
Link to published version (if available): 10.1111/modl.12185

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work breaches copyright law please contact open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an initial judgement of the validity of the claim and, where appropriate, withdraw the item in question from public view.
Does a Speaking Task Affect Second Language Comprehensibility?

DUSTIN CROWTHER
Michigan State University
Department of Linguistics & Germanic
Slavic, Asian, and African Languages
500 West Lake Lansing Road A17
East Lansing, MI 48823
Email: crowth14@msu.edu

PAVEL TROFIMOVICH
Concordia University
Department of Education
1445 de Maisonneuve Blvd. West
Montreal, Quebec
Canada H3G 1M8
Email: pavel.trofimovich@concordia.ca

TALIA ISAACS
University of Bristol
Graduate School of Education
35 Berkeley Square, Bristol
United Kingdom BS8 1JA
Email: Talia.Isaacs@bristol.ac.uk

KAZUYA SAITO
Waseda University
School of Commerce
1-6-1 Nishi Waseda
Shinjuku, Tokyo
Japan 169-8050
Email: kazuya.saito@waseda.jp

The current study investigated task effects on listener perception of second language (L2) comprehensibility (ease of understanding). Sixty university-level adult speakers of English from 4 first language (L1) backgrounds (Chinese, Romance, Hindi, Farsi), with 15 speakers per group, were recorded performing 2 tasks (IELTS long-turn speaking task and TOEFL iBT integrated listening/reading and speaking task). The speakers’ audio recordings were evaluated using continuous sliding scales by 10 native English listeners for comprehensibility as well as for 10 linguistic variables drawn from the domains of pronunciation, fluency, lexis, grammar, and discourse. In the IELTS task, comprehensibility was associated solely with pronunciation and fluency categories (specifically, segmentals, word stress, rhythm, and speech rate), with the Farsi group being the only exception. However, in the cognitively more demanding TOEFL iBT integrated task, in addition to pronunciation and fluency variables, comprehensibility was also linked to several categories at the level of grammar, lexicon, and discourse for all groups. In both tasks, the relative strength of obtained associations also varied as a function of the speakers’ L1. Results overall suggest that both task and speakers’ L1 play important roles in determining ease of understanding for the listener, with implications for pronunciation teaching in mixed L1 classrooms and for operationalizing the construct of comprehensibility in assessments.

Keywords: comprehensibility; task; phonology; fluency; lexis; grammar; pronunciation learning and teaching

THE IMPORTANCE OF INTERNATIONAL trade and education, combined with the ever-growing interest in global popular culture and social media, has underscored the need for speakers to achieve communicative success in multiple languages. Thus, understanding various subcomponents of second language (L2) speaking ability, specifically those contributing to communicative success, has emerged as a chief goal for both language researchers and teachers. With regard to L2 pronunciation, two competing principles have been put forth (Levis, 2005). The first, nativeness, refers to speakers’ ability to approximate speech patterns of the target language community, often measured through accentedness ratings.
The second, understanding, denotes speakers’ ability to make themselves understood, usually operationalized as comprehensibility and measured through ratings of listeners’ ease or difficulty of understanding L2 speech.

Although L2 teachers and students frequently see the acquisition of natelike, accent-free pronunciation as the ultimate goal of learning (Derwing, 2003; Tokumoto & Shibata, 2011), many proponents of pronunciation have argued for a greater focus on comprehensible speech, as opposed to minimizing first language (L1) influence through accent reduction in instruction and assessment (Derwing & Munro, 2009; Harding, 2013; Levis, 2005). Following this argument, recent research has shown that comprehensible speech is associated with many linguistic factors, spanning the domains of phonology, fluency, lexis, and grammar (Crowther et al., 2013; Saito, Trofimovich, & Isaacs, 2015a; Trofimovich & Isaacs, 2012). However, the above studies share one serious limitation, namely, a focus on a single task—a picture narrative often used to elicit speech from L2 speakers (e.g., Trofimovich & Isaacs, 2012)—despite evidence that linguistic resources needed for speakers to successfully complete a task depend on several variables, including task formality and complexity (Kormos, 2006; Robinson, 2005; Segalowitz, 2010; Skehan, 2009). Furthermore, task effects are a systematic source of variance in L2 speaker performance that could affect scoring outcomes in rated assessment (Upshur & Turner, 1999). Therefore, the goal of this study was to examine whether and to what extent linguistic correlates of comprehensibility depend on the speaking task used to elicit L2 speech. In particular, this study focused on tasks (IELTS long-turn speaking task, TOEFL iBT integrated listening/reading task) that were more appropriate, compared to picture narratives, for use with university students, as these tasks more closely approximate the demands of language use in higher education.

A CASE FOR COMPREHENSIBILITY

The two competing views of L2 pronunciation, termed the nativeness and the intelligibility principles (Levis, 2005), have been the focus of substantial research (see Munro & Derwing, 2011). The nativeness principle highlights native-like, unaccented L2 pronunciation as a desirable learning and teaching goal, an idea shared by many L2 speakers and their interlocutors, although attitudes toward nativeness might be slowly changing, particularly in lingua franca contexts (Jenkins, 2013). For example, in a survey of adult immigrants studying English in Canada, Derwing (2003) found that 95% desired to sound like a native speaker, and 59% of the visible minority learners within the group felt that nonaccented pronunciation would garner them more respect from Canadians. A similar survey of university students from Tokumoto and Shibata (2011) revealed that 68% of the Japanese and 59% of the Korean participants studying in their home country thought that their accented English limited their ability to communicate effectively. These concerns are not unfounded. Munro (2003) identified stereotyping, harassment, and even job loss as ramifications of speaking with an accent, for example, with landlords informing accented speakers that vacant apartments were unavailable or coworkers mimicking accents as a means of ridicule.

In contrast, the intelligibility principle emphasizes L2 speakers’ ability to be understood, which is possible even in the presence of a noticeable accent (Derwing & Munro, 1997, 2009). Key to this principle are the constructs of intelligibility and comprehensibility which, though related, reveal different information. Operationalized through scalar ratings, comprehensibility is a measure of listeners’ perceived ease or difficulty of understanding L2 speech, while intelligibility is intended to capture listeners’ actual understanding, often through the use of orthographic transcriptions of speech (Munro & Derwing, 1999) or comprehension questions related to its content (Hahn, 2004). Despite the focus of intelligibility on listeners’ actual understanding, most real world applications of this construct, which include high stakes language tests such as IELTS and TOEFL, involve scalar ratings. In this sense, comprehensibility represents a commonplace, practical metric of listener understanding in both research and real world assessment contexts (Isaacs & Trofimovich, 2012; Levis, 2005). While individual learners’ desire to sound natelike cannot be ignored, there are factors beyond learners’ control that affect their ability to attain accent-free, natelike pronunciation. In actuality, adult learners rarely pass for native speakers (Bongaerts, 1999; Moyer, 1999) even if they begin learning at an early age (Flege, Munro, & MacKay, 1995), with accented L2 speech generally considered normal and often unavoidable (MacKay, Flege, & Imai, 2006; Major, 2001). In the rare instances where adult learners do demonstrate native or near-native pronunciation (Bongaerts, 1999; Moyer, 1999), there are usually
contributing circumstances, such as amount of exposure, motivation, and type of training, that are unlikely to apply consistently across learners. Comprehensibility, compared to nativelikeness, thus appears to be a more realistic L2 learning goal for consistently ensuring communicative success, especially because L2 speakers can be highly comprehensible and intelligible even if they are accented (Kang, Rubin, & Pickering, 2010; Munro & Derwing, 1999).

