
IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 31 | P a g e

Component Based Software Engineering
1Dimple Nagpal, 2Iqbaldeep Kaur, 3Ms. Apoorva, 4Ms. Sheilly, 5Ms. Sonali

1Research Scholar, 2Associate Professor, 3Assistant Professor, 4Assistant Professor, 5Assistant Professor
1, 2 ,3, 4, 5Department of Computer Science Engineering, Chandigarh Engineering College, Landran,

Mohali , India

Abstract -This paper is about the overview of

component based software engineering. In this the various

study of what the component is, and how the components

are used in the process are there,and pros and cons of

CBSE are described here.The research issue to analyse or

study the whole CBSE and understand whether

technologies merge in both the domain in CBSE and give

the efficient and effective results

Keywords - Component, Component based development,

Component-based Software Engineering, Component-based

Software Development.

I. INTRODUCTION

The concept of building software from components is

not new. A ‘classical’ design of complex software systems

always begins with the identification of system parts

designated subsystems or blocks, and on a lower level

modules, classes, procedures and so on[3]. Component-

based software engineering strives to achieve the same

thing. A set of prebuilt, standardized software components

are made available to fit a specific architectural style for

some application domain[1].The purpose of CBSD is to

develop large systems,incorporating previously developed

or existing components,thus cutting down on development

time and costs. It is assumed that common parts (be it

classes or functions) in a software application only need to

be written once and re-used rather than being re-written

every time a new application is developed[2].

II. COMPONENT BASED SOFTWARE

ENGINEERING

Component-based software engineering (CBSE) is a

process that emphasizes the design and construction of

computer-based systems using reusable software

“components.” CBSE embodies the “buy, don’t build”

philosophy[1].Basically CBSE aims to focus on

component,that can further be used on different software

thus yielding better results in an efficient and effective

manner . So that the overall development of the software is

improved by reusing the components.

CBSE shifts the emphasis from programming software

to composing software systems. Implementation has given

way to integration as the focus[1]. CBSE not only requires

focus on system specification and development, but also

requires additional consideration for overall system context,

individual components properties and component

acquisition and integration process[2]. Therefore CBSE

must address both the development of reusable components

and the development application using the reusable

components .component based development shows the

perspective of software reuse[4].

The CBSE generally embodies the following fundamental

software development principles:

A. Independent Software Development

Large software systems are necessarily assembled from

components developed by different people. To facilitate

independent development, it is essential to decouple

developers and users of components through abstract and

implementation-neutral interface specifications of behavior

for components.

B. Reusability

While some parts of a large system will necessarily be

special-purpose software, it is essential to design and

assemble pre-existing components (within or across

domains) in developing new components.

C. Software quality

A component or system needs to be shown to have desired

behavior, either through logical reasoning, tracing, and/or

testing. The quality assurance approach must be modular to

be scalable.

D. Maintainability

A software system should be understandable, and easy to

evolve [2].

III. CBSE PROCESS

The CBSE process, however, must be characterized in a

manner that not only identifies candidate components but

also qualifies each component’s interface, adapts

components to remove architectural mismatches, assembles

components into a selected architectural style, and updates

components as requirements for the system change. The

process model for component-based software engineering

emphasizes parallel tracks in which domain engineering

occurs concurrently with component-based development[1].

The intent of domain engineering is to identify, construct,

catalog, and disseminate a set of software components that

have applicability to existing and future software in a

particular application domain. The overall goal is to

establish mechanisms that enable software engineers to

share these components—to reuse them—during work on

new and existing systems[1]. So domain engineering team is

responsible for producing, maintaining and cataloguing

reusable assets[4].Domain Engineering aims at supporting

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 32 | P a g e

application engineering which uses the domain models and

architectures to build concrete systems. The emphasis is on

reuse and product lines. The Domain-Specific Software

Architecture (DSSA) engineering process was introduced to

promote a clear distinction between domain and application

requirements [11]. A Domain-Specific Software

Architecture consists of a domain model and a reference

architecture, and guides in reusing components[6].Domain

engineering includes three major activities—analysis,

construction, and Dissemination[1].

IV. THE DOMAIN ANALYSIS PROCESS

Domain analysis is the process of identifying, collecting,

organizing, and representing the relevant information in a

domain, based upon the study of existing systems and their

development histories, and knowledge captured from

domain experts[6].

