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Microscopic view
• Heat is transferred by conduction when adjacent atoms or molecules 

collide.

• Conduction is greater in solids because the close proximity of atoms 
helps them to transfer energy between them by vibration.

• Hence, KEY: simulating molecular vibrations 

A collective vibration of atoms in the crystal forms a wave of allowed 
wavelength and amplitude. 

Just as light expresses wave motion that is considered as composed of 
particles called photons, we can think of the normal modes of vibration 

in a solid as being particle-like. Quantum of lattice 
vibration is called the phonon. 



Thermoelectric Figure of Merit

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝐸𝑙𝑒𝑐 + 𝜅𝐿𝑎𝑡𝑡

Figure of merit

Seebeck coefficient
Electrical conductivity

Electronic + lattice
thermal conductivity

The contribution of a phonon mode to the thermal conductivity, 𝜿𝑳𝒂𝒕𝒕, 
equals 
(i) how much energy can be stored in it [modal heat capacity] 
multiplied by 
(ii)   how fast it propagates through the material [group velocity] 
multiplied by 
(iii)  how long it lives before being scattered [lifetime].

Microscopic view: 𝜿𝑳𝒂𝒕𝒕



Uniform Solid
In a uniform solid material 
comprised  of atoms arranged 
in a regular lattice the 
interactions between them 
mean that they cannot vibrate 
independently. 

These vibrations take the form 
of collective modes which 
propagate through the 
material. 

There will be 3N modes, 
where N is the number of 
atoms in the unit cell.

(X-1) (X) (X+1)



One Atom per unit cell

• 3 Vibrational Models

• Acoustic / Travelling Waves

Transverse wave x2

Longitudinal wave



Propagating lattice vibrations can be considered to be 
sound waves, and their propagation speed is the speed of 
sound in the material.
And may be different in different directions

Phonon:
Sound
Wavepackets

Acoustic Wave

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/souspe2.html#c1


Solid is a periodic array of atoms and there are 
constraints on both the minimum and maximum 
wavelength associated with a vibrational mode.



Wave Vectors, k

• It is usually convenient to consider phonon wave vectors 
k which have the smallest magnitude (|k|) in their 
"family". The set of all such wave vectors defines the first 
Brillouin zone. 

• Additional Brillouin zones may be defined as copies of 
the first zone, shifted by some reciprocal lattice vector.

http://en.wikipedia.org/wiki/Brillouin_zone


1st Brillouin Zone
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Wave Vectors, k
• One atom per unit cell

• Slope is speed of sound

• Longitudinal waves travel faster than transverse (slope of LA bigger 
than slope of TA)



Wave Vectors, k

• One atom per unit cell
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N Atoms per cell

• Acoustic phonons occur when wave numbers are small (i.e. 
long wavelengths) and correspond to sound transmission in 
crystals.  Acoustic phonons vary depending on whether they 
are longitudinal or transverse

• "Optical phonons," which arise in crystals that have more than 
one atom in the unit cell. They are called "optical" because in 
ionic crystals are often excited by light (e.g. by infrared 
radiation in NaCl). 



N Atoms per cell

• 3N vibrational branches, 

• 3 Acoustic  (1LA + 2TA)

• 3N-3 Optic (N-1 Longitudinal Optic (LO) + 2N-2 Transverse Optic (TO))

bound pair



N Atoms per cell

• 3N vibrational branches, 

• 3 Acoustic  (1LA + 2TA)

• 3N-3 Optic (N-1 Longitudinal Optic (LO) + 2N-2 Transverse Optic (TO))

• Different behaviour in different directions

Calculated phonon dispersion relation
of GaAs (zincblende structure)

Adapted from: 
H. Montgomery, “ The symmetry of lattice vibrations in zincblende and diamond structures”, Proc. Roy. Soc. A. 309, 521-549 (1969) 

http://www.jstor.org/stable/2416101?origin=JSTOR-pdf


Summary

• To get a good description of the vibrational frequencies 
in a solid we need to be able to calculate the frequency 
at different wave vectors, k.

• The calculation of this dependence called Lattice 
Dynamics

• In general, the challenge for simulation is to represent 
this diversity.



 A theoretical framework for modelling the phonons in periodic 
solids

… and what can we do with it?

 Get an atomistic view of thermal motion in crystals - e.g. 
displacement ellipsoids in X-ray structures

 Simulate vibrational spectra - e.g. IR, Raman, THz…

 Study thermodynamics - contributions to free energy and 
entropy

 Model structure and properties at finite temperature - thermal 
expansion, bulk moduli, etc.

