Simulating Thermal Conductivity

Steve Parker

s.c.parker@bath.ac.uk

Content

- Introduction to phonons
- Lattice Dynamics
 - Background
 - What is required
 - Recent Examples
- Molecular Dynamics
 - Background
 - What is required
 - Recent Examples

Microscopic view

- Heat is transferred by conduction when adjacent atoms or molecules collide.
- Conduction is greater in solids because the close proximity of atoms helps them to transfer energy between them by vibration.
- Hence, KEY: simulating molecular vibrations

A collective vibration of atoms in the crystal forms a wave of allowed *wavelength* and *amplitude*.

Just as light expresses wave motion that is considered as composed of particles called photons, we can think of the normal modes of vibration in a solid as being particle-like. Quantum of lattice vibration is called the phonon.

Microscopic view: *K*Latt

Thermoelectric Figure of Merit

The contribution of a phonon mode to the thermal conductivity, κ_{Latt} , equals

(i) how much energy can be stored in it [modal heat capacity] multiplied by

(ii) how fast it propagates through the material [group velocity] multiplied by

(iii) how long it lives before being scattered [lifetime].

Uniform Solid

In a uniform solid material comprised of atoms arranged in a regular lattice the interactions between them mean that they cannot vibrate independently.

These vibrations take the form of collective modes which propagate through the material.

There will be 3N modes, where N is the number of atoms in the unit cell.

One Atom per unit cell

- 3 Vibrational Models
- Acoustic / Travelling Waves

Acoustic Wave

Propagating lattice vibrations can be considered to be sound waves, and their propagation speed is the <u>speed of</u> <u>sound</u> in the material.

And may be different in different directions

Solid is a periodic array of atoms and there are constraints on both the minimum and maximum wavelength associated with a vibrational mode.

Wave Vectors, **k**

- It is usually convenient to consider phonon wave vectors
 k which have the smallest magnitude (|k|) in their
 "family". The set of all such wave vectors defines the *first* <u>Brillouin zone</u>.
- Additional Brillouin zones may be defined as copies of the first zone, shifted by some reciprocal lattice vector.

Wave Vectors, k

One atom per unit cell

- Slope is speed of sound
- Longitudinal waves travel faster than transverse (slope of LA bigger than slope of TA)

Wave Vectors, **k**

N Atoms per cell

 Acoustic phonons occur when wave numbers are small (i.e. long wavelengths) and correspond to sound transmission in crystals. Acoustic phonons vary depending on whether they are longitudinal or transverse

 "Optical phonons," which arise in crystals that have more than one atom in the unit cell. They are called "optical" because in ionic crystals are often excited by light (e.g. by infrared radiation in NaCl).

N Atoms per cell

- 3N vibrational branches,
 - 3 Acoustic (1LA + 2TA)
 - 3N-3 Optic (N-1 Longitudinal Optic (LO) + 2N-2 Transverse Optic (TO))

N Atoms per cell

- 3N vibrational branches,
 - 3 Acoustic (1LA + 2TA)
 - 3N-3 Optic (N-1 Longitudinal Optic (LO) + 2N-2 Transverse Optic (TO))
 - Different behaviour in different directions

Adapted from:

H. Montgomery, "The symmetry of lattice vibrations in zincblende and diamond structures", Proc. Roy. Soc. A. 309, 521-549 (1969)

Summary

- To get a good description of the vibrational frequencies in a solid we need to be able to calculate the frequency at different wave vectors, k.
- The calculation of this dependence called Lattice Dynamics
- In general, the challenge for simulation is to represent this diversity.

What is lattice dynamics...?

A theoretical framework for modelling the phonons in periodic solids

... and what can we do with it?

