

Thermal conductivity (k): the amount of heat is transmitted by conduction through 1 square foot of <u>1-inch-thick homogenous material</u> in 1 hour where there is a difference of 1 degree Fahrenheit (F) across the two surfaces of the material.

$$k = Btu \bullet inch / ft^2 \bullet hr \bullet F$$

Thermal transmittance (U): the amount of heat is transmitted by conduction through 1 square foot of <u>an assembly and its boundary layers</u> in 1 hour where there is a difference of 1 degree Fahrenheit (F) across the two surfaces of the assembly.

$$U = Btu / ft^2 \bullet hr \bullet F$$

R-values of boundary layer air films Applicable to the inside and outside surfaces of assemblies

Surface	Condition	Resistance
Outside air film (f _o)	15 mph wind (winter) 7.5 mph wind (summer)	0.17 °F•ft²•h/Btu 0.25 °F•ft²•h/Btu
Inside air film (f _i)	Still air—horizontal surface' Heat flow upward (winter) Heat flow downward (summer)	0.61 "F•ft²•h/Btu 0.92 "F•ft²•h/Btu
1. Values derived from Table 1, 2001 ASHRA	E Handbook—Fundamentals, page 25.4.	
 Surface air films exist on every surface. The Outside air films vary in thickness according 	y are invisible layers of air that cling to the surface on a material and have ng to wind velocity; inside air films vary in effectiveness according to the o	e some resistance to heat flow. direction of heat flow.
 Inside air film values listed are for horizont apply; refer to Table 1, 2001 ASHRAE Han 	al inside surfaces only. If the inside surface being evaluated is sloping or v udbook—Fundamentals, page 25.4.	ertical, other thermal resistance values may
Figure 3-1: Thermal resistance values for air film	15	
		c

Position of Air Space ³	Condition ³ Thickness of Thermal Resistance of Air Air Space ⁴		nal Resistance of Air Spac	pace⁵	
		Highly Reflective Roof Surface ⁶	Moderately Reflective Roof Surface ⁷	Non-Reflective Roof Surface ⁸	
Horizontal	Heat flow upward (winter)	0.75 inch 1.5 inches 3.5 inches	1.70°F•ft²•h/Btu 1.81°F•ft²•h/Btu 1.95°F•ft²•h/Btu	1.16°F•ft²•h/Btu 1.21°F•ft²•h/Btu 1.28°F•ft²•h/Btu	0.87°F•ft²•h/Btu 0.89°F•ft²•h/Btu 0.93°F•ft²•h/Btu
Horizontal	Heat flow downward (summer)	0.75 inch 1.5 inches 3.5 inches	2.41*F•ft²•h/Btu 3.27*F•ft²•h/Btu 4.09*F•ft²•h/Btu	1.45*F•ft²•h/Btu 1.73*F•ft²•h/Btu 1.93*F•ft²•h/Btu	1.02*F•ft²•h/Btu 1.15*F•ft²•h/Btu 1.24*F•ft²•h/Btu
 Values derived fro Any air space whe space is used as a 	m Tables 2 and 3, <i>2001 ASH</i> re the air is not ventilated or o plenum, the thermal resistance	RAE Handbook—Funda otherwise allowed to fre e of the space and insid	<i>amentals,</i> pages 25.2 and 25.4 eely move has some thermal r le air film must be considered	í. esistance to heat flow. If the a zero.	ir space is ventilated or if the
 The thermal resist If the air space be <i>Handbook—Fund</i> 	tance values listed are for horiz ing evaluated is oriented in a s <i>amentals,</i> pages 25.2 and 25.4	ontal air spaces with the loping or vertical direct.	ne direction of heat flow eithe tion, other thermal resistance	er in an upward (winter) or de values may apply; refer to Ta	ownward (summer) direction bles 2 and 3, 2001 ASHRAE
 Interpolation and 	moderate extrapolation for ai	r spaces other than tho	se listed is permissible.		
5. Thermal resistance	e values based on 50 F mean	temperature and 10 F t	emperature difference.		
Values based on a modified bitumer	n Effective Emittance (€") of 1 membrane, mill finish alumi	0.20 with one surface v num panels).	vith a reflectivity of 75-84 pe	rcent and the other surface w	ith €=0.90 (e.g., foil-surfaced
 Values based on a membrane with a 	n ϵ_{uv} of 0.50 with one surface reflective coating).	with a reflectivity of 30	0-70 percent and the other su	rface with ϵ =0.90 (e.g., white	membranes, smooth-surface
membrane with a	reflective coating). $n \in 0.82$ with surfaces with	h a reflectivity of 5-15	percent (e.g., most apprepate-	surfaced roofs, smooth-surfac	ed built-up roofs).

EPS type	Density, min. (pounds per cubic foot)	Compressive strength, min.	R-value
Type I*	0.90 (1.0 nominal)	10.0	3.6
Type II	1.35 (1.5 nominal)	15.0	4.0
Type VIII	1.15 (1.25 nominal)	13.0	3.8
Type IX	1.80 (2.0 nominal)	25.0	4.2
Type XI*	0.70 (0.75 nominal)	5.0	3.1
Type XIV	2.40 (2.5 nominal)	40.0	4.2
Type XV	2.85 (3.0 nominal)	60.0	4.3

XPS type	Density, min. (pounds per cubic foot)	Compressive strength, min.	R-value
– »/	4.45	(psi)	= 0
Type IV	1.45	25.0	5.0
Type V	3.00	100.0	5.0
Type VI	1.80	40.0	5.0
Type VII	2.20	60.0	5.0
Туре Х	1.30	15.0	5.0
Type XII*	1.20	15.0	4.6
Type XIII*	1.60	20.0	3.9

17

IECC 2015:	Commercial Buildings (Insula	tion component R-val	ue-based method)		
Climate zone	Assembly description				
	Insulation entirely above deck	Metal buildings	Attic and other		
1	R-20ci (all other)	₹-20ci (all other)			
	R-25ci (Group R)		R-38		
2	D 05ai	R-19 + R-11 LS			
3	- R-25CI				
4			R-38 (except Marine 4)		
5	R-30ci		R-38 (all other) R-49 (Group R, Marine 4)		
6		R-25 + R-11 LS			
7	D 25ai		R-49		
8	- K-35Cl	K-30 + R-11 LS			

Climate Zone	IECC 2006	IECC 2009	IECC 2012*	IECC 2015*
1	R-15 ci	R-15 ci	R-20 ci	R-20 ci
2				R-25 ci
3				
4		R-20ci		
5			R-25 ci	R-30 ci
6	R-20 CI			
7	R-25 ci			
8		R-25 ci	R-30 ci	R-35 ci