The steps in the process were defined as:

1. Define the domain to be investigated.

2. Categorize the items extracted from the domain.

3. Collect a representative sample of applications in the

domain.

4. Analyze each application in the sample.

5. Develop an analysis model for the objects.

It is important to note that domain analysis is applicable to

any software engineering paradigm and may be applied for

conventional as well as object-oriented development[1].

V. THE DOMAIN CONSTRUCTION PROCESS

It is sometimes difficult to determine whether a

potentially reusable component is in fact applicable in a

particular situation. To make this determination, it is

necessary to define a set of domain characteristics that are

shared by all software within a domain. A domain

characteristic defines some generic attribute of all products

that exist within the domain. For example, generic

characteristics might include the importance of

safety/reliability, programming language, concurrency in

processing, and many others. A set of domain characteristics

for a reusable component can be represented as {Dp}, where

each item, Dpi, in the set represents a specific domain

characteristic. The value assigned to Dpi represents an

ordinal scale that is an indication of the relevance of the

characteristic for component p. A typical scale might be

1: not relevant to whether reuse is appropriate

2: relevant only under unusual circumstances

3: relevant—the component can be modified so that it can

be used, despite differences

4: clearly relevant, and if the new software does not have

this characteristic, reuse will be inefficient but may still be

possible

5: clearly relevant, and if the new software does not have

this characteristic, reuse will be ineffective and reuse

without the characteristic is not recommended[1].

VI. THE DOMAIN DISSEMINATION PROCESS

When domain analysis is applied, the analyst looks for

repeating patterns in the applications that reside within a

domain. Structural modeling is a pattern-based domain

engineering approach that works under the assumption that

every application domain has repeating patterns (of

function, data, and behavior) that have reuse potential

Structural models consist of a small number of structural

elements manifesting clear patterns of interaction. The

architectures of systems using structural models are

characterized by multiple ensembles that are composed from

these model elements. Many architectural units emerge from

simple patterns of interaction among this small number

of elements[1].

VII. COMPONENT BASED DEVELOPMENT

Component-based development is a CBSE activity that

occurs in parallel with domain Engineering [1]. The

architecture of a software system defines that system in

terms of components and interactions/connections among

those components. It is not the design of that system which

is more detailed. The architecture shows the correspondence

between the requirements and the constructed system,

thereby providing some rationale for the design decisions.

Different views on component-based software architectures

may be distinguished:

1. Design-time: This includes the application-specific

view of components, such as functional interfaces and

component dependencies.

2. Compose-time: This includes all the elements needed to

assemble a system from components, including

generators and other build-time services; a component

framework may provide some of these services.

3. Runtime: This includes frameworks and models that

provide runtime services for component-based

systems[6].

Once the architecture has been established, it must be

populated by components that

 (1) are available from reuse libraries and/or

 (2) are engineered to meet custom needs.

 Hence, the task flow for component-based development has

two parallel paths. When reusable components are available

for potential integration into the architecture, they must be

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 33 | P a g e

qualified and adapted. When new components are required,

they must be engineered. The resultant components are then

“composed” (integrated) into the architecture template and

tested thoroughly [1].

COMPONENT

A nontrivial, nearly independent, and replaceable part of a

system that fulfills a clear function in the context of a well-

defined architecture [1].

A Component is:

• An opaque implementation of functionality

• Subject to third-party composition

• Conformant with a component model

There are two motivations for the criterion that a component

is an opaque implementation.

 First, we envision a commercial market in software

components. Notwithstanding the suc-cess of Linux and

“open source” software, the predominant and most

successful businessmodel for software components has been

based upon software as intellectual capital that must be

protected from disclosure. Second, as is already a well-

established precept in computer science, clients of software

components should not come to rely upon implementation

details that are likely to change. In computer science this has

led to programming support for abstraction and information

hiding; opaqueness serves the same purpose for

components.

 The motivation for third-party composition is

straightforward: the use of components should not depend

upon tools or knowledge of the component that is in the

possession of only the component provider. This criterion

implies that a component-based system can comprise

components from multiple, independent sources, and that a

system can be assembled by a third party system integrator

who is not also a component supplier. This criterion should

hold true even if none of the components used in a system

come from external suppliers.

