Math 3331 ODEs 1st Order Review

1. Identify the type of first order ODE: Separable, linear, Bernoulli, homogeneous or exact.
(1) $\frac{d y}{d x}=\frac{x-y}{x}$

Soln. The ODE is linear so putting it in standard form gives

$$
\frac{d y}{d x}+\frac{y}{x}=1
$$

The integrating factor is $\mu=\exp \left(\int \frac{d x}{x}\right)=x$ and so the standard form ODE becomes

$$
\frac{d}{d x}(x \cdot y)=x
$$

which integrates to give

$$
x y=\frac{x^{2}}{2}+c
$$

Solving for y gives

$$
y=\frac{x}{2}+\frac{c}{x}
$$

(2) $(x+1) \frac{d y}{d x}=10-y$

Soln. The ODE is separable so putting it in standard form gives

$$
\frac{d y}{10-y}=\frac{d x}{x+1}
$$

Integrating gives

$$
-\ln |10-y|=\ln |x+1|+c
$$

(3) $\frac{d y}{d x}=\frac{x}{y}+\frac{y}{x}+1$

Soln. The ODE is homogeneous so letting $y=x u$ gives

$$
x \frac{d u}{d x}+u=\frac{1}{u}+u+1
$$

Canceling u and separating gives

$$
\frac{u}{u+1} d u=\frac{d x}{x}
$$

which integrates to give

$$
u-\ln |u+1|=\ln |x|+c .
$$

Back substituting gives

$$
\frac{y}{x}-\ln \left|\frac{y}{x}+1\right|=\ln |x|+c
$$

(4) $2 x y \frac{d y}{d x}+y^{2}=x^{2}$

Soln. The ODE is Bernoulli so putting it in standard form gives

$$
\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{2 y}
$$

Mulltiplying by y gives

$$
y \frac{d y}{d x}+\frac{y^{2}}{2 x}=\frac{x}{2}
$$

Setting $u=y^{2}$ so $\frac{d u}{d x}=2 y \frac{d y}{d x}$ giving the ODE as

$$
\frac{1}{2} \frac{d u}{d x}+\frac{u}{2 x}=\frac{x}{2}
$$

or, in standard form linear

$$
\frac{d u}{d x}+\frac{u}{x}=x
$$

With the integrating factor x, the ODE integrates giving

$$
x u=\frac{x^{3}}{3}+c
$$

and back substituting gives the final solution as

$$
x y^{2}=\frac{x^{3}}{3}+c
$$

(5) $\frac{d y}{d x}=-\frac{3 y^{2}+2 x}{6 x y+3 y^{2}}$

Soln. The ODE is exact so putting it in standard form gives

$$
\left(3 y^{2}+2 x\right) d x+\left(6 x y+3 y^{2}\right) d y=0
$$

and identifying that $M=3 y^{2}+2 x$ and $N=6 x y+3 y^{2}$ it is easy to check that $M_{y}=6 y=$ N_{x}. Thus z exists such that

$$
\begin{aligned}
& z_{x}=M=3 y^{2}+2 x \Rightarrow z=3 x y^{2}+x^{2}+A(y) \\
& z_{y}=N=6 x y+3 y^{2} \Rightarrow z=3 x y^{2}+y^{3}+B(x)
\end{aligned}
$$

and choosing $A=y^{3}$ and $B=x^{2}$ gives the solution of the ODE as

$$
3 x y^{2}+x^{2}+y^{3}=c .
$$

(6) $\frac{d y}{d x}=y-x y^{2}$

Soln. The ODE is Bernoulli so putting it in standard form gives

$$
\frac{d y}{d x}-y=-x y^{2}
$$

Dividing by y^{2} gives

$$
\frac{1}{y^{2}} \frac{d y}{d x}-\frac{1}{y}=-x
$$

Setting $u=\frac{1}{y}$ so $\frac{d u}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x}$ giving the ODE as

$$
-\frac{d u}{d x}-u=-x
$$

or, in standard form linear

$$
\frac{d u}{d x}+u=x
$$

With the integrating factor e^{x}, the ODE integrates giving

$$
e^{x} u=x e^{x}-e^{x}+c
$$

and back substituting gives the final solution as

$$
\frac{e^{x}}{y}=x e^{x}-e^{x}+c
$$

(7) $\frac{d y}{d x}=\frac{2 x}{y}+\frac{1}{y}+2 x+1$

Soln. The ODE is separable as we can see by factoring

$$
\frac{d y}{d x}=\left(\frac{1}{y}+1\right)(2 x+1)
$$

so putting it in standard form gives

$$
\frac{y}{y+1} d y=(2 x+1) d x
$$

Integrating gives

$$
y-\ln |y+1|=x^{2}+x+c
$$

(8) $x \frac{d y}{d x}+2 y=x \sin x$

The ODE is linear so putting it in standard form gives

$$
\frac{d y}{d x}+\frac{2 y}{x}=\sin x
$$

The integrating factor is $\mu=\exp \left(\int \frac{2 d x}{x}\right)=x^{2}$ and so the standard form ODE becomes

