
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 10/12: Wrap-up logic (logical inference), start optimization

(integer, linear optimization)

• 10/17: Continue optimization (integer, linear optimization)

• 10/19: Wrap up optimization (nonlinear optimization), go over

homework 1, midterm review

• 10/24: Midterm

• 10/26: Go over exam, start planning module

• Next week: HW2 back, HW3 out

• Class project due 12/7

• Final exam on 12/14

• Class withdrawal deadline is 11/6

3

Integer programming

• Special case of a CSP where domain set for each

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

together

4

Objective functions

• In most CSP examples we saw, the goal was just to

find a single assignment of values to variables that

satisfied all the constraints, and it did not matter which

solution was found. We also considered the more

general setting where we have “preference constraints”

which are encoded as costs on individual variable

assignments, leading to an overall objective function

that want would like minimize, subject to all of the

constraints being adhered to.

5

CSP variations

• The constraints we have described so far have all been absolute

constraints, violation of which rules out a potential solution.

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a

university class-scheduling problem there are absolute constraints

that no professor can teach two classes at the same time. But we

also may allow preference constraints: Prof. R might prefer

teaching in the morning, whereas Prof. N prefers teaching in the

afternoon. A schedule that has Prof. R teaching at 2 p.m. would

still be an allowable solution (unless Prof. R happens to be the

department chair) but would not be an optimal one.

6

CSP variations

• Preference constraints can often be encoded as costs on

individual variable assignments—for example,

assigning an afternoon slot for Prof. R costs 2 points

against the overall objective function, whereas a

morning slot costs 1. With this formulation, CSPs with

preferences can be solved with optimization search

methods, either path-based or local. We call such a

problem a constraint optimization problem, or COP.

Linear/integer/nonlinear programming problems do

this kind of optimization.

7

Integer programming

• Special case of a CSP where domain set for each (or

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite,

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize

8

Integer linear programming

• Often the constraints and the objective are both

LINEAR functions of the variables, and we referring to

integer programming (IP) as integer linear

programming in this case (ILP). One could also

consider other forms for the constraints and objective

(e.g., quadratic program, quadratically-constrained

program, conic program). Specialized algorithms exist

for these as well, though more attention has been given

to the linear case and typically those algorithms are

much more effective in practice.

9

Manufacturing site selection

• A manufacturer is planning to construct new buildings at four

local sites designated 1, 2, 3, and 4. At each site, there are three

possible building designs labeled A, B, and C. There is also the

option of not using a site. The problem is to select the optimal

combination of building sites and building designs. Preliminary

studies have determined the required investment and net annual

income for each of the 12 options. This information is shown in

Table 7.1 with A1, for example, denoting design A at site 1. The

company has an investment budget of $100 million ($100M).

The goal is to maximize total annual income without exceeding

the investment budget. As the optimization analyst, you are

given the job of finding the optimal plan.

10

Manufacturing site selection

• It is an obvious requirement here that only whole

buildings may be built and only whole designs may be

selected. To begin creating a model, variables must be

defined to represent each decision. Let I = {A,B,C} be

the set of design options, and let J = {1,2,3,4} be the

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij

the investment required for the design/site combination

i,j. As a first try, you propose the following model for

finding the maximum of annual income:

11

Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J

12

Manufacturing site selection

• Solving the model with an appropriate algorithm for

the parameter values given in the table, the optimal

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij

equal to zero and z = 40. Of the available budget, $99M is

used.

13

Manufacturing site selection

• Your supervisor reviews the solution and questions your basic

reasoning. You seem to have omitted some of the logic of the

problem, because two designs are built on the same site—that is,

A1 and C1, and also A3 and B3, are all in the solution. In

addition, your supervisor now realizes that you were not alerted

to several other logical restrictions imposed by the owners and

architects—i.e., site 2 must have a building, design A can be

used at sites 1, 2, and 3 only if it is also selected for site 4, and at

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be

discarded. The following additional constraints are needed to

guarantee a feasible solution:

14

Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design

selection, three new binary variables are introduced.

– Let wi = 1 if design i is used, 0 otherwise, for i = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C

15

Manufacturing site selection

• The new model has 15 variables and 10 constraints not

including the integrality requirement. Solving, you find

that the optimal solution is

yA1=yA4=yB2=yB3=wA=wB=1 with all other

variables equal to zero and z = 37. All the budget is

spent, but the profit has decreased.