 The last criterion, that a component is conformant

with a component model, is what differentiates components

from conventional COTS software products. Component

models prescribe how components interact with each other,

and therefore express global, or architectural design

constraints. Conformance to component models transforms

software implementations

into architectural implementations[5].

COMPONENT QUALIFICATION, ADAPTATION, AND

COMPOSITION

Domain engineering provides the library of reusable

components that are required for component-based software

engineering. Some of these reusable components are

developed in house, others can be extracted from existing

applications, and still others may be acquired from third

parties. Unfortunately, the existence of reusable components

does not guarantee that these components can be integrated

easily or effectively into the architecture chosen for a new

application. It is for this reason that a sequence of

component-based development activities are applied when a

component is proposed for use[1].

COMPONENT QUALIFICATION

Component qualification ensures that a candidate

component will perform the function required, will properly

“fit” into the architectural style specified for the system,and

will exhibit the quality characteristics (e.g., performance,

reliability, usability) that are required for the application.

The interface description provides useful information about

the operation and use of a software component, but it does

not provide all of the information required to determine if a

proposed component can, in fact, be reused effectively in a

new application. Among the many factors considered during

component qualification are:

• Application programming interface (API).

• Development and integration tools required by the

component.

• Run-time requirements, including resource usage (e.g.,

memory or storage), timing or speed, and network

protocol.

• Service requirements, including operating system

interfaces and support from other components.

• Security features, including access controls and

authentication protocol.

• Embedded design assumptions, including the use of

specific numerical or nonnumerical algorithms.

• Exception handling.

COMPONENT ADAPTATION

In an ideal setting, domain engineering creates a library of

components that can be easily integrated into an application

architecture. The implication of “easy integration” is that

(1) consistent methods of resource management have been

implemented for all components in the library,

 (2) common activities such as data management

exist for all components, and

 (3) interfaces within the architecture and with the external

environment have been implemented in a consistent manner.

In reality, even after a component has been qualified for use

within an application architecture, it may exhibit conflict in

one or more of the areas just noted. To mitigate against

these conflicts, an adaptation technique called component

wrapping is often used. When a software team has full

access to the internal design and code for a component

(often not the case when COTS components are used)

white-box wrapping is applied. Like its counterpart in

software testing, white-box wrapping examines the internal

processing details of the component and makes code-level

modifications to remove any conflict. Gray-box wrapping is

applied when the component library provides a component

extension language or API that enables conflicts to be

removed or masked. Black-box wrapping requires the

introduction of pre- and post processing at the component

interface to remove or mask conflicts.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 34 | P a g e

COMPONENT COMPOSITION

The component composition task assembles qualified,

adapted, and engineered components to populate the

architecture established for an application. To accomplish

this, an infrastructure must be established to bind the

components into an operational system. The infrastructure

(usually a library of specialized components) provides a

model for the coordination of components and specific

services that enable components to coordinate with one

another and perform common tasks Among the many

mechanisms for creating an effective infrastructure is a set

of four “architectural ingredients” that should be present to

achieve component composition:

Data exchange model: Mechanisms that enable users and

applications to interact and transfer data (e.g., drag and

drop, cut and paste) should be defined for all reusable

components. The data exchange mechanisms not only allow

human-to-software and component-to-component data

transfer but also transfer among system resources (e.g.,

dragging a file to a printer icon for output).

Automation: A variety of tools, macros, and scripts should

be implemented to facilitate interaction between reusable

components.

Structured storage:Heterogeneous data (e.g., graphical data,

voice/video,text, and numerical data) contained in a

“compound document” should be organized and accessed as

a single data structure, rather than a collection of separate

files. “Structured data maintains a descriptive index of

nesting structures that applications can freely navigate to

locate, create, or edit individual data contents as directed by

the end user” .

Underlying object model: The object model ensures that

components developed in different programming languages

that reside on different platforms can be interoperable. That

is, objects must be capable of communicating across a

network. To achieve this, the object model defines a

standard for component interoperability [1].

