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Reminders and Recap

Today:

Chapter 7

• Well Ordering Principle (WOP)

• Loop Invariants

• Recursive Definitions

Chapter 7

• Weak Induction

• Strong Induction

Last time:



Well Ordering Principle (WOP)

Every nonempty set of nonnegative integers 

has a smallest element.

• Obvious and straight-forward ….

• How can such an “innocent” fact be of any 

use???

Well, if you believe induction is a powerful technique, then 

you also believe that WOP is quite powerful. Why?

The principle of mathematical induction is logically 

equivalent to the well-ordering principle.



Proof by Well Ordering Principle (WOP)

Example: Prove that any amount of postage worth 8 cents 

or more can be made from 3-cent or 5-cent stamps.

First, lets see an example of how well ordering principle 

can be used for proving theorems.

• Let S be the set of all integers for which the statement is 

not true.

• S has a smallest element m. Why? Because of the WOP.

• It means that it is not possible to make m cents worth of 

stamps using only 3-cent and 5-cent stamps.

(Basically a proof by contradiction that uses WOP)



Proof by Well Ordering Principle (WOP)

8 m

For any j in the range, it is possible to 

make j cents worth of stamps using 

3- and 5-cents stamps.

We will show that for any m, it is 

possible to write it as a sum of 3’s 

and 5’s, which will be a 

contradiction.

• m = 8: then m = 3 + 5.

• m = 9: then m = 3 + 3 +3.

• m = 10: then m = 5 + 5.

• m ≥ 11: It means (m-3) ≥ 8. Thus, it is possible to write (m-3) 

as a sum of 3’s and 5’s. Now, add one more 3 to (m-3) and we 

get m, which means m can be written as a sum of 3’s and 5’s.



Template of Proofs by WOP

Prove that P(n) is true for all n ∊ Z+ using WOP.

Step 1: Define the set S of counterexamples, that is 

S = { i ∊ Z+ such that P(i) is false }

Step 2: Assume for contradiction that S is nonempty.

Step 3: By the WOP, S will have a smallest element m.

Step 4: Reach a contradiction somehow – often by showing that 

P(m) is actually true. (This step requires work)

Step 5: Conclude that S must be empty, that is, no 

counterexample exists.



Proof by WOP – Argument Flow…

Prove that P(n) is true for all n ∊ Z+ using WOP.

If P(n) is not true for all n, 

then there are some n values 

for which P(n) is false.

Let S be the set of all such 

n’s.

If we can show S is empty, 

we will have shown P(n) is 

true for all n.

So, now the goal is to show S 

is empty.

Then it has the smallest 

element. Why? By WOP

Let m be that smallest 

element. Note m  S, so the 

assumption is that P(m) is 

false.

Thus, if we can show P(m) 

is actually true, then we 

will have shown m  S.

Consequently, we 

will have shown our 

assumption about S 

being non-empty is 

incorrect.

Assume S is non-empty.

Thus, S is empty.

Hence, P(n) is true 

for all n.

By contradiction



Well Ordering Principle (WOP)

Every nonempty set of nonnegative 

integers has a smallest element.

The principle of mathematical induction is logically 

equivalent to the well-ordering principle.



WOP implies the Principle of Mathematical Induction.

WOP: Every nonempty set of nonnegative integers has a 

smallest element.

Induction: P(n) be a predicate that is parameterized by 

non-negative integers n. If the following two conditions 

hold:

• Base case: P(1) is true

• Inductive step: For all k ≥ 1, P(k) implies P(k+1)

then for all n ≥ 1, P(n) is true.



WOP implies the Principle of Mathematical Induction.

Proof by Contrapositive: If WOP is true, and P(n) is false for some n ≥ 1, 

then at least one of the two conditions for induction must fail.

Suppose that P(n) is false for some n ≥ 1.

• Let S = Set of integers ≥ 1 for which P(n) is false.

• By WOP, S has smallest element, say m ≠ 0.

• If m = 1: P(1) is false, which means base case fails.