16

Traveling salesman problem

• The travelling salesman problem (TSP) asks the following

question: "Given a list of cities and the distances between each

pair of cities, what is the shortest possible route that visits each

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most

intensively studied problems in optimization. It is used as a

benchmark for many optimization methods. Even though the

problem is computationally difficult, a large number of

heuristics and exact algorithms are known, so that some

instances with tens of thousands of cities can be solved

completely and even problems with millions of cities can be

approximated within a small fraction of 1%.

17

Traveling salesman problem

18

Traveling salesman problem

• The TSP has several applications even in its purest formulation,

such as planning, logistics, and the manufacture of microchips.

Slightly modified, it appears as a sub-problem in many areas,

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA

fragments, and the concept distance represents travelling times

or cost, or a similarity measure between DNA fragments. The

TSP also appears in astronomy, as astronomers observing many

sources will want to minimize the time spent moving the

telescope between the sources. In many applications, additional

constraints such as limited resources or time windows may be

imposed.

19

Traveling salesman problem

20

Linear programming

• Similar to ILP (both constraints and objective are linear

functions of the variables). However, for LP the

variables are not restricted to be integers; they can be

any real number. So not only are the domains infinite

for each variable, they are uncountably infinite. Integer

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing

problem could not use binary variables to ensure whole

buildings are built, and may end up with solution such as

yij=0.8, which is nonsensical (can’t build 0.8 of a building).

21

LP vs ILP

• Which is easier to solve, LP or ILP?

22

LP vs. ILP

• Every LP is also an ILP (can just not include any integer

variables), so clearly ILP is at least as hard as LP. It turns out

that LP can be solved in polynomial-time, while ILP is NP-hard.

In fact, several algorithms for ILP involve solving a series of LP

“relaxations,” where several of the integer variables are assigned

to specific values and the resulting optimization formulation is

solved as a linear program without any integrally-constrained

variables.

• This is perhaps counterintuitive, as for LP variables all have

infinite domain, but for ILP they may even just have domains of

size 2.

• That said, of course huge LPs are more difficult to solve than

tiny ILPs in practice, and worst-case complexity does not tell the

full story.

23

ILP algorithms

• Exhaustive enumeration: can be performed if all

variables have finite domain (can’t be done if there are

non-integral variables or integral variables over infinite

domain). Can iterate over all possible combinations of

variable values. For each combination, test for

feasibility (whether it satisfies all constraints). If it is

feasible, compute the objective value, and ultimately

output the assignment that has highest objective value

out of feasible solutions.

• Is this algorithm efficient?

24

ILP algorithm

• Unfortunately, the number of possible solutions

is 2n, where n is the number of variables. For n

= 20, there are more than 1,000,000 candidates;

for n=30, the number is greater than

1,000,000,000, which is too large to be solved

by computers.

25

0-1 integer program example

26

ILP search tree

27

ILP search tree

• We draw the tree with the root at the top and the leaves

at the bottom. The circles are called nodes, and the

lines are called branches. At the very top of the tree,

we have node 0 or the root. As we descend the tree,

decisions are made as indicated by the numbers on the

branches. A negative number, -j, implies that the

variable xj has been set equal to 0, whereas a positive

number, +j, implies that xj has been set equal to 1.

28

ILP algorithm

• The nodes are numbered sequentially as the variables are fixed

to either 0 or 1. The sequence will vary depending on the

enumeration scheme. Each node k inherits all the restrictions

defined by the branches on the path joining it to the root. This

path is given the designation Pk. For example, at node 1 the

decision +1 is indicated y the branch joining node 0 to node 1.

This means we have set variable x1 equal to 1. At node 5, the

decision -2 is indicated by the branch joining nodes 1 and 5, so

we have the additional restriction x2 = 0. The leaves at the

bottom of the tree signal that all variables have been fixed. Each

of these eight nodes represents a complete solution that can be

identified by tracing the path from the leaf node to the root and

noting the decisions associated with the branches traversed

along the way. Thus, node 6 represents the solution x = (1,0,1),

whereas node 10 represents x = (0,1,1).

29

ILP algorithm

• Can perform a recursive DFS backtracking search

algorithm (similar to both CSP backtracking search and

minimax search) on this search tree.

• Could always branch to the left, arbitrary branching, or

use more intelligent heuristics.

• Can integrate various pruning techniques like we did

for minimax search (e.g., alpha-beta pruning) and for

CSP search.