 Understand certain types of phase transitions

 Calculate transport properties (e.g. thermal conductivity)

What is lattice dynamics… ?



 The simplest quantum-mechanical model for vibrations - but it works

Phonons modelled as waves with an 
associated reciprocal-space wavevector k
(3N modes/k-point)

𝑭 = −𝜇𝜔2(𝒓 − 𝒓0)

𝑈 =
1

2
𝜇𝜔2 𝒓 − 𝒓0

2

𝐸𝑛 = 𝑛 +
1

2
ħ𝜔

Models a crystal with 3N atoms in the 
unit cell as 3N independent oscillators

Can calculate using standard electronic structure codes:
e.g. VASP, Wien2k, Abinit, Pwscf
NOTE:  convention – use q for phonons and k for electrons 

The harmonic approximation



 The key thing we need to calculate are the force-constant matrices

In principle, need to displace 
every atom forward and 
backward along x, y and z, but 
this can be reduced by symmetry

 The most straightforward way to do this is by physically moving atoms a 
small distance from their equilibrium position, and computing the forces

Φ𝛼𝛽 𝑖𝑙, 𝑗𝑙
′ = −

𝜕𝐹𝛼(𝑖𝑙)

𝜕𝑟𝛽(𝑗𝑙
′)

Phonopy: phonon code (http://phonopy.sf.net)

The finite-displacement method



Supercells

• To be sure of reproducing the dispersion curves need to 
consider larger supercells (e.g. 4 times the unit cell size 
would give 4 sets of points).

Single unit cell Doubled unit cell

Red: Calculated frequencies



Phonon band structure of Ti3SiC2

Togo et al., Phys. Rev. B 81, 174301 (2010)

Localized bands at ~5 THz



J. M. Skelton et al., APL Materials 3, 041102 (2015)

Modelling vibrational spectra: Cu2ZnSnS4

J Skelton



 Finite 𝜅𝐿𝑎𝑡𝑡 arises from phonon-phonon interactions, and to model 
these we need to evaluate the third order force constants:

 Similar computational requirements to a harmonic calculation, but need 
to run force calculations on many more displaced structures

System # Atoms (SC) # Disp 2nd # Disp 3rd (2x2x2 SC)

PbTe 2 (16) 2 62

Cu2ZnSnS4 8 (64) 14 5,390

cMAPbI3 12 (96) 72 41,544







Φ𝛼𝛽γ 𝑖𝑙, 𝑗𝑙
′, 𝑘𝑙′′ = −

𝜕𝐹𝛼(𝑖𝑙)

𝜕𝑟𝛽(𝑗𝑙
′)𝜕𝑟γ(𝑘𝑙

′′)

Calculating 𝜿𝑳𝒂𝒕𝒕

J Skelton



J. M. Skelton et al., APL Materials 3, 041102 (2015)

Quaternary semiconductors as 
thermoelectrics?

J Skelton



Φ𝛼𝛽 𝑖𝑙, 𝑗𝑙′ =
𝜕2𝐸

𝜕𝑟𝛼(𝑙)𝜕𝑟𝛽(𝑙
′)
= −
𝜕𝐹𝛼(𝑖𝑙)

𝜕𝑟𝛽(𝑗𝑙′)

Φ𝛼𝛽 𝑖𝑙, 𝑗𝑙′ ≈ −
𝐹𝛼(𝑖𝑙)

∆𝑟𝛽(𝑗𝑙′)

𝐷𝛼𝛽 𝑖, 𝑗, 𝐪 =
1

𝑚𝑖𝑚𝑗
 

𝑙′

Φ𝛼𝛽 𝑖0, 𝑗𝑙
′ exp[𝑖𝐪. (𝒓 𝑗𝑙′ − 𝒓(𝑖0))]

• The force constant matrices Φ𝛼𝛽(𝑖𝑙, 𝑗𝑙′) can be calculated by phonopy from finite-

displacement calculations, or directly from some codes using e.g. internal DFPT or finite-
differences

Force-constant matrix:

From finite differences:

Dynamical matrix:

Sum over atom 𝑗 in adjacent unit 
cells 𝑙′ -> supercell expansion to 
improve accuracy

𝑒 𝐪 . Ω 𝐪 = 𝐷 𝐪 . 𝑒(𝐪)After diagonalisation:

“Practical” Theory



[Hopefully digestible] theory

• Start from the top, and work backwards...:

𝜿𝐿 (𝑇) =
1

𝑁𝑉0
 

λ

𝐶𝑉,λ(𝑇)𝒗λ⊗𝒗λ𝜏λ(𝑇)