A focus on comprehensibility, rather than accent reduction or nativelikeness, also seems sensible from a theoretical perspective, particularly within the Interaction Hypothesis (Long, 1996). This view posits that language learning takes place as a result of interactional modifications in conversation. Whenever interlocutors encounter communication breakdowns due to language issues, they often resort to such discourse moves as clarification requests and confirmation checks to resolve the misunderstanding. L2 development is said to occur precisely during these moments, as L2 speakers’ attention is drawn to the various linguistic dimensions that may have caused the breakdown (Mackey & Goo, 2007). Assuming that some linguistic dimensions are more likely than others to cause communication breakdowns (Mackey, Gass, & McDonough, 2000), it is important to understand which dimensions are linked to comprehensibility, in order to help learners notice and repair their non-target-like production and ultimately foster their success in L2 communication.

COMPONENTS OF COMPREHENSIBLE SPEECH

If L2 speakers’ goal in most real world contexts is to participate in meaningful interactions, with the intent of making their message clear to interlocutors, prioritizing comprehensibility over nativelikeness is also logical from a practical perspective. However, even if learners and their teachers embrace comprehensibility as a goal, many of them are likely still unclear as to which linguistic factors in L2 speech contribute to making it comprehensible. Initial research analyzing linguistic influences on various measures of understanding, including comprehensibility, focused primarily on phonology and fluency. These studies revealed a variety of factors linked to making L2 speech intelligible and comprehensible, including word stress (Field, 2005), sentence stress (Hahn, 2004), speech rate (Munro & Derwing, 2001), as well as pitch range and pause or syllable length (Kang at al., 2010). Although limited, some evidence exists that poor grammar and inappropriate lexical choices compromise listener understanding (Fayer & Krasinski, 1987; Munro & Derwing, 1999).

More recently, researchers have focused on a combined contribution of multiple linguistic dimensions to comprehensibility. For example, analyzing the speech of 40 French speakers of English, Trofimovich and Isaacs (2012) targeted 19 coded linguistic measures (divided into phonology, fluency, lexis/grammar, and discourse categories). Comprehensibility was best defined through a combination of phonology (word stress), lexis (lexical richness), and grammar (grammatical accuracy). This finding was replicated in a follow-up study looking at the same speakers, but using 11 rated linguistic measures (Saito, Trofimovich, & Isaacs, 2013b). Once again, comprehensibility was associated with several variables (segmental errors, word stress, lexical richness and appropriateness, grammatical accuracy and complexity). This result was later extended to a sample of 120 Japanese speakers of English (Saito et al., 2015a) whose comprehensibility was again linked to pronunciation, fluency, lexis, and grammar. Thus, improving comprehensibility requires a focus on several linguistic domains not restricted to pronunciation and fluency.

However, recent research on comprehensibility shares one limitation, namely, a focus on a single task. For example, two of the studies mentioned used a picture-based narrative task to elicit L2 speech (Saito et al., 2015b; Trofimovich & Isaacs, 2012) while the third targeted individual picture descriptions (Saito et al., 2015a). Although picture-based tasks are common in L2 speech research (e.g., Derwing, Munro, & Thomson, 2008), allowing for comparisons of results across studies, they are not reflective of real world contexts, as opposed to tasks speakers may complete, for example, as part of the IELTS or TOEFL iBT proficiency exams, designed to measure their ability to pursue academic degrees in English (Chalhoub–Deville & Turner, 2000). Therefore, picture-based narrative tasks not only overlook learners’ real world communicative needs, they also likely reveal findings which are specific to the task itself.

TASK EFFECT ON COMPREHENSIBILITY

The idea that the language L2 speakers produce is task-dependent is certainly not new. For example, Dickerson (1975) showed that L2 users’ speech, like the speech output of the L1
participants in Labov’s (1966) study of postvocalic /r/ production, is variable and that this variability could also be predicted by the formality of the task. Over the past decades, numerous theoretical proposals have been proposed to explain how various aspects of task contribute to speakers’ L2 output, including Tarone’s (1983) Capability Continuum Model, Skehan’s (1998, 2009) Trade-Off Hypothesis, and Robinson’s (2001, 2005) Cognition Hypothesis. Tarone, for instance, proposed that the linguistic variables in L2 speech shift depending on task formality, ranging between a pidgin-like vernacular and a careful target-like style. Skehan argued that cognitively complex tasks create competing processing demands, leading to trade-offs between linguistic complexity and accuracy, while Robinson suggested that complex tasks, as opposed to cognitively less demanding ones, elicit more elaborate language as speakers strive to meet the greater demands placed upon them. Regardless of the theoretical position taken, different tasks impact multiple aspects of L2 output, from segments and prosody (Tarone, 1983) to grammar and lexicon (Robinson, 2001, 2005; Skehan, 1998, 2009). Because multiple linguistic dimensions are linked to comprehensibility (Saito et al., 2015a; Trofimovich & Isaacs, 2012), different tasks will draw on different linguistic resources as L2 speakers try to make themselves understood. With respect to L2 pronunciation, there is currently limited research targeting speech output in different tasks and no research focusing on comprehensibility. In terms of fluency, for example, Derwing et al. (2004) showed that L2 speakers receive higher fluency ratings in monologue- or dialogue-based tasks than in a picture narrative task. L2 speakers are also perceived as being more fluent in dialogue- than in monologue-based tasks (Ejzenberg, 2000), revealing a hierarchy in task types, with dialogue-based tasks producing the most and picture narratives eliciting the least fluent speech in terms of listeners’ perceptions. As picture narratives require speakers to describe objects and actions depicted in each image, perceived disfluencies in this task may be due to a search for vocabulary that learners might not know (Hilton, 2008), which should matter less in unstructured monologue- and dialogue-based tasks. In addition, picture narratives would suggest the use of a culturally bound storytelling discourse structure, which is not a constraint imposed by extemporaneous speech tasks, where speakers are at greater liberty to select the lexical items they wish to use (Martin & Rose, 2003).