• If m ≥ 2: P(m-1) is true but P(m) is false. 

Let k = m-1. P(k) is true, but P(k+1) is false. Thus, the inductive 

step fails for some k ≥ 1.

Thus, we showed that P(n) is false for some n ≥ 1, then one of the two 

conditions for the principle of mathematical induction must be false.



Loop Invariants and Program Verification

Program Verification

The field of program verification is concerned with formally 

proving that programs perform correctly.

Input Data

Pre-conditions

Algorithm

Post-conditions

Output Data

Specifies what must be true 

before the algorithm starts.

Specifies what is true when 

the algorithm stops



Loop Invariants and Program Verification

Correct Program

A program's correct behavior is defined by 

stating that,

if a pre-condition is true before the 

program starts, then 

• the program will end after a finite 

number of steps, and 

• a post-condition is true after the 

program ends.

Input Data

Pre-conditions

Algorithm

Post-conditions

Output Data



Loop Invariants and Program Verification

Example:

Program description: Compute the square root of a non-

negative real number

Pre-condition: A real number x, such that x ≥ 0

Post-condition: A real number y, such that y ≥ 0 

and y2 = x.

…   Algorithm steps  …



Loop Invariants and Program Verification

Example (Program involving loops):

Program description: Compute the nth power of real number x

Pre-condition: n is a non-negative integer, x is a real number

j = 0, power = 1

Post-condition: power = xn

While (j < n) 

power := power * x 

j := j + 1 

End-while



Loop Invariants and Program Verification

Question: How can we guarantee (prove) 

that the program is correct, that is, for any 

input the code will provide the right output? 

(For our example, how can we ensure that the 

code it indeed computes the nth power of x.)



Program Verification – Big Picture

Pre-conditions: Inputs and initial 

values of variables

Program: 

Loops

Variables’ values are changing in each 

iteration

Post-conditions: Final values of 

variables, and the outputs.

How the input is related to the final 

output is a (global behavior).

Algorithm (loops) just describes how the 

values are changing in each iteration 

(local behavior).

Program verification means guarantee 

that local steps are indeed leading us to 

the desired global objective. (Fill the gap 

between above two). How ?

Idea: By showing that a “desired property” is maintained 

in each iteration of the loop, which terminates eventually

~ Loop Invariants



Loop Invariants and Program Verification

Loop Invariant: It is an assertion that is true before each 

iteration of a loop.

Loop Invariant:

It is a proposition P which

• is true for the pre-conditions

• Remains true within the loop

• Is such that P  (loop exit)  post-condition 



Loop Invariants and Program Verification

Example:

Program description: Compute the nth power of real number x.

Pre-condition: n is a non-negative integer, 

x is a real number,  j = 0, power = 1

Post-condition: power = xn

While (j < n) 

power := power * x 

j := j + 1 

End-while

Loop Invariant: 

j is an integer 

such that j ≤ n, 

and power = xj.



Proof Using Loop Invariants

Proof of Correctness Using Loop Invariant:

Given a loop condition C and a loop invariant I, the following steps are 

sufficient to establish that 

1. Show that: if the pre-condition is true before the loop begins, then I

is also true.

2. Show that: if C and I are both true before an iteration of the loop, 

then I is true after the iteration.

3. Show that: the condition C will eventually be false.

4. Show that: if ¬C and I are both true, then the post-condition is true.

If the pre-condition is true before the loop, then the post-

condition is true after the loop:



Proof Using Loop Invariants

Proof of Correctness Using Loop Invariant:

Given a loop condition C and a loop invariant I, the following steps are 

sufficient to establish that 

If the pre-condition is true before the loop, then the post-condition is true 

after the loop:

1. Show that: if the pre-condition is true before the loop begins, then I 

is also true.

2. Show that: if C and I are both true before an iteration of the loop, 

then I is true after the iteration.