VIII. STANDARDS FOR SOFTWARE COMPONENTS

Because the potential impact of reuse and CBSE on the

software industry is enormous, a number of major

companies and industry consortia3 have proposed standards

for component software:

OMG/CORBA:The Object Management Group has

published a common object request broker architecture

(OMG/CORBA). An object request broker (ORB) provides

a variety on services that enable reusable components

(objects) to communicate with other components, regardless

of their location within a system. When components are

built using the OMG/CORBA standard,

integration of those components (without modification)

within a system is assured if an interface definition

language (IDL) interface is created for every component.

Using a client/server metaphor, objects within the client

application

request one or more services from the ORB server. Requests

are made via an IDL or dynamically at run time. An

interface repository contains all necessary information about

the service’s request and response formats.

Microsoft COM: Microsoft has developed a component

object model (COM) that provides a specification for using

components produced by various vendors within a single

application running under the Windows operating system.

COM encompasses two elements: COM interfaces

(implemented as COM objects) and a set of mechanisms for

registering and passing messages between COM interfaces.

From the point of view of the application, “the focus is not

on how [COM objects are] implemented, only on the fact

that the object has an interface that it registers with the

system, and that it uses the component system to

communicate with other COM objects”.

Sun JavaBean Components: The JavaBean component

system is a portable, platform independent CBSE

infrastructure developed using the Java programming

language. The JavaBean system extends the Java applet4 to

accommodate the more sophisticated software components

required for component-based development. The JavaBean

component system encompasses

a set of tools, called the Bean Development Kit (BDK), that

allows developers to

(1) Analyze how existing Beans (components) work,

 (2) Customize their behaviour and appearance,

 (3) Establish mechanisms for coordination

and communication,

(4) Develop custom Beans for use in a specific

application, and

 (5) Test and evaluate Bean behaviour.

Which of these standards will dominate the industry? There

is no easy answer at this time. Although many developers

have standardized on one of the standards, it is likely that

large software organizations may choose to use all three

standards, depending on the application categories and

platforms that are chosen[1].

IX. BENEFITS IN CBSD

Software developers create software components mainly

with an intention of being reused in various software

systems. Components are designed to interact with its

environment through its well-defined interfaces but to

encapsulate their implementation. Component-based

software development brings the potential for

1. significant reduction in the development cost and time-

to-market of enterprise software systems because

developers can assemble such systems from a set of

reusable components rather than building them from

scratch,

2. increasing the reliability of enterprise software systems -

each reusable component undergoes several review and

inspection stages in the course of its original

development and previous uses, and CBSD relies on

explicitly defined architectures and interfaces,

3. improving the maintainability of enterprise software

systems by allowing new, higher-quality components to

replace old ones, and

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 35 | P a g e

4. enhancing the quality of enterprise software systems -

application-domain experts develop components, then

software engineers who specialize in Component

software engineering assemble those components into

enterprise software systems[7].

X. DIFFICULTIES IN CBSD

The disadvantages of Component Based Software

Development are as follows:

1) Finding suitable components which fit the architectural

design of the software to be developed may be sometimes

difficult because gaps exist between the component features

and the software requirements.

 2) Component Based development has not been widely

adopted in domains of embedded systems because of

inability of this technology to cope with the important

concerns of embedded systems like resource constraints,

real time or dependability requirements.

3) Component Based Software Engineering is young;

therefore long term maintainability is still unknown [8].

XI. CONCLUSION

Component-based systems are the result of structuring a

system according to a particular design pattern. This design

pattern relies upon a number of closely related technical

concepts,including: components, component models,

component composition,component interfacesand so on.

CBSE focuses more on the reusability of components rather

than rebuilding of components every time whenever a new

software is being build.

XII. REFRENCES

[1]. Hasselbring, Wilhelm. "Component-based software

engineering." (2002): 289-305.

[2]. Kaur, Iqbaldeep, Parvinder S. Sandhu, Hardeep Singh,

and Vandana Saini. "Analytical study of component

based software engineering." World Academy of

Science, Engineering and Technology 50 (2009): 437-

442.

[3]. Goel, Shivani Guide. "Designing A Framework for

Handling Barriers to Software Reuse."

[4]. Book: software engineering: a practitioner’s approach

by roger pressman.

[5]. BOOK: VolumeII software engineering.

[6]. Ishita Verma , International Journal of Computer

Science & Communication Networks,Vol 4(3),84-88 87

ISSN:2249-5789 .

[7]. Internet Source