Beyond fluency, task impacts both accuracy and complexity of L2 speech. For accuracy, Yuan and Ellis (2003) found that L2 speakers who had sufficient time for task completion, compared to those who did not, could use appropriate vocabulary with correct grammar, likely because planning time with little communicative pressure allowed speakers to monitor their speech. Similarly, L2 pronunciation research has shown that the production of /θ/ by Chinese speakers of English follows the same hierarchy as that established by Dickerson (1975) with read-aloud tasks eliciting more accurate production of L2 segments than more spontaneous tasks, such as storytelling and interviews (Rau, Chang, & Tarone, 2009). With respect to complexity, for example, Skehan and Foster (1997) found that narrative-based tasks generated more accuracy and less complexity in L2 utterances, whereas tasks that required some form of decision (e.g., giving advice to people with personal problems) generated more complexity but less accuracy. Robinson (2001) also showed L2 speakers producing greater lexical variation in a more complex version of a map task (giving directions based on a large map of an unfamiliar location), compared to its less complex version (smaller map of a well-known location). In essence, task complexity appears to lead to accuracy–complexity trade-offs in vocabulary and grammar while the availability of planning time positively impacts speech accuracy.

THE CURRENT STUDY

Clearly, when considering linguistic measures that underlie comprehensibility, the importance of task cannot be ignored, especially because many linguistic dimensions of speech shown to vary by task (individual segments, aspects of fluency, lexicogrammar) have also been linked to comprehensibility (Trofimovich & Isaacs, 2012). Given that prior research on comprehensibility has been mostly limited to a single task, it remains to be seen whether these associations will hold across tasks. Therefore, the current study addressed this issue by investigating the effect of speaking task on the relationship between comprehensibility and various linguistic dimensions of L2 speech. The following research question guided the study:

RQ. Do relative contributions of various linguistic dimensions of L2 speech to comprehensibility vary as a function of the speaking task performed?
To address this question, the speech of 60 L2 English learners completing two tasks was audio-recorded and then rated for comprehensibility and analyzed for 10 linguistic dimensions by 10 native speaker listeners. Because all speakers were students at an English-medium university, the tasks required them to use skills targeted by the two tests most frequently used for university admission purposes in North America (TOEFL iBT, IELTS), which ensured that the speakers engaged in tasks thought to predict their ability to use academic English and reflect at least some demands of their daily English use arguably to a greater extent than cartoon-style picture narrative tasks. Most importantly, the tasks differed along several dimensions, such as planning time, familiarity of task elements, as well as causal and intentional reasoning, and perspective-taking.

METHOD

Participants

Speakers. Participants were 60 L2 speakers drawn from an unpublished corpus of 143 speakers from 19 linguistic backgrounds completing 5 tasks (Isaacs & Trofimovich, 2011). All speakers were in their first semester of studies as undergraduate (n=29) or graduate (n=31) students at an English-medium Canadian university. They were assigned to one of four groups (n=15) based on native language (L1) background to disentangle task effects from possible L1 influences on comprehensibility, since linguistic dimensions of L2 speech are known to be L1-specific (e.g., Eckman, 2004; Escudero & Boersma, 2004; Flege, 2003). The groups included speakers of Mandarin Chinese, Hindi/Urdu, Farsi, and Romance languages. The Chinese, Hindi/Urdu (Dravidian languages, which differ in script only), and Farsi groups represented the three largest cohorts in the original corpus (with 15, 17, and 32 speakers, respectively). The Romance group included all speakers of French (10) and Spanish (5), which come from the same language family and share a syllable-timed rhythm (Jun, 2005). The four L1s also crucially differ in their segmental inventories (e.g., Duanmu, 2007; Shackles, 2001; Wilson & Wilson, 2001) as well as prosody, particularly in terms of rhythm, thus allowing for direct comparisons between the speakers of syllable-timed French tested by Trofimovich and Isaacs (2012) and the speakers of non-Romance syllable-timed Hindi (Shackles, 2001), stress-timed Farsi (Jun, 2005), and tonal Chinese (Jun, 2005). Apart from gender composition in the Hindi/Urdu group (which reflected the gender distribution of Hindi/Urdu speakers in the larger university community), the speakers were matched as much as possible for several background variables, summarized in Table 1. Although minor differences existed across groups in self-ratings of speaking and listening and self-reported L2 use, there were no significant differences across the groups in TOEFL or IELTS overall scores (i.e., objective measures of proficiency), Fs < 1.67, p > .20, or listening and speaking subscores, Fs < 2.23, p > .11.

Raters. Ten native English speakers, with a mean age of 32.7 years (range: 25–56), participated as experienced raters. They were current students (n=9) or recent graduates (n=1) of advanced degrees in applied linguistics (7 MA, 3 PhD), and had on average 6.6 years of L2 teaching experience (range: 1–23). Experienced raters were chosen over inexperienced ones because the former have shown greater consistency in evaluating complex and less intuitive linguistic categories in a similar rating task (Saito et al., 2015b). All raters were raised in English-speaking homes, with at least one parent a native speaker, and reported using English 89% of the time daily.

| TABLE 1
L2 Speakers’ Background Characteristics by L1 Group (Means and Standard Deviations) |
|---------------------------------+------------+------------+------------+------------|
Background Variable	Chinese	Hindi/Urdu	Farsi	Romance
Gender (m/f)	6/9	14/1	9/6	9/6
Age	22.5 (2.9)	23.5 (2.0)	25.2 (2.4)	21.4 (3.3)
Years of English study	10.3 (2.9)	14.5 (6.0)	8.5 (4.8)	11.1 (4.3)
Years in Canada	0.7 (0.3)	0.4 (0.2)	0.4 (0.2)	0.6 (0.3)
TOEFL iBT total score	84.8 (5.9)	92.6 (4.8)	87.8 (7.1)	82.0 (8.5)
IELTS total score	6.3 (0.5)	6.7 (0.6)	6.8 (0.4)	7.0 (0.5)
Speaking abilitya	5.6 (1.2)	7.1 (1.1)	5.7 (1.0)	6.4 (1.1)
Listening abilitya	5.9 (1.4)	8.0 (0.8)	6.9 (0.9)	7.6 (1.0)
English use at homeb	17.0 (16.9)	40.0 (26.5)	21.0 (34.1)	29.3 (32.8)
English use at schoolb	72.7 (21.5)	83.5 (20.6)	50.0 (30.5)	79.3 (27.1)

Note. aSelf-rating on a 1–9 scale (1 = extremely poor, 9 = extremely fluent). bSelf-rating on a 0–100% scale.
(range: 80–100%). Because listeners’ familiarity with L2 speech can impact their judgments, only the raters who reported high familiarity with accented English were selected.1 As a group, they estimated their experience with accented English at 8.6 (range: 7–9) on a 9-point scale (1 = not at all familiar, 9 = very familiar).

