text{mH}, C = 81.7\mu\text{F})\), THD = 2.5% \((L = 0.37\text{mH}, C = 32.3\mu\text{F})\) and THD = 5% \((L = 0.37\text{mH}, C = 15.8\mu\text{F})\). The resulting input power factor obtained is 0.77, 0.95 and 0.99 respectively. The observation was made that with the reduction in amount of allowable ripple in grid current, for a fixed switching frequency, the inductance remains same and capacitance increases, leading to poor grid power factor.

VII. CONCLUSION

A systematic design procedure for the input filter required to attenuate the switching components present in the input currents of a current source rectifier has been presented in this paper. The design procedure needs an estimation of the
Fig. 17: (a) Grid voltage (20 V/div) and current (5 A/div) for allowable THD = 1.0%, (b) Grid voltage (20 V/div) and current (5 A/div) for allowable THD = 2.5%, (c) Grid voltage (20 V/div) and current (5 A/div) for allowable THD = 5.0%

Fig. 18: Line Impedance Stabilization Network (LISN)

Fig. 19: Simulation results: Frequency spectrum of grid current without EMI filter using LISN

 VIII. APPENDIX

A. Differential mode EMI filter design of CSR

The main objective of the input AC line filter is to eliminate the switching frequency components of the input current and to achieve a THD less than 5% (IEEE 519). But this is not the complete story. One needs to design another filter (EMI) to meet the regulations in the frequency range of 150 kHz to 50 MHz. Here a procedure for the differential mode EMI filter design of a CSR is presented. This EMI filter is designed as a next step after designing the input AC line filter following the procedure shown in the main paper. The common-mode EMI filter design follows a very similar procedure but requires evaluation of parasitics and is out of the scope of this work.

Measurement of the high frequency component (150 kHz to 30 MHz) in the grid current is done by a network called Line Impedance Stabilization Network (LISN) as shown in Fig. 18. According to FCC regulation the measured voltage across the 100 Ω resistance in the frequency range of 150 kHz to 30 MHz must be less than 1 mV (60 dBμV). The measured voltage of the CSR with the input line filter as designed in Section IV is 8 mV (78 dBμV). Fig. 19 shows the spectrum of the measured voltage in the range 150 kHz to 1 MHz. It peaks near 150 kHz and keeps reducing afterwards (that is why spectrum beyond 1 MHz is not shown). In this frequency range the LISN can be approximated as 100Ω = Z_L resistive load. Again CSR can be modeled as a current source (I_s). Fig. 20 shows the equivalent circuit of the input line filter along with the CSR and the LISN, where \(Z_p = \frac{1}{jωC} \) (\(C=34.64 \, \mu F\), \(Z_s = R_s\|jωL \) (\(R_s = 50\,Ω, L = 2.4\,mH\)). The current through the LISN, \(I_o' \) is given in (25). Fig. 21 shows the EMI filter to be designed \(\{Z_1, Z_2\} \). The current through the LISN with this filter is given in (26). At 150 kHz, \(Z_s \approx 50\,Ω \) and \(Z_p \approx -j0.03\,Ω \). This implies \(|Z_s| > |Z_p| \) and \(Z_L \approx 2Z_s \). Intuitively \(Z_1 \), \(Z_2 \) will form an LC filter with cutoff frequency much higher than 552 Hz (this is the corner frequency of LC filter designed in Section IV). The capacitive impedance of \(Z_2 \) will be small in comparison with \(Z_s \) (50Ω) at 150 kHz, \(|Z_s| > |Z_2| \). With these assumptions, the gain \(G \) in (27) can be simplified to (28). Following the impedance mismatch criterion as described in [36] (for EMI filter design of a voltage source inverter) the gain \(G \) can be increased if we choose \(Z_1 \) and \(Z_2 \) such that \(Z_2 < Z_L \) and \((Z_1 + Z_2) > Z_L \). Increasing \(Z_1 \) implies, increasing the drop
in the fundamental component of the voltage across the filter. So here \(Z_2 \) is chosen to be small in comparison with \(Z_L \). It is chosen to be a small capacitance of 350nF such that at 150kHz its impedance is \(-j3\Omega \). \(Z_1 \) is chosen as an inductor of 35\(\mu \)H and its impedance at 150kHz is \(j30\Omega \). This results in a gain of 11.1 at 150kHz. The observed peak of the voltage with this EMI filter measured across the 100\(\Omega \) of the LISN is 0.4mV or 52dB\(\mu \)V. Fig. 22. Note that the corner frequency of this LC filter is at 45kHz and is much higher than that of the AC input line filter (552Hz). This explains why the EMI filter does not affect the input power factor and voltage drop across the filter for the fundamental frequency component.

\[
I_o' = \frac{Z_p}{Z_L + Z_s + Z_p}I_s \tag{25}
\]

\[
I_o = \frac{Z_2Z_p}{(Z_L + Z_1 + Z_2)(2Z_p + Z_s + Z_2) - Z_2^2}I_s \tag{26}
\]

\[
G = \frac{I_o'}{I_o} = \frac{1 + \frac{Z_1 + Z_2}{Z_L}}{1 + \frac{Z_s + Z_p}{Z_p}} \frac{Z_2^2}{Z_pZ_L(Z_L + Z_s + Z_p)} \tag{27}
\]

\[
G \approx \frac{1}{3} \left(1 + \frac{Z_1 + Z_2}{Z_L} \right) \frac{Z_L}{Z_2} \tag{28}
\]