30

Branch and bound

• LP relaxation: the ILP but without the integrality constraints

• Suppose we have an incumbent solution with objective value

zB, and zK is the objective value of the LP relaxation at node k.

• Four alternatives:

– LP has no feasible solution (in which IP also has no feasible solution)

– LP has an optimal solution with lower objective value (in which the

current IP optimal solution is better than the LP optimal one and cannot

provide an improvement over the incumbent).

– Optimal solution to the LP is integer valued and feasible, and yields

improved solution.

– None of the above: i.e., the optimal LP solution improves the objective

but is not integer-valued.

• For first 3 cases nothing more to be done. Only for case 4 is

further branching needed.

31

Branch and bound

• Note that the relaxed problem associated with each

node does not have to be an LP. A second choice could

be an IP that is easier to solve than the original. Typical

relaxations of the traveling salesman problem, for

instance, are the assignment problem and the minimum

spanning tree (MST) problem.

32

Branch and bound (B&B)

• We now elaborate and present the basic steps that are

needed for solving a 0-1 integer program using B&B

(can also be used for IPs with larger domains).

Although most steps are general in that they are

appropriate for a variety of problem classes, several

computational procedures are problem dependent.

Although a maximization objective is assumed, if the

goal is to minimize, the problem can be solved with the

same algorithm after making a few modifications, or

directly by converting it to a maximization problem.

The five routines below are used to guide the search for

the optimal solution and to extract information that can

be used to reduce the size of the B&B tree.

33

Branch and Bound

• Bound: This procedure examines the relaxed problem

at a particular node and tries to establish a bound on

the optimal solutions. It has two possible outcomes:

1. An indication that there is no feasible solution in the set of

integer solutions represented by the node

2. A value zUB– an upper bound on the objective for all

solutions at the node and its descendent nodes

34

Branch and Bound

• Approximate: This procedure attempts to find a

feasible integer solution from the solution of the

relaxed problem. If one is found, it will have an

objective value, call it Z_LB, that is a lower bound on

the optimal solution for a maximization problem.

• Variable fixing: This procedure performs logical tests

on the solution found at a node. The goal is to

determine if any of the free binary variables are

necessarily 0 or 1 in an optimal integer solution at the

current node or at its descendants, or whether they

must be set to 0 or 1 to ensure feasibility as the

computations progress.

35

Branch and Bound

• Branch: A procedure aimed at selecting one of the free

variables for separation. Also decided is the first

direction (0 or 1) to explore.

• Backtrack: This is primarily a bookkeeping procedure

that determines which node to explore next when the

current node is fathomed. It is designed to enumerate

systematically all remaining live nodes of the B&B tree

while ensuring that the optimal solution to toe original

IP is not overlooked.

36

Branch and bound algorithm

37

Linear programming (LP)
• Countless real-world applications have been successfully

modeled and solved using LP techniques. This has produced an

ongoing revolution in the way decisions are made throughout all

sectors of the economy. Typical applications include the

scheduling of airline crews, the distribution of products through

a manufacturing supply chain, and production planning in the

petrochemical industry.

• Because of the simplicity of the LP model, software has been

developed that is capable of solving problems containing

millions of variables and tens of thousands of constraints.

Computer implementations are widely available for most

mainframes, workstations, and microcomputers. A variety of

problems with nonlinear functions, multiple objectives,

uncertainties, or multiple decision makers, such as those arising

in game theory, can be modeled as linear programs.

38

LP solution concepts

• Solution: An assignment of values to the decision variables is a

solution to the LP model. Given a solution, the expressions

describing the objective function and the constraints can be

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied.

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or

minimizes the objective function (depending on the criterion).

The purpose of an LP algorithm is to find the optimal solution or

to determine that no feasible solution exists.

39

LP solution concepts
• Alternative optima: If there is more than one optimal solution

(solutions that yield the same value of the objective z), the model

is said to have multiple or alternative optimal solutions. Many

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the

decision variables that satisfies all the constraints, the problem is

said to have no feasible solution. In practical problems, it is

possible that the set of constraints does not allow for a feasible

solution (e.g., x >= 3, x <=2). Such a situation might result from a

mistake in the problem statement or an error in data entry.

Redundant equality constraints or nearly identical inequality

constraints in the problem formulation may lead to a false

indication that no feasible solution exists. Although the set of

equalities may have a solution in theory, rounding errors inherent

in computer computations may make the simultaneous satisfaction

of these equalities (and sometimes inequalities) impossible.