Speaking Tasks

The speakers in the original corpus completed five tasks, administered in eight randomized orders, distributed equally across speakers: a read-aloud task, a picture narrative task, an IELTS long-turn speaking task, a TOEFL iBT integrated task, and a Test of Spoken English graph-based interpretation task. Of these, two were selected for the comparison of task effects: the IELTS long-turn task (hereafter, the IELTS task) and the TOEFL iBT integrated task (hereafter, the TOEFL task). First, both tasks are part of high-stakes instruments used to make critical decisions about nonnative applicants’ ability to pursue academic studies in higher education (Chalhoub-Deville & Turner, 2000). Considering the high stakes attached to language performance in both tasks in real world assessment settings, it is therefore important to investigate how differences between the two tasks may affect L2 comprehensibility. Second, according to Robinson’s (2007) framework of task classification, the tasks draw on different sets of cognitive resources, with the TOEFL task being cognitively more complex than the IELTS task. Briefly, the IELTS task required reference to some familiar elements and spatial locations (+ few elements, + known spatial relationships), without the need for reasoning about causal events and relationships or people’s intentions and beliefs (− causal and intentional reasoning), and no requirement to depart from a first-person narrative (− perspective-taking). In contrast, the TOEFL task targeted unfamiliar factual and spatial information (− few elements, − known spatial relationships) and required reasoning and perspective-taking (+ causal and intentional reasoning, + perspective-taking).

Third, the two tasks differed in amount of planning (both before and during the task). Whereas the IELTS task allowed speakers to take notes before beginning their response (1 min) and to speak without much time pressure (2 min), the TOEFL task imposed a time limit for both pre-task (30s) and online (1 min) planning. Finally, the two tasks differed in the extent to which they involved a human interlocutor. The IELTS task exemplified a dialogic, direct test which assessed speaking through face-to-face oral communication with an interviewer, although the interviewer’s role was limited. In contrast, the TOEFL task was a monologic, semi-direct test, which included a machine-mediated assessment involving a test taker speaking into a recording device (Ellis, 2001; Qian, 2009). In sum, the tasks differed in the cognitive load they imposed on the speaker, with the IELTS task being a less demanding face-to-face speaking task, compared with the TOEFL task, which not only placed higher cognitive demands on speakers but also engaged them in monologic performance, without the need to interact with a human interlocutor.

Both tasks used publicly available versions of sample test materials (Educational Testing Service, 2006; IELTS, 2009; Jakeman & McDowell, 2008). The IELTS task assesses a test taker’s ability to speak from a written prompt. Following IELTS procedures, the speakers received a card with their assigned topic and suggestions of possible discussion points. Two task prompts were used (describe a sports event you enjoyed watching or describe a job you would like to do in the future), with half of the speakers randomly assigned to one of the two prompt conditions. The speakers had up to 1 minute to consider their response and take notes before speaking for 1–2 minutes. The interviewer did not engage in a conversation with a speaker but followed up each response with 1–2 questions, based on IELTS procedures (e.g., Do you play this sport yourself? for the prompt about a favourite sports event).

The TOEFL task assesses a test taker’s ability to integrate information from multiple sources (listening and reading) and present it coherently. Following TOEFL iBT procedures, audio and visual prompts were presented through a computer-based interface. The speakers first had 45 seconds to read a passage (93–105 words); they then listened to an audio recording of a lecture (80–90 seconds) related to the passage. They were then asked to draw on examples from both the reading and the audio to respond to a question related to the content from the two sources of input. Two task versions were used, with the topics of audience effects in psychology or explaining behavior in sociology, and half of the speakers were randomly assigned to each. The speakers had 30 seconds to prepare their response and 1 minute to speak, moderated by an audio recorded examiner used for all participants.

During data collection as part of the larger project, speakers’ output was recorded using a Plantronics (DSP–300) microphone. The 120 target recordings (60 per task) were prepared for
analysis by matching peak amplitude across files, removing all initial fillers and false starts, and then editing down all files to the initial 30 seconds of speech produced, in line with prior research using 20–60 second recordings for listener judgments (e.g., Derwing et al., 2008). All files were orthographically transcribed by a trained research assistant and subsequently verified by a second researcher. The resulting audio files and transcripts served as stimuli for raters’ judgments of comprehensibility and their ratings for 10 linguistic categories.

Rating Procedure

All ratings were collected as part of a larger project evaluating speaker performance across multiple tasks. The project took place over four individual two-hour sessions (with breaks), occurring within a three-week span. Session 1 involved rating accentuatedness (reported elsewhere) and comprehensibility for all audio recordings. Session 2 and part of Session 3 were dedicated to rating audio recordings for five phonology- and fluency-based categories. The remainder of Session 3 and all of Session 4 were used to evaluate transcripts for five lexical, grammatical, and discourse categories. In all sessions, audio recordings and transcripts were blocked and counterbalanced by task (e.g., Task 1–2–3; 2–3–1, etc.), with audio recordings or transcripts presented to each rater in a unique randomization.

All ratings were collected through 1000-point scales run in a computer-based MATLAB interface developed by Saito et al. (2015b). Each scale included a free-moving slider on a horizontal plane, with the leftmost (negative) end corresponding to “0” and the rightmost (positive) end corresponding to “1000.” No numeric labels or interval markings were included, other than brief description of each category’s endpoints (see Online Supporting Documentation). At the start of each session, raters received training on the rating interface and each relevant linguistic category for that session. They then proceeded to perform four practice judgments (either through listening to audio files or viewing transcripts), which were discussed with the researcher to ensure an accurate understanding of each measure. The raters were encouraged to use the entire scale range, and were informed that even the slightest shift of the slider (which was initially set in the middle) might represent a fairly large change in rating. All relevant scales in each session (e.g., five categories for audio rating) were visible simultaneously. Before proceeding to the next recording (or transcript), the raters were allowed to adjust their judgments on all visible scales until they felt satisfied.

To assess rater understanding and comfort with each rated category, they used 9-point scales to self-rate their understanding of each category (1 = I did not understand at all, 9 = I understand this concept well) and comfort in using each (1 = very difficult, 9 = very easy and comfortable). As a group, they estimated their understanding at 8.3 (range: 7.8–8.7) and their comfort at 7.8 (range: 7.2–8.3), suggesting that they understood all constructs following training and could apply them easily.2

Rated Categories

Comprehensibility. Comprehensibility was defined as the degree of ease or difficulty in raters’ understanding of L2 speech (see Online Supporting Documentation). Consistent with previous research on listener-based ratings of comprehensibility, the raters listened to each recording once before making their decision.