- Get an atomistic view of thermal motion in crystals e.g. displacement ellipsoids in X-ray structures
- Simulate vibrational spectra e.g. IR, Raman, THz...
- Study thermodynamics contributions to free energy and entropy
- Model structure and properties at finite temperature thermal expansion, bulk moduli, etc.
- Understand certain types of phase transitions
- Calculate transport properties (e.g. thermal conductivity)

The harmonic approximation

The simplest quantum-mechanical model for vibrations - but it works

$$U = \frac{1}{2}\mu\omega^2 |\boldsymbol{r} - \boldsymbol{r}_0|^2$$

Models a crystal with 3N atoms in the unit cell as 3N independent oscillators

Phonons modelled as waves with an associated reciprocal-space wavevector **k** (3*N* modes/*k*-point)

Can calculate using standard electronic structure codes: e.g. VASP, Wien2k, Abinit, Pwscf NOTE: convention – use **q** for phonons and **k** for electrons

The finite-displacement method

> The key thing we need to calculate are the force-constant matrices

$$\Phi_{\alpha\beta}(il,jl') = -\frac{\partial F_{\alpha}(il)}{\partial r_{\beta}(jl')}$$

The most straightforward way to do this is by physically moving atoms a small distance from their equilibrium position, and computing the forces

In principle, need to displace every atom forward and backward along x, y and z, but this can be reduced by symmetry

Phonopy: phonon code (http://phonopy.sf.net)

Supercells

Red: Calculated frequencies

Single unit cell

Doubled unit cell

• To be sure of reproducing the dispersion curves need to consider larger supercells (e.g. 4 times the unit cell size would give 4 sets of points).

Phonon band structure of Ti₃SiC₂

Togo *et al.*, Phys. Rev. B **81**, 174301 (2010) Localized bands at ~5 THz

Modelling vibrational spectra: Cu₂ZnSnS₄

J Skelton

Calculating *k*_{Latt}

Finite κ_{Latt} arises from phonon-phonon interactions, and to model these we need to evaluate the third order force constants:

$$\Phi_{\alpha\beta\gamma}(il,jl',kl'') = -\frac{\partial F_{\alpha}(il)}{\partial r_{\beta}(jl')\partial r_{\gamma}(kl'')}$$

Similar computational requirements to a harmonic calculation, but need to run force calculations on many more displaced structures

	System	# Atoms (SC)	# Disp 2 nd	# Disp 3 rd (2x2x2 SC)
\odot	PbTe	2 (16)	2	62
	Cu ₂ ZnSnS ₄	8 (64)	14	5,390
$\overline{\mathbf{i}}$	<i>c</i> MAPbl ₃	12 (96)	72	41,544

Quaternary semiconductors as thermoelectrics?

J Skelton

"Practical" Theory

Force-constant matrix:
$$\Phi_{\alpha\beta}(il,jl') = \frac{\partial^2 E}{\partial r_{\alpha}(l)\partial r_{\beta}(l')} = -\frac{\partial F_{\alpha}(il)}{\partial r_{\beta}(jl')}$$

From finite differences: $\Phi_{\alpha\beta}(il,jl') \approx -\frac{F_{\alpha}(il)}{\Delta r_{\beta}(jl')}$

After diagonalisation:

Sum over atom *j* in adjacent unit cells *l*' -> supercell expansion to improve accuracy

Dynamical matrix:
$$D_{\alpha\beta}(i,j,\mathbf{q}) = \frac{1}{\sqrt{m_i m_j}} \sum_{l} \Phi_{\alpha\beta}(i0,jl') \exp[i\mathbf{q}.(\mathbf{r}(jl') - \mathbf{r}(i0))]$$

 $e(\mathbf{q}). \Omega(\mathbf{q}) = D(\mathbf{q}). e(\mathbf{q})$

• The force constant matrices $\Phi_{\alpha\beta}(il, jl')$ can be calculated by phonopy from finitedisplacement calculations, or directly from some codes using e.g. internal DFPT or finitedifferences

• Start from the top, and work backwards...:

$$\boldsymbol{\kappa}_{L}(T) = \frac{1}{NV_{0}} \sum_{\lambda} C_{V,\lambda}(T) \boldsymbol{\nu}_{\lambda} \otimes \boldsymbol{\nu}_{\lambda} \tau_{\lambda}(T)$$