40

LP solution concepts

• Unbounded model: If there are feasible solutions for which the

objective function can achieve arbitrarily large values (if

maximizing) or arbitrarily small values (if minimizing), the

model is said to be unbounded. When all variables are restricted

to be nonnegative and have finite simple upper bounds, this

condition is impossible. If no bounds are specified for some

variables, the model may have an unbounded solution. However,

since most decisions must take into account limitations on

resources and laws of nature, such a model is probably a poor

representation of the real problem.

41

Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP

problems by constructing a feasible solution at a vertex of the polytope and then

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure.

In many practical problems, "stalling" occurs: Many pivots are made with no

increase in the objective function. In rare practical problems, the usual versions

of the simplex algorithm may actually "cycle". To avoid cycles, researchers

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find

the global optimum if certain precautions against cycling are taken. The simplex

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty

constructed a family of linear programming problems for which the simplex

method takes a number of steps exponential in the problem size. In fact, for some

time it was not known whether the linear programming problem was solvable in

polynomial time, i.e. of complexity class P.

42

Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal

solution by traversing the edges between vertices on a

polyhedral set, interior-point methods move through the interior

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case

polynomial-time algorithm for linear programming. To solve a

problem which has n variables and can be encoded in L input

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations

on numbers with O(L) digits. Khachiyan's algorithm and his

long standing issue was resolved by Leonid Khachiyan in 1979

with the introduction of the ellipsoid method. The convergence

analysis has (real-number) predecessors, notably the iterative

methods developed by Naum Z. Shor and the approximation

algorithms by Arkadi Nemirovski and D. Yudin.

43

Nonlinear optimization

• Maximize (or minimize) f(x)

subject to g_i(x) <= 0 for each i in {1,…,m}

h_j = 0 for each j in {1,…,p)}

x in X

• n,m,p positive integers

• X is subset of R^n (e.g., [0,1], or [-infinity,infinity]

• F, g_i, h_j real-valued functions on X for each I and

each j, with at least one of f, g_i, h_j being nonlinear

44

Nonlinear optimization

• If the objective function f is linear and the constrained space is a

polytope, the problem is a linear programming problem, which

may be solved using well-known linear programming techniques

such as the simplex method.

• If the objective function is concave (maximization problem), or

convex (minimization problem) and the constraint set is convex,

then the program is called convex and general methods from

convex optimization can be used in most cases.

• If the objective function is quadratic and the constraints are

linear, quadratic programming techniques are used.

• If the objective function is a ratio of a concave and a convex

function (in the maximization case) and the constraints are

convex, then the problem can be transformed to a convex

optimization problem using fractional programming techniques.

45

Nonlinear optimization

• Several methods are available for solving nonconvex problems. One

approach is to use special formulations of linear programming

problems. Another method involves the use of branch and bound

techniques, where the program is divided into subclasses to be solved

with convex (minimization problem) or linear approximations that

form a lower bound on the overall cost within the subdivision. With

subsequent divisions, at some point an actual solution will be obtained

whose cost is equal to the best lower bound obtained for any of the

approximate solutions. This solution is optimal, although possibly not

unique. The algorithm may also be stopped early, with the assurance

that the best possible solution is within a tolerance from the best point

found; such points are called ε-optimal. Terminating to ε-optimal

points is typically necessary to ensure finite termination. This is

especially useful for large, difficult problems and problems with

uncertain costs or values where the uncertainty can be estimated with

an appropriate reliability estimation.

46

Nonlinear programming

• Quadratic programming: For positive definite Q, the ellipsoid

method solves the problem in polynomial time. If, on the other

hand, Q is indefinite, then the problem is NP-hard. In fact, even

if Q has only one negative eigenvalue, the problem is NP-hard.

• Convex optimization: variability complexity, often solved by

gradient or subgradient methods.

• The following problems are all convex minimization problems,

or can be transformed into convex minimizations problems via a

change of variables: Least squares, Linear programming,

Convex quadratic minimization with linear constraints,

quadratic minimization with convex quadratic constraints, Conic

optimization, Geometric programming, Second order cone

programming, Semidefinite programming, Entropy

maximization with appropriate constraints

47

Planning

• AI planning arose from investigations into state-space search,

theorem proving, and control theory and from the practical

needs of robotics, scheduling, and other domains.

• Shakey the robot was the first general-purpose mobile robot to

be able to reason about its own actions. While other robots

would have to be instructed on each individual step of

completing a larger task, Shakey could analyze commands and

break them down into basic chunks by itself.