Phonology and Fluency. The raters evaluated each audio recording for the following five segmental, prosodic, and temporal categories (shown in full in Online Supporting Documentation):

1. Segmental errors (1 = frequent, 1000 = infrequent or absent), defined as errors in the pronunciation of individual consonants and vowels within a word (e.g., interesting instead of interesting, gud instead of good), as well as any segments erroneously deleted from or inserted into words (e.g., hospital instead of hospital; s; instead of strength instead of strength).
2. Word stress errors (1 = frequent, 1000 = infrequent or absent), defined as errors in the placement of primary stress (e.g., bal-co-NY instead of BAl-co-ny, where capitals designate primary stress) or the absence of discernible stress, such that all syllables receive equal prominence (e.g., bal-co-ny).
3. Intonation (1 = unnatural, 1000 = natural), defined as appropriate pitch moves that occur in native speech, such as rising tones in yes/no questions (e.g., Did you see the game last night?) or falling tones at the end of statements (e.g., No, I was too busy!).
4. Rhythm (1 = unnatural, 1000 = natural), defined as the difference in stress (emphasis) between content and function (grammatical) words. For instance, in the sentence My SISTER WORKS in an OFFICE, the words sister, works, and office are content words and therefore are stressed more than
the words my, in, and an, which are grammatical words featuring reduced vowels.

5. Speech rate (1 = too slow or too fast, 1000 = optimal), defined as a speaker’s overall pacing and the speed of utterance delivery.

Because judgments of phonology and fluency likely require an in-depth analysis of the speech signal, the raters had the option to listen to the same file multiple times to ensure they were confident in the final rating.

Lexicon, Grammar, and Discourse. To remove pronunciation and fluency as possible confounds in judgments of lexis, grammar, and discourse, the raters evaluated written transcripts of the audio files (Crossley, Salsbury, & McNamara, 2014). The transcripts were edited to remove hesitation markers (e.g., um, uh), spelling clues signalling pronunciation-specific errors (e.g., when, although pronounced as ven, was still spelled as when), and punctuation to avoid transcriber influence (Ochs, 1979). The raters evaluated written transcripts for the following five lexical, grammatical, and discourse categories (see Online Supporting Documentation):

6. Lexical appropriateness (1 = many inappropriate words used, 1000 = consistently uses appropriate vocabulary), defined as the speaker’s choice of words to accomplish the task. Poor lexical choices include incorrect, inappropriate, and non-English words (e.g., *She was quite happy when she was old enough to read the papernews*).

7. Lexical richness (1 = few, simple words used, 1000 = varied vocabulary), defined as the sophistication of the vocabulary used by the speaker. Simple words with little variety correspond to poor lexical richness (e.g., *The young man went for a walk; his cat went for a walk after him*, compared to *The young man went for a walk and was followed by his cat*).

8. Grammatical accuracy (1 = poor grammar accuracy, 1000 = excellent grammar accuracy), defined as the number of grammar errors made by the speaker. Examples included errors of word order (e.g., *Where we are going*?), morphology (e.g., *He eat a big breakfast every morning*), and agreement (e.g., *I watched two game last week*).

9. Grammatical complexity (1 = simple grammar, 1000 = elaborate grammar), defined as the sophistication of the speaker’s grammar. Grammatical complexity is low if the speaker uses simple, coordinated structures without embedded clauses or subordination (e.g., *The girl asked the man for his seat; she wore high heels, compared to The girl wearing high heels asked the man for his seat*).

10. Discourse richness (1 = simple structure, few details, 1000 = detailed and sophisticated), defined as the richness and sophistication of the utterance content. Discourse richness is low if the entire narrative is simple, unnuanced, bare, and lacks sophisticated ideas or details, but high if the speaker produces several distinct ideas or details so that the statement sounds developed and sophisticated.

As with phonology and fluency judgments, the raters were given as much time as they needed with each transcript to allow for accurate judgments.3

Data Analysis

The 10 raters showed high consistency in their rating. For comprehensibility, reliability values (Cronbach’s alpha) were high in both tasks (αIELTS = .91, αTOEFL = .92). For individual linguistic categories, which presumably reflect less intuitive and more complex judgments compared to comprehensibility ratings, reliability values also exceeded the benchmark of .70–.80 in both tasks (Larson–Hall, 2010), as shown in Table 2. The scores were thus considered sufficiently consistent and were averaged across the 10 raters to derive a single mean score for each rated category.

RESULTS

Comprehensibility

The first analysis targeted task- and group-based differences in comprehensibility ratings.

<table>
<thead>
<tr>
<th>Linguistic Dimensions</th>
<th>IELTS</th>
<th>TOEFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmental errors</td>
<td>.93</td>
<td>.93</td>
</tr>
<tr>
<td>Word stress errors</td>
<td>.86</td>
<td>.84</td>
</tr>
<tr>
<td>Intonation</td>
<td>.87</td>
<td>.87</td>
</tr>
<tr>
<td>Rhythm</td>
<td>.84</td>
<td>.88</td>
</tr>
<tr>
<td>Speech rate</td>
<td>.85</td>
<td>.91</td>
</tr>
<tr>
<td>Lexical appropriateness</td>
<td>.84</td>
<td>.84</td>
</tr>
<tr>
<td>Lexical richness</td>
<td>.85</td>
<td>.90</td>
</tr>
<tr>
<td>Grammatical accuracy</td>
<td>.87</td>
<td>.87</td>
</tr>
<tr>
<td>Grammatical complexity</td>
<td>.89</td>
<td>.90</td>
</tr>
<tr>
<td>Discourse richness</td>
<td>.90</td>
<td>.90</td>
</tr>
</tbody>
</table>
These ratings were submitted to a two-way analysis of variance (ANOVA) with group (Chinese, Hindi/Urdu, Farsi, Romance) as a between-subjects factor and task (IELTS, TOEFL) as a within-subjects factor. The ANOVA yielded a significant main effect of group, $F(3,56) = 9.40$, $p < .0001$, $\eta^2_p = .34$, and task, $F(1,56) = 9.90$, $p = .003$, $\eta^2_p = .15$, but no significant two-way interaction, $F(3,56) = 1.08$, $p = .36$, $\eta^2_p = .06$. Tests of simple main effects (Bonferroni-corrected $a = .007$) further showed that the speakers were overall more comprehensible in the IELTS task than the TOEFL task ($p = .003$), although the effect size was small ($d = .35$), and that the Chinese group was overall less comprehensible, with large effect sizes ($d = 1.01–1.73$), compared to the remaining three groups ($p < .001$), which did not differ in comprehensibility.

Ratings of Linguistic Categories

The next analysis focused on the relationship between comprehensibility and the 10 rated linguistic variables. First, the linguistic scores for all speakers were submitted to an exploratory Principal Component Analysis (PCA) with Oblimin rotation (carried out separately for each task) to determine whether the 10 linguistic variables showed any underlying patterns. Despite a low sample size ($N = 60$), the Kaiser–Meyer–Olkin value exceeded the required .60 for sampling size for both tasks (IELTS = .86, TOEFL = .91), indicating excellent factorability of the correlation matrix (Hutcheson & Sofroniou, 1999). Similarly, Bartlett’s test of sphericity for the IELTS task, $\chi^2(45) = 700.57$, $p < .0001$, and the TOEFL task, $\chi^2(45) = 822.95$, $p < .0001$, indicated that correlations between variables were sufficient for PCA.