[Single-Mode Relaxation Time Model]

- $\boldsymbol{\kappa}_{L}(T)$:= lattice thermal conductivity
- $C_{V,\lambda}(T)$:= modal (const. V) heat capacity
- v_{λ} := mode group velocity

$$\tau_{\lambda}(T)$$
 := mode lifetime

- λ := phonon mode (w/ associated ω_{λ} and \mathbf{q}_{λ})
- \otimes := tensor product

• The modal heat capacity $\mathcal{C}_{V,\lambda}$ and group velocity \boldsymbol{v}_{λ} are harmonic quantities:

$$\boldsymbol{\kappa}_{L}(T) = \frac{1}{NV_{0}} \sum_{\lambda} C_{V,\lambda}(T) \boldsymbol{\nu}_{\lambda} \otimes \boldsymbol{\nu}_{\lambda} \tau_{\lambda}(T)$$

$$C_{V,\lambda} = k_B \left(\frac{\hbar\omega_{\lambda}}{k_B T}\right)^2 \frac{\exp(\hbar\omega_{\lambda}/k_B T)}{[\exp(\hbar\omega_{\lambda}/k_B T) - 1]^2} \qquad n_{\lambda}(T) = \frac{1}{\exp(\hbar\omega_{\lambda}/k_B T) - 1}$$

$$\boldsymbol{v}_{\lambda} = \frac{\partial \omega_{\lambda}}{\partial \mathbf{q}}$$

$$\omega_{\lambda}$$
 := phonon frequency
 $n_{\lambda}(T)$:= phonon occupation number

• The mode lifetimes, $\tau_{q\lambda}(T)$, come from the phonon linewidths, which are the imaginary parts of the self energies in MBPT

 $\phi_{-\lambda\lambda'\lambda''}$:= three-phonon interaction strength

• Finally, the three-phonon interactions can be obtained from the third-order interatomic force-constant matrices (IFCs), $\phi_{\alpha\beta\gamma}(0j,l'j',l''j'')$

Lattice Dynamics: Summary

- Strength is that it is generally based on the quantised harmonic oscillator, and the vibrational frequencies can be calculated directly from the dynamical matrix.
- Strength is that can be used to calculate a wide range of properties, and investigate phase stability, spectroscopy.
- Strength is that can easily be used in conjunction with DFT codes.
- Weakness is that it misses intrinsic anharmonicity (although work is ongoing to include these terms, e.g. self consistent phonon theory: x⁴...) and dynamical matrix (3N x 3N) (N=number of atoms in cell) can become to be too large for routine computation.
- An approach which includes intrinsic anharmonicity and can be readily applied to large systems is via Molecular Dynamics..

Modelling Methods – Molecular Dynamics

- Acceleration calculated from particle interactions
- Atom positions updated based on current velocities and calculated accelerations
- Repeat in a series of discrete "timesteps" (Δt) to dynamically evolve the system
- Using the LAMMPS code

Modelling Methods – Molecular Dynamics

Ab Initio MD feasible, but generally use force field approaches

Green Kubo

- Considers Crystal is in equilibrium
- Calculates heat flux
- Slow to converge
- 3 D approach
- [1] A. Torres-Sánchez, J. M. Vanegas, and M. Arroyo, Phys. Rev. Lett., 114, p. 258102, Jun 2015, doi: 10.1103/PhysRevLett.114.258102.
- [2] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, The Journal of Chemical Physics, 103(19), p. 8577, 1995, doi: http://dx.doi.org/10.1063/1.470117.
- [3] R. Zwanzig, Annual Review of Physical Chemistry, 16(1), p. 67, 1965, doi: 10.1146/annurev.pc.16.100165.000435.