$$
\frac{d}{d x}\left(x^{2} \cdot y\right)=x^{2} \sin x
$$

which integrates to give

$$
x^{2} y=2 \cos x+2 x \sin x-x^{2} \cos x+c
$$

Solving for y leads to

$$
y=\frac{2 \cos x+2 x \sin x-x^{2} \cos x+c}{x^{2}}
$$

(9) $\frac{d y}{d x}=-\frac{x^{2}+y}{x+y^{2}}$

Soln. The ODE is exact so putting it in standard form gives

$$
\left(x^{2}+y\right) d x+\left(x+y^{2}\right) d y=0
$$

and identifying that $M=x^{2}+y$ and $N=x+y^{2}$ it is easy to check that $M_{y}=1=N_{x}$. Thus z exists such that

$$
\begin{aligned}
& z_{x}=M=x^{2}+y \Rightarrow z=\frac{x^{3}}{3}+x y+A(y) \\
& z_{y}=N=x+y^{2} \Rightarrow z=x y+\frac{y^{2}}{3}+B(x)
\end{aligned}
$$

and choosing $A=\frac{y^{3}}{3}$ and $B=\frac{x^{3}}{3}$ gives the solution of the ODE as (we multiplied by 3 and absorbed the 3 into c)

$$
x^{3}+3 x y+y^{3}=c .
$$

(10) $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}$

The ODE is homogeneous so letting $y=x u$ gives

$$
x \frac{d u}{d x}+u=\frac{1+u^{2}}{1+u}
$$

Isolating $\frac{d u}{d x}$ and separating gives

$$
\frac{1+u}{1-u} d u=\frac{d x}{x}
$$

which integrates to give

$$
-u-2 \ln |1-u|=\ln |x|+c
$$

Back substituting gives

$$
-\frac{y}{x}-2 \ln \left|1-\frac{y}{x}\right|=\ln |x|+c .
$$

(11) $\frac{d y}{d x}=x^{2}+y$

The ODE is linear so putting it in standard form gives

$$
\frac{d y}{d x}-y=x^{2}
$$

The integrating factor is $\mu=\exp \left(\int-d x\right)=e^{-x}$ and so the standard form ODE becomes

$$
\frac{d}{d x}\left(e^{-x} \cdot y\right)=x^{2} e^{-x}
$$

which integrates to give

$$
e^{-x} y=-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+c
$$

Solving for y leads to

$$
y=-x^{2}-2 x-2+c e^{x}
$$

(12) $\frac{d y}{d x}=\frac{1-y \cos x}{2 y+\sin x}$

Soln. The ODE is exact so putting it in standard form gives

$$
(y \cos x-1) d x+(2 y+\sin x) d y=0
$$

and identifying that $M=y \cos x-1$ and $N=2 y+\sin x$ it is easy to check that $M_{y}=$ $\cos x=N_{x}$. Thus z exists such that

$$
\begin{aligned}
& z_{x}=M=y \cos x-1 \Rightarrow z=y \sin x-x+A(y) \\
& z_{y}=N=2 y+\sin x \Rightarrow z=y^{2}+y \sin x+B(x)
\end{aligned}
$$

and choosing $A=y^{2}$ and $B=-x$ gives the solution of the ODE as

$$
y \sin x-x+y^{2}=c
$$

(13) $\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}}$

Soln. The ODE is Bernoulli already in standard form so multiply by y^{3} gives

$$
y^{3} \frac{d y}{d x}+\frac{y^{4}}{2 x}=x
$$

Setting $u=y^{4}$ so $\frac{d u}{d x}=4 y^{3} \frac{d y}{d x}$ giving the ODE as

$$
\frac{1}{4} \frac{d u}{d x}+\frac{u}{2 x}=x
$$

or, in standard form linear

$$
\frac{d u}{d x}+\frac{2 u}{x}=4 x
$$

With the integrating factor x^{2}, the ODE integrates giving

$$
x^{2} u=x^{4}+c
$$

and back substituting gives the final solution as

$$
x^{2} y^{4}=x^{4}+c
$$

(14) $\frac{d y}{d x}=\frac{y(x-y)}{x(x+y)}$

Soln. The ODE is homogeneous so letting $y=x u$ gives

$$
x \frac{d u}{d x}+u=\frac{u(1-u)}{1+u} .
$$

Isolating u^{\prime} gives

$$
x \frac{d u}{d x}=\frac{-2 u^{2}}{1+u}
$$

and separating gives

$$
-\frac{1+u}{u^{2}} d u=2 \frac{d x}{x}
$$

which integrates to give

$$
\frac{1}{u}-\ln |u|=2 \ln |x|+c
$$

Back substituting gives

$$
\frac{x}{y}-\ln \left|\frac{y}{x}\right|=2 \ln |x|+c
$$

(15) $\frac{d y}{d x}=x^{2} y^{2}+x^{2}$

Soln. The ODE is separable so putting it in standard form gives

$$
\frac{d y}{y^{2}+1}=x^{2} d x
$$

Integrating gives

$$
\tan ^{-1} y=\frac{x^{3}}{3}+c
$$

or

$$
y=\tan \left(\frac{x^{3}}{3}+c\right)
$$