As shown in Table 4, the analyses revealed the same two underlying factors for both tasks. Factor 1, labelled “Pronunciation,” encompassed the five pronunciation and fluency variables. Factor 2, labelled “Lexicogrammar,” included the five vocabulary, grammar, and discourse variables. For both tasks, then, the 10 linguistic variables patterned along two separate dimensions (pronunciation, lexicogrammar), accounting in total for a similar amount variance in both tasks (IELTS = 82%, TOEFL = 83%).

The pronunciation and lexicogrammar PCA scores, derived using the Anderson–Rubin method of obtaining noncorrelated factor scores (Field, 2009), were then submitted as predictors to two separate stepwise multiple regression analyses to examine their contribution to IELTS and TOEFL comprehensibility scores. As shown in Table 5, the two factors together accounted for

Table 3

Means (Standard Deviations) for Comprehensibility Ratings (1000-Point Scale)

<table>
<thead>
<tr>
<th>L1 Group</th>
<th>IELTS Long-Turn</th>
<th>TOEFL iBT Integrated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>556 (127)</td>
<td>467 (101)</td>
<td>511 (91)</td>
</tr>
<tr>
<td>Hindi/Urdu</td>
<td>701 (150)</td>
<td>662 (145)</td>
<td>681 (134)</td>
</tr>
<tr>
<td>Farsi</td>
<td>666 (88)</td>
<td>656 (117)</td>
<td>661 (81)</td>
</tr>
<tr>
<td>Romance</td>
<td>754 (141)</td>
<td>689 (166)</td>
<td>722 (145)</td>
</tr>
<tr>
<td>Total</td>
<td>669 (145)</td>
<td>618 (159)</td>
<td>644 (139)</td>
</tr>
</tbody>
</table>

Table 4

Summary of a Two-Factor PCA Solution for 10 Rated Linguistic Variables by Task

<table>
<thead>
<tr>
<th>PCA Factors</th>
<th>IELTS</th>
<th>TOEFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1 (Pronunciation)</td>
<td>Intonation (.95), segmental errors (.93), rhythm (.93), word stress errors (.89), speech rate (.61)</td>
<td>Segmental errors (1.01), intonation (.97), word stress errors (.90), rhythm (.88), speech rate (.64)</td>
</tr>
<tr>
<td>Factor 2 (Lexicogrammar)</td>
<td>Lexical richness (.95), discourse richness (.95), grammatical complexity (.91), lexical appropriateness (.87), grammatical accuracy (.82)</td>
<td>Lexical richness (1.02), discourse richness (1.09), grammatical complexity (.98), grammatical accuracy (.85), lexical appropriateness (.73)</td>
</tr>
</tbody>
</table>

Note: All eigenvalues > 1.
a high proportion of shared variance in each task (IELTS = 74%, TOEFL = 88%). However, both lexicogrammar (IELTS = 14%, TOEFL = 17%) and pronunciation (IELTS = 60%, TOEFL = 71%) seemed to weigh more heavily in the TOEFL than in the IELTS task.

Task Effect and Linguistic Correlates of Comprehensibility

In the next analysis, two sets of partial correlations targeted the relative associations of the individual pronunciation and lexicogrammar variables with comprehensibility, separately for each task and group. For correlations between comprehensibility and the five pronunciation variables, the five lexicogrammar variables were partialed out. In turn, when examining the lexicogrammar–comprehensibility links, the five pronunciation variables were partialed out. Comprehensibility scores in the IELTS task (shown in Table 6) were primarily linked to pronunciation variables, specifically segmental errors and rhythm (with Farsi speakers being the exception). In the TOEFL task (shown in Table 7), comprehensibility scores for all L1 groups were associated with a broader range of variables, spanning both the pronunciation (primarily segmental errors) and lexicogrammar (especially lexical appropriateness and grammatical accuracy and complexity) factors.

The final analysis sought to confirm the relationships identified through partial correlations by investigating whether each group’s performance in the IELTS and TOEFL tasks could be explained through speaker scores for the 10 linguistic variables. Two discriminant analyses were conducted, separately for the IELTS and TOEFL tasks, with the goal of predicting which L1 group each of the 60 speakers belonged to, based on the ratings they had received for each of the 10 linguistic variables. In the IELTS task, there were three significant functions which individually differentiated the four L1 groups, \(\Lambda = .19, \chi^2(30) = 86.22, p < .0001 \). The first function involved lexical richness \((r = .44) \) and discourse richness \((r = .47) \). The second function was associated with rhythm \((r = .59) \) and speech.

TABLE 5

Summary of Multiple Regression Analyses Using Pronunciation and Lexicogrammar Factors as Predictors of Comprehensibility by Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Predictor Variables</th>
<th>Adjusted (R^2)</th>
<th>(R^2) change</th>
<th>(F(1,59))</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IELTS</td>
<td>Pronunciation</td>
<td>.60</td>
<td>.60</td>
<td>88.89</td>
<td>.0001</td>
</tr>
<tr>
<td></td>
<td>Lexicogrammar</td>
<td>.74</td>
<td>.14</td>
<td>82.61</td>
<td>.0001</td>
</tr>
<tr>
<td>TOEFL</td>
<td>Pronunciation</td>
<td>.71</td>
<td>.71</td>
<td>143.82</td>
<td>.0001</td>
</tr>
<tr>
<td></td>
<td>Lexicogrammar</td>
<td>.88</td>
<td>.17</td>
<td>203.75</td>
<td>.0001</td>
</tr>
</tbody>
</table>

Note. The variables entered into the regression equation were the two factors obtained in the PCA analyses summarized in Table 4.

TABLE 6

Partial Correlations Between Comprehensibility and 10 Linguistic Categories in the IELTS Long-Turn Task

<table>
<thead>
<tr>
<th>Category</th>
<th>Chinese</th>
<th>Hindi/Urdu</th>
<th>Farsi</th>
<th>Romance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentals(^a)</td>
<td>.78*</td>
<td>.75*</td>
<td>.58</td>
<td>.80*</td>
</tr>
<tr>
<td>Word stress(^a)</td>
<td>.61</td>
<td>.62*</td>
<td>.62</td>
<td>.57</td>
</tr>
<tr>
<td>Intonation(^a)</td>
<td>.36</td>
<td>.57</td>
<td>.54</td>
<td>.61</td>
</tr>
<tr>
<td>Rhythm(^a)</td>
<td>.66*</td>
<td>.69*</td>
<td>.81*</td>
<td>.46</td>
</tr>
<tr>
<td>Speech rate(^a)</td>
<td>.70*</td>
<td>.54</td>
<td>.55</td>
<td>.61</td>
</tr>
<tr>
<td>Lexical appropriateness(^b)</td>
<td>.54</td>
<td>.46</td>
<td>.88*</td>
<td>.62</td>
</tr>
<tr>
<td>Lexical richness(^b)</td>
<td>.52</td>
<td>.39</td>
<td>.81*</td>
<td>.43</td>
</tr>
<tr>
<td>Grammatical accuracy(^b)</td>
<td>.27</td>
<td>.48</td>
<td>.78*</td>
<td>.46</td>
</tr>
<tr>
<td>Grammatical complexity(^b)</td>
<td>.49</td>
<td>.42</td>
<td>.48</td>
<td>.52</td>
</tr>
<tr>
<td>Discourse richness(^b)</td>
<td>.54</td>
<td>.60</td>
<td>.78*</td>
<td>.43</td>
</tr>
</tbody>
</table>