B. A correction factor for THD specification

The design procedure described in section IV assumes all of the ripple component (anything other than the fundamental) of the input current is at the switching/equivalent carrier frequency \(f_c \). In reality most of the energy of the ripple part is concentrated at the switching frequency and at its next few multiples. So the above assumption leads to a slight over-design of the input filter. The following analysis provides a way to compensate for this. In the following analysis we consider components of the input current spectrum at the multiples of the fundamental frequency \(f_c \). \(I_k \) denotes the amplitude of the \(k \)th component of the input current, where \(k \) is a positive integer. As seen from Fig. 9 the designed filter has a 40 dB/decade roll off at and beyond the switching frequency \(f_s \) and \(f_c \) be the corner frequency of this filter. So for any \(k f_G > f_s \), the \(k \)th component of the grid current will have an amplitude of \(I_k \left(\frac{f_c}{k f_G} \right)^2 \). According to the assumption this component must be \(I_k \left(\frac{f_c}{f_G} \right)^2 \). Assuming all components of the input current waveform between the fundamental frequency and the switching frequency \(f_s \) (or \(f_s - r f_G \), considering a part of the side band) is zero, (29) and (30) give the estimated and the actual THDs, where \(N_o = \left[\frac{f_s}{f_G} \right] \) and \(I_1 \) is the fundamental component of the grid current. In this computation, \(r \) is chosen to be 10. So the ratio of actual to the estimated THD is given in (31). This ratio depends on the modulation index. For a proper utilization, the CSR will be designed at a higher modulation index. Fig. 23 shows this ratio for higher values of modulation index. This plot is obtained from simulation. The intended THD in the grid current must be divided by this ratio before using it in the procedure described in Fig. 11. For example for the design in section V this ratio from Fig. 23 at modulation index \(m = 1 \) is 0.7 and the observed ratio is 0.76. Note that this computation is approximate as it assumes components in the input current spectrum only at the multiples of the fundamental frequency and the corner frequency \(f_c \) is considerably smaller than \(f_s \). For a practical design these approximations hold and Fig. 23 can be used as a starting point for the actual design.

\[
THD_{ESTIMATED}^2 = \sum_{k=N_o}^{\infty} I_k^2 \left(\frac{f_c}{f_s} \right)^4 I_1^2 \tag{29}
\]

\[
THD_{ACTUAL}^2 = \sum_{k=N_o}^{\infty} I_k^2 \left(\frac{f_c}{k f_G} \right)^4 I_1^2 \tag{30}
\]

\[
\phi(m) = \frac{THD_{ACTUAL}}{THD_{ESTIMATED}} = \left(\frac{\sum_{k=N_o}^{\infty} I_k^2}{\sum_{k=N_o}^{\infty} I_k^2} \right)^{1/2} \left(\frac{f_s}{f_G} \right)^2 \tag{31}
\]
REFERENCES

Kaushik Basu (S07M13) received the BE. degree from the Bengal Engineering and Science University, Shibpore, India, in 2003, the M.S. degree in electrical engineering from the Indian Institute of Science, Bangalore, India, in 2005, and the Ph.D. degree in electrical engineering from the University of Minnesota, Minneapolis, in 2012, respectively. He was a Design Engineer with ColdWatt India in 2006. He is currently the Electronics and Control Engineer with Dynapower Corporation USA. His research interests include High frequency link converters, PWM techniques and Grid tied converters with storage and renewable energy sources.

Ashish Kumar Sahoo (S12) received the B.Tech. degree in electrical and electronics engineering from the National Institute of Technology, Trichy, India in 2011 and the M.S. degree in electrical engineering from the University of Minnesota, Minneapolis in 2013. Currently, he is pursuing a Ph.D. in Electrical Engineering at the University of Minnesota, Minneapolis. His research interests are in modular multi-level converters, matrix converters, power electronic transformers and filter design.

Visweshwar Chandrasekaran received the B.E. degree in Electrical and Electronics Engineering from SSN College of Engineering, Anna University, Chennai, India in 2011 and the M.S. degree in Electrical Engineering from the University of Minnesota, Minneapolis in 2013. He is currently working as a Power Electronics Engineer in Trane/Ingersoll Rand. His research interests are in power converters and electric drives.

Ned Mohan (S72M73SM91F96) received the B.Tech. degree from the Indian Institute of Technology, Kharagpur, India, in 1967, the M.S. degree in electrical engineering from the University of New Brunswick, Fredericton, Canada, in 1969, and the M.S. degree in nuclear engineering and the Ph.D. degree in electrical engineering from the University of Wisconsin, Madison, in 1972 and 1973, respectively. He is currently the Oscar A. Schott Professor of power electronics with the University of Minnesota, Minneapolis, where he has been engaged in teaching since 1976. He has numerous patents and publications in the field of power electronics, electric drives, and power systems. He has authored or coauthored five textbooks, one of which has been translated into six languages. He has graduated 35 Ph.Ds as of 2013. Dr. Mohan received the 2008 IEEE PES Outstanding Educator Award, 2010 IEEE Undergraduate Teaching Award, 2010 UWIG Achievement Award from Utility Wind Integration Group, 2011 Distinguished Alumnus Award from IIT Kharagpur (India), and 2012 IEEE Power and Energy Society Ramakumar Family Renewable Energy Excellence Award. In 2013, he received the Innovative Program Award from the ECE Department Heads Association made up of over 250 universities in the United States. He is a member of National Academy of Engineering (NAE).