3. Show that: the condition C will eventually be false.

4. Show that: if ¬C and I are both true, then the post-condition is true.

Initialization



Proof Using Loop Invariants

Proof of Correctness Using Loop Invariant:

Given a loop condition C and a loop invariant I, the following steps are 

sufficient to establish that 

If the pre-condition is true before the loop, then the post-condition is true 

after the loop:

1. Show that: if the pre-condition is true before the loop begins, then I 

is also true.

2. Show that: if C and I are both true before an iteration of the loop, 

then I is true after the iteration.

3. Show that: the condition C will eventually be false.

4. Show that: if ¬C and I are both true, then the post-condition is true.

Initialization

Maintenance



Proof Using Loop Invariants

Proof of Correctness Using Loop Invariant:

Given a loop condition C and a loop invariant I, the following steps are 

sufficient to establish that 

If the pre-condition is true before the loop, then the post-condition is true 

after the loop:

1. Show that: if the pre-condition is true before the loop begins, then I 

is also true.

2. Show that: if C and I are both true before an iteration of the loop, 

then I is true after the iteration.

3. Show that: the condition C will eventually be false.

4. Show that: if ¬C and I are both true, then the post-condition is true.

Initialization

Maintenance

Termination



Loop Invariants and Program Verification

While (j < n) 

power := power * x 

j := j + 1 

End-while

Pre-condition:       n ≥ 0,     x ∈ R, j = 0,     power = 1

Post-condition:    power = xn

Loop Invariant:    j ≤ n,  and  power = xj.

Step 1 (Initialization): 

Assume: Pre-condition true

Prove: Loop invariant true

Assume: n is a non-negative integer, x is 

a real number, j = 0, power = 1

Prove:      j = 0, (so j is an integer). 

Also, j = 0 ≤ n.

power = xj = x0 = 1 = power



Loop Invariants and Program Verification

While (j < n) 

power := power * x 

j := j + 1 

End-while

Step 2 (Maintenance): 

Assume: Loop condition and 

loop invariant true before the 

iteration.

Prove: Loop invariant true 

after the iteration.

Assume: j1 < n, and j1 is an integer such 

that j1 ≤ n, and power1 = xj1.

Prove: j2 is an integer such that j2 ≤ n, 

and power2 = xj2.

j1 and power1 denote values before the iteration.

j2 and power2 denote values after the iteration.

• j1 < n, which means j1 ≤ n – 1. Thus, j1 + 1 ≤ n, which implies j2 ≤ n.

• power2 = power1 * x = xj1 * x = x1+j1 = xj2

Pre-condition:       n ≥ 0,     x ∈ R, j = 0,     power = 1

Post-condition:    power = xn

Loop Invariant:    j ≤ n,  and  power = xj.



Loop Invariants and Program Verification

While (j < n) 

power := power * x 

j := j + 1 

End-while

Step 3 (Termination): 

Prove: Loop will terminate.

Prove: j < n becomes false.

Since the value of j is n after n iterations 

of the loop, the condition j < n will be 

false after n iterations.

Pre-condition:       n ≥ 0,     x ∈ R, j = 0,     power = 1

Post-condition:    power = xn

Loop Invariant:    j ≤ n,  and  power = xj.



Loop Invariants and Program Verification

While (j < n) 

power := power * x 

j := j + 1 

End-while

Assume: ¬ (j < n), and j is an integer such 

that j ≤ n, and power = xj.

Prove: power = xn

Step 4 (Termination): 

Assume: Loop condition is 

false and the loop invariant 

is true.

Prove: Post-condition is true. j ≤ n, and (j < n) is false. It means j = n. 

Thus, power = xj = xn

Pre-condition:       n ≥ 0,     x ∈ R, j = 0,     power = 1

Post-condition:    power = xn

Loop Invariant:    j ≤ n,  and  power = xj.



Loop Invariants and Program Verification

Lets look at another example.

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

The division algorithm is supposed to take a nonnegative 

integer a and a positive integer d and compute nonnegative 

integers q and r such that a = dq + r and 0 ≤ r < d.