Note. \(^a\)Partialled-out variables include lexical appropriateness and richness, grammatical accuracy and complexity, and discourse richness. \(^b\)Partialled-out variables include vowel and consonant errors, word stress, intonation, rhythm, and speech rate.
rate \((r = .45) \). The third function was linked to segmental \((r = .60) \) and word stress \((r = .46) \) accuracy. In contrast, for the TOEFL task, there was a single function distinguishing between the four groups, \(\Lambda = .32, \chi^2 (30) = 58.75, p < .0001 \). This function included all 10 linguistic categories \((r = .49-.78) \). In essence, the 60 speakers could be discriminated as belonging to their respective L1 groups through their individual ratings of (a) lexical and discourse richness, (b) rhythm and speech rate, or (c) segmental and word stress accuracy in the IELTS task. However, all 10 linguistic variables in combination contributed to discriminating across the 60 speakers in the TOEFL task.

DISCUSSION

The research question of the current study asked whether the relationship between listener ratings of comprehensibility and various linguistic dimensions in L2 speech depends on speaking tasks varying in cognitive demands. Speakers from four different L1 backgrounds completed two tasks (IELTS, TOEFL) that differed in their cognitive requirements. Compared to the IELTS task, the TOEFL task required speakers to consider a greater number of elements and employ more reasoning, and placed greater time constraints on speakers in formulating their response. Results overall suggested that task serves an important role in determining which linguistic variables are linked to comprehensibility. In the IELTS task, comprehensibility was associated solely with pronunciation and fluency categories (specifically, segmentals, word stress, rhythm, and speech rate) for three of the four groups, with only the Farsi group demonstrating associations with lexicon, grammar, and discourse (see Table 6). However, in the cognitively more demanding TOEFL task, in addition to pronunciation and fluency variables, comprehensibility was also linked to several categories at the level of grammar, lexicon, and discourse for all groups (see Table 7). Although, predictably, the four groups featured slightly different patterns of associations, likely determined by cross-linguistic differences between the speakers’ L1 and English (as discussed subsequently), the pattern was clear: In a cognitively more demanding task, compared to a simpler one, ease of understanding was based on appropriate and rich vocabulary, accurate and complex grammar, and rich discourse structure, in addition to nativelike pronunciation and fluency.

Task Complexity and Comprehensibility

For all speakers as a group, comprehensibility was rated higher in the IELTS task than in the TOEFL task. The IELTS task did not require speakers to elaborate on causal relationships, incorporate multiple perspectives, or interpret any complex meanings, as speakers were asked to express an opinion about a straightforward topic, which they likely had numerous prior opportunities to consider and discuss (i.e., future job or favourite sport). In addition, there were few steps involved in the task, such that speakers simply read a prompt, spent a minute planning, and then responded to it. Robinson’s (2001, 2005) Cognition Hypothesis predicts that cognitively more
task complexity. Indeed, pronunciation and lexicogrammar variables being contingent on complexity, and the additive contribution of comprehensibility in all tasks, regardless of their consistent (and substantial) contribution to pronunciation aspects of L2 speech likely having a pronunciation and lexicogrammar variables, with degree, determined by the relative weighting of linguistic impact on comprehensibility is a matter of experience discussing similar topics when formulating their utterances. It is likely that this linguistic and thematic freedom, where lexical and grammatical choices may be considered safe, contributes to ease of understanding for the listener being mostly linked to pronunciation and fluency aspects of L2 speech.

Compared to the IELTS long-turn task, the TOEFL integrated task requires speakers not only to rely on receptive language skills (reading, listening, or both) but also to interpret multiple sources of information and subsequently integrate this information into a coherent response. To accomplish this task successfully and effectively synthesize the various sources of information, speakers must be able to produce elaborate language, which creates more opportunities for lexical and grammatical errors to occur and for discourse structure to suffer, thus leading to a greater impact of these linguistic variables on comprehensibility. This could be seen in the greater amount of variance explained by the lexicogrammar factor in the regression analysis in the TOEFL task (17%) than in the IELTS task (14%), along with the greater number of significant correlations between comprehensibility and lexicogrammar variables in the TOEFL task, compared to the IELTS task (cf. Tables 6 and 7). In fact, in the TOEFL task, lexical appropriateness was linked to comprehensibility for all four groups, grammatical accuracy and complexity for three groups, and lexical and discourse richness for two (see Table 7). Thus, while various pronunciation variables still factored into listener judgments of comprehensibility, listeners this time also considered lexicogrammar when attempting to interpret meaning in speakers’ utterances.

One implication of these findings is that linguistic impact on comprehensibility is a matter of degree, determined by the relative weighting of pronunciation and lexicogrammar variables, with pronunciation aspects of L2 speech likely having a consistent (and substantial) contribution to comprehensibility in all tasks, regardless of their complexity, and the additive contribution of lexicogrammar variables being contingent on task complexity. Indeed, pronunciation and fluency variables mattered for comprehensibility in both tasks, and the role of these variables in fact increased in the TOEFL task, compared to the IELTS task, as shown by the results of the PCA and follow-up regression analyses. The same increase was evident in a greater number of significant associations between comprehensibility and pronunciation/fluency variables in the TOEFL task, compared to the IELTS task (10 vs. 8), as shown in Tables 6 and 7. What this implies, then, is that pronunciation and fluency characteristics of L2 speech represent a substantial challenge to comprehensibility across a range of tasks, whereas the contribution of the lexis, grammar, and discourse content in L2 learners’ speech likely grows as complexity increases.