• Due to its nature, the project combined research in robotics,

computer vision, and natural language processing. Because of

this, it was the first project that melded logical reasoning and

physical action. Some of the most notable results of the project

include the A* search algorithm, the Hough transform, and the

visibility graph method.

48

Shakey

• https://www.youtube.com/watch?v=7bsEN8mwUB8

49

Planning example: air cargo transport

• Three actions:

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action

50

Air cargo transport problem

51

Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies

from one airport to another, all the cargo inside the

plane goes with it. In first-order logic it would be easy

to quantify over all objects that are inside the plane.

But basic PDDL (Planning Domain Definition

Language) does not have a universal quantifier, so we

need a different solution. The approach we use is to say

that a piece of cargo ceases to be At anywhere when it

is In a plane; the cargo only becomes At the new

airport when it is unloaded. So At really means

“available for use at a given location.”

52

Air cargo transport problem

• What is a solution for this problem?

53

Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

54

Air cargo transport problem

• What about “degenerate” actions like

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it

apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND

!At(P1,JFK)).

• It is common to ignore such problems and assume that

the effects just cancel out. A perhaps better approach is

to add inequality preconditions saying that the from

and to airports must be different. We will see another

similar example shortly.

55

Spare tire problem

• The goal is to have a good spare tire properly mounted

onto the car’s axle, where the initial state has a flat tire

on the axle and a good spare tire in the trunk.

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad

neighborhood, so that the effect of leaving it overnight

is that the tire disappear.

56

Spare tire problem

57

Spare tire problem

• Solution?

58

Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk),

PutOn(Spare, Axle)].

59

Blocks world

• One of the most famous planning domains is known as

the blocks world. This domain consists of a set of

cube-shaped blocks sitting on a table. The blocks can

be stacked, but only one block can fit directly on top of

another. A robot arm can pick up a block and move it

to another position, either on the table or on top of

another block. The arm can pick up only one block at a

time, so it cannot pick up a block that has another one

on it. The goal will always be to build one or more

stacks of blocks, specified in terms of what blocks are

on top of what other blocks. For example, a goal might

be to get block A on B and block B on C.

60

Blocks world

61

Blocks world

• We use On(b,x) to indicate that block b is on x, where x

is either another block or the table. The action for

moving block b from the top of x to the top of y will be

Move(b,x,y). One of the preconditions on moving b is

that no other block be on it. In first-order logic, this

would be !Exists x On(x,b), or alternatively, ForAll x

~On(x,b). Basic PDDL does not allow quantifiers, so

instead we introduce a predicate Clear(x) that is true

when nothing is on x.

62

Blocks world

63

Blocks world

• Solution?

64

Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

65

Blocks world

• The action Move moves a block b from x to y if both b

and y are clear. After the move is made, b is still clear

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND

~Clear(y).

66

Blocks world

• Unfortunately, this does not maintain Clear properly

when x or y is the table. When x is the Table, this

action has the effect Clear(Table), but the table should

not become clear; and when y=Table, it has the

precondition Clear(Table), but the table does not have

to be clear for us to move a block onto it. To fix this,

we do two things. First we introduce another action to

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))

67

Blocks world

• Second, we take the interpretation of Clear(x) to be

“there is a clear space on x to hold a block.” Under this

interpretation, Clear(Table) will always be true. The

only problem is that nothing prevents the planner from

using Move(b,x,Table) instead of MoveToTable(b,x),

which leads to a larger than needed search space,

though functionally is not problematic. We can fix this

by introducing the predicate Block and add Block(b)

AND Block(y) to the precondition of Move.

68

Planning in relation to other class modules

• We have seen that planning and search are very intertwined for

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in

Conjunctive-Normal Form (conjunction (or AND) of clauses),

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf

69

Have cake and eat cake too

70

Planning graph

71

Satisfiability

• A sentence (in logic) is satisfiable if it is true in, or satisfied by,

some model. For example, the knowledge base, (R1 AND R2

AND R3 AND R4 AND R5), is satisfiable because there are

three models in which it is true.

• Satisfiability can be checked by enumerating the possible

models until one is found that satisfies the sentence. The

problem of determining the satisfiability of sentences in

propositional logic – the SAT problem—was the first problem

proved to be NP-complete. Many problems in computer science

(including the planning graph one, and integer programming)

are really satisfiability problems.

72

Truth table for wumpus world

73

Homework for next class

• Chapter 13 from Russel/Norvig