Loop Invariants and Program Verification

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition:       d > 0,   a ≥ 0, r = a,  q = 0

Post-condition: a = qd + r, 

s.t. q ≥ 0,  and 0 ≤ r < d. 

Loop Invariant:     ???



Loop Invariants and Program Verification

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition:       d > 0,   a ≥ 0, r = a,  q = 0

Post-condition: a = qd + r, 

s.t. q ≥ 0,  and 0 ≤ r < d. 

Loop Invariant:    r = (a – qd)  ≥  0



Loop Invariants and Program Verification

Step 1 (Initialization): 

Assume: Pre-condition true

Prove: Loop invariant true

Assume: d > 0,  a ≥ 0, r = a, q = 0

Prove: r = a – (0 × d) = a (true from 

pre-condition)

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition:       d > 0,   a ≥ 0, r = a,  q = 0

Post-condition: a = qd + r, 

s.t. q ≥ 0,  and 0 ≤ r < d. 

Loop Invariant:    r = (a – qd)  ≥  0



Loop Invariants and Program Verification

Step 2 (Maintenance): 

Assume: Loop condition and 

loop invariant true before the 

iteration.

Prove: Loop invariant true 

after the iteration.

r1 and q1 denote values before the iteration.

r2 and q2 denote values after the iteration.

Assume: r1 ≥ d, and r1 = (a – q1d) ≥ 0

Prove: r2 = (a – q2d) ≥ 0 ??

For this, r2 = r1 – d = a – q1d – d 

= a – d(q1 + 1) ≥ 0

Thus,     r2 = (a – dq2) ≥ 0

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition:       d > 0,   a ≥ 0, r = a,  q = 0

Post-condition: a = qd + r, 

s.t. q ≥ 0,  and 0 ≤ r < d. 

Loop Invariant:    r = (a – qd)  ≥  0



Loop Invariants and Program Verification

Loop condition: r ≥ d

Since d > 0, r is essentially decreasing in 

each iteration. Also d is fixed. Thus, there will 

be a point eventually when r < d. At this 

point, the while loop condition becomes false.

Step 3 (Termination): 

Prove: Loop will terminate 

after a finite number of steps.

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition: d > 0,  a ≥ 0, r = a, q = 0

Post-condition: a = qd + r, such that q ≥ 0, 

and 0 ≤ r < d. 

Loop Invariant: r = (a – qd) ≥ 0



Loop Invariants and Program Verification

Assume: r < d, r = (a – qd) ≥ 0 

Prove: a = qd + r, such that q ≥ 0, 

and 0 ≤ r < d. 

Step 4 (Termination): 

Assume: Loop condition is false 

and the loop invariant is true.

Prove: Post-condition is true.

r = a;  q = 0

While (r ≥ d) 

r = r - d 

q = q + 1 

End-while

Pre-condition: d > 0,  a ≥ 0, r = a, q = 0

Post-condition: a = qd + r, such that q ≥ 0, 

and 0 ≤ r < d. 

Loop Invariant: r = (a – qd) ≥ 0



Loop Invariants and Program Verification

• Did you notice the similarities in the plan of action of 

proof using loop invariant and mathematical 

induction.

• They are very similar.

• Think of loop invariant as an inductive hypothesis



Recursive (Inductive) Definition 

and 

Structural Induction



Recursive Definition

Recall the set of even integers > 0

• One way to define the set is: A = {2, 4, 6, …}

• Another way to define is: A = { 2k + 2 | k  N }

• And yes, there is another way known as recursive 

definition.

Basis: 2  A

Recursive rule: If x  A, then x + 2  A. Nothing else is in A 

unless it is obtained from the basis and recursion.



Recursive Definition

In a recursive definition of a function, the value of 

the function is defined in terms of the output value 

of the function on smaller input values.

Factorial of n =  n!

Basis: 0! = 1

Recursive rule: n! = n  (n-1)!