Non-Equilibrium MD

- 1 D approach,
- gives higher values than GK

[4] F. Müller-Plathe, The Journal of Chemical Physics, 106(14), p. 6082, 1997, doi: http://dx.doi.org/10.1063/1.473271.
[5] D. Bedrov and G. D. Smith, The Journal of Chemical Physics, 113(18), p. 8080, 2000, doi: http://dx.doi.org/10.1063/1.1312309.
[6] T. W. Sirk, S. Moore, and E. F. Brown, The Journal of Chemical Physics, 138(6), p. , 2013, doi: http://dx.doi.org/10.1063/1.4789961.
[7] B.-Y. Cao, The Journal of Chemical Physics, 129(7):074106, 2008, doi: http://dx.doi.org/10.1063/1.2969762.

Green-Kubo Method

- A dynamical method of calculating thermal conductivity from a system in <u>EQUILIBRIUM</u>.
 - Avoids problems involved with imposing temperature gradients
 - Includes all anharmonicity explicitly (rather than to some low level approximation as found in lattice dynamics)
- Calculate the heat-flux of the system every few timesteps during a long simulation (5-20 ns)
- Autocorrelate the heat-flux in each dimension
- Integrate the autocorrelations and multiply by constants to get the thermal conductivity
 - Gives the thermal conductivity in each dimension from a <u>SINGLE</u> calculation

The Heat-Flux

J = Heat flux e_i = per-atom energy v_i = per-atom velocity S_i = per-atom stress f_{ij} = force between atom i and j r_{ii} = distance between atom i and j

M.S. Green , J. Chem. Phys., 1954, 22, 398.

The Heat-Flux

- We have access to these quantities from the MD simulation time integration!
- Often easiest to output the heat-flux during the simulation and post-process the data
 - Avoids having to keep every heat-flux sample in memory
 - Heat-flux data from a restarted simulation can simply be appended
 - Decision of integral length can be delayed
 - Different autocorrelation integration methods can be tried

Autocorrelation

Autocorrelation (fine detail)

Thermal Conductivity

- Integrate the autocorrelation and multiply by constants
- How far?
 - Until converged
 - Difficult to specify
- Can obtain thermal conductivity as a function of autocorrelation length
 - Useful for finding point of convergence

$$\boldsymbol{\kappa} = \frac{s\Delta t}{Vk_BT^2} \int_0^\infty \langle \boldsymbol{J}(0) \cdot \boldsymbol{J}(t) \rangle \Delta t$$

s = sampling interval Δt = simulation timestep V = system volume k_B = Boltzmann's constant T = system temperature J = Heat flux

Thermal Conductivity as a Function of Integral Length

Examples

• MgO as a function of temperature

Molecular Dynamics Summary

- Strength is that treats anharmonicity and can deal with very large simulation cells.
- Weakness is that it does not explicitly consider k space.
- Different sized simulation cells allow different wavelength phonons
 - Larger cells allow more longer wavelength phonons to exist
 - However, phonons of shorter wavelength may be forbidden if not commensurate with simulation cell length
- Sampling frequency is important
 - Choose the sampling interval carefully!
 - Too frequent SLOW
 - Too infrequent INACCURATE
 - Must capture the highest frequency phonon involved in scattering
 - Every ~10 fs usually suffices

Summary

- To obtain reliable results you need to be aware of the phonon dispersion, i.e. it is virtually impossible to calculate the complete dispersion curve in every direction – so is you supercell or choice of k (or q) vectors appropriate?
- If you favour using DFT, then lattice dynamics is currently the best established approach, but for most researchers limits the number of atoms to less than 100 atoms (at present), particularly if calculating phonon-phonon interactions.
- If interested in complex microstructures, i.e. understanding the influence of say, nanostructuring and additives, then molecular dynamics using force field methods is best placed. Although need to check force field against expt (and/or DFT).

Acknowledgements

- Thanks to Jonathan Skelton and Stephen Yeandel for data shown
- Codes
- Lattice Dynamics
 - VASP: <u>https://www.vasp.at/</u>
 - Phonopy: <u>http://phonopy.sourceforge.net/</u>
- Molecular Dynamics
 - LAMMPS: <u>http://lammps.sandia.gov/</u>
 - DL_POLY: <u>http://www.ccp5.ac.uk/</u>