Task Complexity and L1 Effects

Although investigating L1 effects on comprehensibility was not the primary goal of this study (see Crowther et al., 2015, for a detailed report), examining four L1-based groups separately, as opposed to pooling speakers together, proved advantageous. From a theoretical standpoint, nearly all conceptual frameworks of L2 speech learning predict L1-specific influences on production (e.g., Eckman, 2004; Escudero & Boersma, 2004; Flege, 2003). And from a practical perspective, teachers are acutely aware of L2 speakers’ pronunciation difficulties traceable to their L1, as reflected in some pedagogical materials (e.g., Swan & Smith, 2001). Unsurprisingly, the current dataset revealed L1-specific influences on the relationship between comprehensibility and linguistic dimensions in L2 speech. For instance, in the TOEFL task, Romance speakers demonstrated the pattern of significant associations, which was previously obtained for French speakers (Saito et al., 2015b; Trofimovich & Isaacs, 2012), with segmental errors, word stress/rhythm, fluency, and lexis associated with comprehensibility. In the same task, Chinese speakers showed a strong association between segmental accuracy and comprehensibility, which likely stems from the challenge that segmental production poses to these speakers, leading to more substitutions and errors of syllable structure (Anderson–Hsieh, Johnson, & Koehler, 1992; Rau et al., 2009). For Hindi/Urdu speakers in the same task, a strong association obtained for intonation may be related to how intonation in Hindi/Urdu is used to indicate stress through an increase in pitch (Shackle, 2001), which may have been distracting for listeners. Because this group was primarily
composed of male speakers (14/15), it is important to determine whether similar findings would be found in a more gender-balanced group. The Farsi group was unique in that their comprehensibility was associated with lexicogrammar variables even in the simpler IELTS task. It is possible that these speakers relied on rather complex vocabulary and structure even in this task, which increased listeners’ sensitivity to these variables. In fact, an informal analysis of written transcripts showed that Farsi speakers, compared to other groups, used academic words (generate, communicate, socialize) as well as relatively complex structures (participial and infinitival complements, conditional clauses) in the task. In essence, both L1-specific and individual, speaker-related factors might influence what listeners attend to in their perception of comprehensibility.

The final analysis of this study speaks directly to the relationship between task complexity and L1 effects. In particular, in the IELTS task, membership of the 60 speakers in their respective L1 groups could be predicted through three individual factors: lexical and discourse richness, rhythm and speech rate, or segmental and word stress accuracy. In essence, better performance in any (or all) of these factors could discriminate among the speakers as members of their L1 groups, implying that, for speakers of different L1s, comprehensible speech is linked to combinations of different (L1-specific) factors. In contrast, to successfully discriminate among the speakers in the TOEFL task, a single function was required, one that embraced all 10 linguistic categories. This finding suggests an intriguing possibility that increased cognitive task complexity might be associated with diminished L1 influences on comprehensibility. Put differently, increased cognitive complexity of complex tasks require speakers to attend to multiple linguistic dimensions at once to get their meaning across in a comprehensible manner. This ensures that, in complex tasks such as the TOEFL task in this study, comprehensibility for speakers from different linguistic backgrounds is no longer linked to a few linguistic variables specific to their L1s. Clearly, this possibility needs to be investigated further.

IMPLICATIONS AND CONCLUSIONS

The findings of this study overall support previous research into L2 comprehensibility. Comprehensibility appears to be linked to a wide range of linguistic variables (Kang et al., 2010; Saito et al., 2015a; Trofimovich & Isaacs, 2012) whose strength varies as a function of speakers’ L1 (Crowther et al., 2015). Assuming (as shown here) that these linguistic variables also depend on a speaking task, with cognitively more demanding tasks drawing on a wider range of variables, compared to simpler tasks, these findings have several promising practical implications. For instance, they support what many language teachers already know from experience, namely, that teaching pronunciation objectives beyond individual sounds, such as syllable structure, word stress, and fluency phenomena, is worth targeting in instruction (Foote, Holthy, & Derwing, 2011). These results also imply that teachers should continue raising learners’ awareness of how fluency, grammar, and lexical knowledge affect listener understanding. Because these linguistic factors are, to an extent, dependent on task, teachers should engage students in diverse speaking activities, with the goal of ensuring ongoing communicative success in a variety of contexts, and particularly those that resemble real world domains, including assessment situations, in which speakers will need to perform.

Another practical consideration concerns integrating instruction targeting comprehensibility with assessment in L2 classrooms. As argued by Isaacs and Trofimovich (2012), language practitioners would benefit from a pedagogically oriented assessment instrument targeting comprehensibility to guide them in instruction and assessment, which would be consistent with a focus on comprehensible speech over accent reduction (Derwing & Munro, 2009; Levis, 2005). Based on the current findings, however, such an instrument would need to be validated across several tasks, so that assessment rubrics could be adapted for particular task difficulty (e.g., in terms of cognitive demands). Or different comprehensibility scales could be empirically derived for different task types that learners are likely to engage with in the real world (Upshur & Turner, 1999). What is important in the future, then, is for researchers, assessment specialists, and teachers to embrace a key finding of this study that confirms results in other areas of L2 research, including speaking proficiency (e.g., Brown, Iwashita, & McNamara, 2005), namely, that there are different paths by which speakers can achieve comprehensible L2 speech, and that the artifact of the task has some bearing on speaker output and the quality of the speaker or test taker performance in terms of linguistic performance.
ACKNOWLEDGMENTS

This study was funded by grants from the Social Sciences and Humanities Research Council of Canada (SSHRC) and Fond\’s de Recherche sur la Soci\’et\’e et la Culture (FQRSC) awarded to the second author, a Marie Curie Career Integration Grant (European Commission) awarded to the third author, and by the Grant-in-Aid for Scientific Research in Japan (No. 26770202) awarded to the fourth author. We are grateful to our participants, to Ze Shan Yao for his technical help, and to anonymous MLJ reviewers for their helpful input and feedback on the content of this article.

NOTES

1 An anonymous reviewer raised the question of whether linguistically trained raters familiar with accented speech could serve as a methodological benchmark for future research, suggesting either bilingual or multicompetent raters as another possibility. Because previous research has shown that both accent familiarity among native speaking raters (e.g., Winke, Gass, & Myford, 2013) and matching/mismatching linguistic backgrounds of nonnative speakers and listeners (e.g., Major et al., 2002) can influence speech ratings, future research should consider task effects on L2 comprehensibility as a function of rater status (e.g., native speaker vs. L2 user).

2 Raters identified grammatical understanding as being the most understandable ($M = 8.70$, $SD = .48$) and intonation as least understandable ($M = 7.80$, $SD = .92$). For ease of use, lexical appropriateness was rated highest ($M = 8.30$, $SD = .95$) and rhythm as lowest ($M = 7.20$, $SD = 1.62$).

3 Further information about the development and validation of the linguistic rating scale used in the current study can be found in Saito et al. (2015b).

4 A principal component analysis investigates which linear components (referred to here as factors) exist within a data set and how particular variables may contribute to these components. The oblimin rotation used here is an oblique rotation applied when there are linear components (referred to here as factors) exist within a data set and how particular variables may contribute to these components. The oblimin rotation used here is an oblique rotation applied when there are theoretical grounds to believe that different variables of interest may correlate (Field, 2009), which was likely the case here with various linguistic dimensions of L2 speech.

5 The Kaiser–Meyer–Olkin test and Bartlett’s test of sphericity are used to test the assumption of factorability for principal component analysis. These tests ensure that an appropriate level of correlations exists between variables to effectively run such an analysis.

6 Discriminant analysis is an approach that uses linear combinations of dependent variables (in this case, 10 individual linguistic scores) to allow for separation or discrimination between participant groups (Field, 2009), which in this case corresponds to predicting each speaker’s membership in his or her L1 group.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.