Components of Recursive Definition

Defining a set S recursively includes three parts:

1. Basis: Specify one or more elements of S.

2. Recursive (or Inductive) rule: Specify one or more 

rules to construct elements of S from existing elements 

of S.

3. Exclusion statement: Specify that no other elements 

are in S.

• This last step is often assumed. 

• We will make it optional once you’ve learned the 

basics.



Recursive Definition

Example: Write an inductive definition for 

S = { 3, 16, 29, 42, … }. 

Basis: 3  S.

Recursive (inductive) rule: If x  S then (x + 13)  S. 

Closure: Nothing else is in S unless it is obtained 

from the basis and recursive rule.



Recursive Definition

Example: Write a recursive definition for 

S = { 3, 4, 5, 8, 9, 12, 16, 17, 20, 24, 28, 32, 33, … }.

Hint: To simplify things, we write S as the union of familiar sets:

S = {3, 5, 9, 17, 33, …}  {4, 8, 12, 16, 20, 24, …}. 

Basis: 3, 4  S.

Recursive rule: If x  S then 

2x - 1  S (when x is odd)

x + 4  S (when x is even)

Closure: Nothing else is in S unless it is obtained from the 

basis and recursion.



Recursive Definition

Example: Describe the elements in the set S which is 

defined as follows:

Basis: 2  S.

Recursive rule: x  S implies x  3  S.

Closure: Nothing else is ∈ S unless it is obtained from 

the basis and induction.

Answer: 

S = { 2, 5, 8, 11, … }  { –1, –4, –7, –10, … }



Recursive Definition

Example: Write a recursive definition for 

S = { ac, aacc, aaaccc,   … } 

which can be define recursively as the set 

S = { ancn | n  N+ } 

Answer:

Basis: ac  S

Recursion: If y  S then ayc  S

Closure: Nothing else is in S unless it is obtained from 

the basis and recursion.



Recursively Defined Structures

These recursively defined objects and 
structures have the property that 

parts of them exhibit the same 
characteristics and have the same 

properties as the whole.

Apart from sets, there are other objects in 

Computer Science that can be defined using 

this recursive approach, e.g., binary trees.



Recursive Definition

Example: Binary Tree

A non-empty binary tree is either:

Basis: A root node r with no pointers, or

Recursive (or Inductive) rule:  A root node r 

pointing to 2 non-empty binary trees TL and TR.

root root root

TL TR



Recursive Definition – Binary Trees

Example: Height of a Non-empty Binary Tree

h:    T    N

The height h(T) of a non-empty binary tree T is a function 

defined recursively as follows:

Basis: If T is a single root node, then h(T) = 0

Recursive (or Inductive) rule:  If T is a root node connected 

to two “sub-trees” TL and TR, then

h(T) = max { h(TL), h(TR) } + 1.



Recursive Definition – Binary Trees

Height = 0

root

root

Height = 1

root

Height = 2



Structural Induction

• Next, we will see how to prove theorems for 

recursively defined structures using structural 

induction.

• Structural induction is a proof methodology 

similar to standard induction except that it works 

in the domain of recursively defined structures, 

like trees, graphs, sets, etc.

• It’s just another tool in the toolbox



Structural Induction

How it usually goes: The general steps in a structural 

induction proof go something like this:

• Step 1: Prove P(r) for the base case. The base case might 

be an empty structure or a trivial structure with a single 

node or vertex. For example, an empty tree, or tree with a 

single node r.

• Step 2: Assume the inductive hypothesis for an arbitrary 

structure. For example, assume that the statement holds for 

some tree T (i.e., assume P(T)). 

• Step 3: Inductive step (proof). Use the recursive part of 

the structure’s definition to show that a new structure, say 

T*, that contains the existing structure T, satisfies P(T*).



Structural Induction – Binary Tree

Recursive definition of a Full Binary

Basis: A single vertex with no edges is a full binary tree.

Recursive rule: T’ can be constructed 

from binary trees T1 and T2 by adding a 

new vertex v and then adding an edge 

between v and the root of T1 and an edge 

between v and the root of T2. 