𝜿𝐿 (𝑇) := lattice thermal conductivity

𝐶𝑉,λ(𝑇) := modal (const. 𝑉) heat capacity

𝒗λ := mode group velocity

𝜏λ(𝑇) := mode lifetime

λ := phonon mode (w/ associated 𝜔λ and 𝐪λ)

⊗ := tensor product

[Single-Mode Relaxation Time Model]



[Hopefully digestible] theory

• The modal heat capacity 𝐶𝑉,λ and group velocity 𝒗λ are harmonic quantities:

𝜿𝐿 (𝑇) =
1

𝑁𝑉0
 

λ

𝐶𝑉,λ(𝑇)𝒗λ⊗𝒗λ𝜏λ(𝑇)

𝐶𝑉,λ = 𝑘𝐵
ћ𝜔λ
𝑘𝐵𝑇

2
exp(ћ𝜔λ/𝑘𝐵𝑇)

[exp ћ𝜔λ/𝑘𝐵𝑇 − 1]
2

𝒗λ =
𝜕𝜔λ
𝜕𝐪

𝜔λ := phonon frequency

𝑛λ(𝑇) := phonon occupation number

𝑛λ(𝑇) =
1

exp ћ𝜔λ/𝑘𝐵𝑇 − 1



[Hopefully digestible] theory

• The mode lifetimes, 𝜏𝐪λ(𝑇), come from the phonon linewidths, which are the imaginary 

parts of the self energies in MBPT

𝜏λ(𝑇) =
1

2Γλ(𝜔λ, 𝑇)

ϕ−λλ′λ′′ := three-phonon interaction strength

Γλ(𝜔, 𝑇) =
18𝜋

ћ2
 

λ′λ′′

ϕ−λλ′λ′′
2

× { 𝑛λ′(𝑇) + 𝑛λ′′(𝑇) + 1 𝛿 𝜔 − 𝜔λ′ − 𝜔λ′′

+ 𝑛λ′(𝑇) − 𝑛λ′′(𝑇) 𝛿 𝜔 + 𝜔λ′ − 𝜔λ′′ − 𝛿 𝜔 − 𝜔λ′ + 𝜔λ′′ }

Phonon occupation
numbers

Conservation of
energy

Self-energy expression is defined for all 𝜔,
not just 𝜔λ, but 𝜔λ does enter into ϕ−λλ′λ′′



[Hopefully digestible] theory

• Finally, the three-phonon interactions can be obtained from the third-order interatomic 
force-constant matrices (IFCs), ϕ𝛼𝛽𝛾(0𝑗, 𝑙

′𝑗′, 𝑙′′𝑗′′)

× 

𝑙′𝑙′′

ϕ𝛼𝛽𝛾(0𝑗, 𝑙
′𝑗′, 𝑙′′𝑗′′)𝑒𝑖𝐪

′[𝐫 𝑙′𝑗′ −𝐫 0𝑗 ]𝑒𝑖𝐪
′′[𝐫 𝑙′′𝑗′′ −𝐫 0𝑗 ]

× 𝑒𝑖 𝐪+𝐪
′+𝐪′′ .𝐫 0𝑗 ∆ 𝐪 + 𝐪′ + 𝐪′′

ϕλλ′λ′′ =
1

𝑁

1

3!
 

𝑗𝑗′𝑗′′

 

𝛼𝛽𝛾

𝑊𝛼(𝑗, λ)𝑊𝛽(𝑗
′, λ′)𝑊𝛾(𝑗

′′, λ′′)

×
ћ

2𝑚𝑗𝜔λ

ћ

2𝑚𝑗′𝜔λ′

ћ

2𝑚𝑗′′𝜔λ′′

Sum over
atoms

Sum over Cartesian
coordinates

Phonon
eigenvectors

1 if the sum is a reciprocal lattice
vector, 0 otherwise; imposes conservation
of momentum

Atomic
positions



Lattice Dynamics: Summary

• Strength is that it is generally based on the quantised 
harmonic oscillator, and the vibrational frequencies can be 
calculated directly from the dynamical matrix.

• Strength is that can be used to calculate a wide range of 
properties, and investigate phase stability, spectroscopy. 

• Strength is that can easily be used in conjunction with DFT 
codes.

• Weakness is that it misses intrinsic anharmonicity (although 
work is ongoing to include these terms, e.g. self consistent 
phonon theory: x4…) and dynamical matrix (3N x 3N) 
(N=number of atoms in cell) can become to be too large for 
routine computation.