Structural Induction

Theorem: If T is a full binary tree, then 

c(T) ≤ 2h(T)+1 – 1.

Proof: (structural induction in action)

Basis: For a full binary tree consisting only of a root, c(T) = 1 and 

h(T) = 0. Now, 

c(T) = 1 ≤ 20+1 – 1 = 1.

Hence, base case is satisfied.

Inductive hypothesis:  Let’s assume:

c(T1) ≤ 2h(T1)+1 – 1 and c(T2) ≤ 2h(T2)+1  – 1

whenever T1 and T2 are full binary trees.



Structural Induction

Inductive step:

We need to show that c(T) is true.

c(T)  =  1 + c(T1) + c(T2)       (definition of c(T))

≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1 – 1)  (inductive hypothesis)

≤ 2∙max (2h(T1)+1 , 2h(T2)+1 ) – 1 

= 2∙2max(h(T1), h(T2))+1 – 1 (max(2x , 2y)= 2max(x,y))

= 2∙2h(T) – 1 (definition of h(T))

= 2h(T)+1 – 1

This is precisely what we wanted to show. So if T is a full binary 

tree, then it is the case that 

c(T) ≤ 2h(T)+1 – 1.



General structure of Inductive Proofs on Sets 

To prove that all elements of a set S have a property P, that is, 

x  S, P(x) is true.

Step 1: Prove for the base case. Prove that the property holds for 

each base element of the set.

Step 2: Assume the inductive hypothesis. In the inductive 

hypothesis, assume ∃S’ : |S’| ≥ n0 and P(x) is true x  S’.

Step 3: Inductive step (proof). From S’, obtain a new set by applying 

the recursive rule. Then show that all elements in this new set also 

satisfy the stated property. 

In other words, if x  S’ and P(x) holds, then by applying recursive rule 

r, we get a new element r(x). Then, show that P(r(x)) is also true.



Structural Induction – Sets

Let S be a set defined as follows:

Base case: 4 ∈ S

Recursive rule:     If x ∈ S, then x2 ∈ S

Prove that ∀x ∈ S, x is even.

Basis: In the base case of the definition of S, we have that 4 ∈ S. 

Since 4 is an even number, so the base case holds.

Inductive hypothesis:  Assume that ∃S’: |S’| ≥ 1 and all 

elements in S’ are even.

Example:



Structural Induction – Sets

Inductive step:

We need to show that the desired property is true for the element 

obtained by applying a recursive rule to an arbitrarily selected 

element of S’.

Let x be an arbitrary element in S’. By inductive hypothesis, x is 

even. 

We need to show that a new element obtained by applying 

recursive rule to x, is also even.

By recursive rule, new element obtained from x is x2. Since square 

of even number is even and x is even, so x2 is even. Hence, the 

desired property also holds for the new element. QED.



Structural Induction – Sets

Let S be a subset of ℕ × ℕ defined recursively as follows:

Base case: (0,0) ∈ S

Recursive rule:     If (x, y) ∈ S, then (x+5, y+1) ∈ S

Prove that ∀ (x, y) ∈ S, x + y is a multiple of 3.

Basis: (0,0) ∈ S. Since 0 + 0 = 0, which is a multiple of 3, base 

case is satisfied.

Inductive hypothesis:  Assume that ∃S’: |S’| ≥ 1 and if (x, y) ∈
S’, then x + y is a multiple of 3.

Example:



Structural Induction – Sets

Inductive step:

We need to show that the desired property is true for the element 

obtained by applying a recursive rule to an arbitrarily selected 

element of S’.

Let (x, y) be an arbitrary element in S’. 

By inductive hypothesis, x + y is a multiple of 3.

By the recursive rule (x+5, y+1) is a new element. We need to show 

that x + y + 6 is a multiple of 3.

x + y is a multiple of 3, and 6 is also a multiple of 3, therefore, 

x + y + 6 is also a multiple of 3, which is the desired result. QED.