• An approach which includes intrinsic anharmonicity and can 
be readily applied to large systems is via Molecular Dynamics..



Modelling Methods – Molecular 
Dynamics

• Acceleration calculated from 
particle interactions

• Atom positions updated 
based on current velocities 
and calculated accelerations

• Repeat in a series of discrete 
“timesteps” (∆t) to 
dynamically evolve the 
system

• Using the LAMMPS code

S.J. Plimpton, JOURNAL OF COMPUTATIONAL PHYSICS, 117, 1, 1, 1995. http://lammps.sandia.gov

http://lammps.sandia.gov/


Modelling Methods – Molecular 
Dynamics

• Non-Equilibrium MD

• 1 D approach, 

• gives higher values than GK

• Green Kubo

• Considers Crystal is in 
equilibrium

• Calculates heat flux

• Slow to converge

• 3 D approach

Ab Initio MD feasible, but generally use force field approaches



Green-Kubo Method

• A dynamical method of calculating thermal conductivity 
from a system in EQUILIBRIUM.
• Avoids problems involved with imposing temperature gradients
• Includes all anharmonicity explicitly (rather than to some low 

level approximation as found in lattice dynamics)

• Calculate the heat-flux of the system every few timesteps 
during a long simulation (5-20 ns)

• Autocorrelate the heat-flux in each dimension
• Integrate the autocorrelations and multiply by constants 

to get the thermal conductivity
• Gives the thermal conductivity in each dimension from a SINGLE 

calculation

M.S. Green , J. Chem. Phys., 1954, 22, 398.



The Heat-Flux

M.S. Green , J. Chem. Phys., 1954, 22, 398.

J = Heat flux
ei = per-atom energy
vi = per-atom velocity
Si = per-atom stress
fij = force between atom i and j
rij = distance between atom i and j



The Heat-Flux

• We have access to these quantities from the MD simulation 
time integration!

• Often easiest to output the heat-flux during the simulation 
and post-process the data
• Avoids having to keep every heat-flux sample in memory
• Heat-flux data from a restarted simulation can simply be appended
• Decision of integral length can be delayed
• Different autocorrelation integration methods can be tried

M.S. Green , J. Chem. Phys., 1954, 22, 398.

J = Heat flux
ei = per-atom energy
vi = per-atom velocity
Si = per-atom stress
fij = force between atom i and j
rij = distance between atom i and j



Autocorrelation
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Autocorrelation (fine detail)
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•Fluctuations in heat-flux are well 
sampled
•Simple numerical integration 
should be sufficient to obtain good 
thermal conductivities

•i.e. Trapezoidal rule



Thermal Conductivity

• Integrate the autocorrelation 
and multiply by constants

• How far?

• Until converged

• Difficult to specify

• Can obtain thermal 
conductivity as a function of 
autocorrelation length

• Useful for finding point of 
convergence

s = sampling interval
Δt = simulation timestep
V = system volume
kB = Boltzmann’s constant
T = system temperature
J = Heat flux



Thermal Conductivity as a 
Function of Integral Length
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DP Sellan et al, Phys. Rev. B, 81, 2010, 214305.

Convergence

If not converged a longer or larger 
simulation may be required!

S Yeandel



Examples

• MgO as a function of temperature

S Yeandel



Molecular Dynamics Summary
• Strength is that treats 

anharmonicity and can deal with 
very large simulation cells.

• Weakness is that it does not 
explicitly consider k space.

• Different sized simulation cells allow 
different wavelength phonons
• Larger cells allow more longer wavelength 

phonons to exist
• However, phonons of shorter wavelength may 

be forbidden if not commensurate with 
simulation cell length

• Sampling frequency is important
• Choose the sampling interval carefully!

• Too frequent - SLOW
• Too infrequent – INACCURATE

• Must capture the highest frequency phonon 
involved in scattering

• Every ~10 fs usually suffices



Summary

• To obtain reliable results you need to be aware of the phonon 
dispersion, i.e. it is virtually impossible to calculate the 
complete dispersion curve in every direction – so is you 
supercell or choice of k (or q) vectors appropriate?

• If you favour using DFT, then lattice dynamics is currently the 
best established approach, but for most researchers limits the 
number of atoms to less than 100 atoms (at present), 
particularly if calculating phonon-phonon interactions.

• If interested in complex microstructures, i.e. understanding 
the influence of say, nanostructuring and additives, then 
molecular dynamics using force field methods is best placed. 
Although need to check force field against expt (and/or DFT).
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