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Schedule

• 10/12: Wrap-up logic (logical inference), start optimization 

(integer, linear optimization)

• 10/17: Continue optimization (integer, linear optimization)

• 10/19: Wrap up optimization (nonlinear optimization), go over 

homework 1, midterm review 

• 10/24: Midterm

• 10/26: Go over exam, start planning module

• Next week: HW2 back, HW3 out

• Class project due 12/7

• Final exam on 12/14

• Class withdrawal deadline is 11/6
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Integer programming

• Special case of a CSP where domain set for each 

variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables 

together



4

Objective functions

• In most CSP examples we saw, the goal was just to 

find a single assignment of values to variables that 

satisfied all the constraints, and it did not matter which 

solution was found. We also considered the more 

general setting where we have “preference constraints” 

which are encoded as costs on individual variable 

assignments, leading to an overall objective function 

that want would like minimize, subject to all of the 

constraints being adhered to.
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CSP variations

• The constraints we have described so far have all been absolute 

constraints, violation of which rules out a potential solution. 

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a 

university class-scheduling problem there are absolute constraints 

that no professor can teach two classes at the same time. But we 

also may allow preference constraints: Prof. R might prefer 

teaching in the morning, whereas Prof. N prefers teaching in the 

afternoon. A schedule that has Prof. R teaching at 2 p.m. would 

still be an allowable solution (unless Prof. R happens to be the 

department chair) but would not be an optimal one. 
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CSP variations

• Preference constraints can often be encoded as costs on 

individual variable assignments—for example, 

assigning an afternoon slot for Prof. R costs 2 points 

against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with 

preferences can be solved with optimization search 

methods, either path-based or local. We call such a 

problem a constraint optimization problem, or COP. 

Linear/integer/nonlinear programming problems do 

this kind of optimization.
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Integer programming

• Special case of a CSP where domain set for each (or 

some) variable is a set of integers

– Often it is finite {0,1,2,…,n} but could be infinite, 

{0,1,2,3,…..}

– Often it is just binary {0,1}

– Some variables do not have integer restrictions and can be 

any real number

• Constraints are all LINEAR functions of the variables

– E.g., 4X1 + 3X2 <= 9

– -2.5X1 + 2X2 – 19X3 <= 22

– Cannot raise variables to powers or multiply variables

• Objective function of the variables to optimize
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Integer linear programming

• Often the constraints and the objective are both 

LINEAR functions of the variables, and we referring to 

integer programming (IP) as integer linear 

programming in this case (ILP). One could also 

consider other forms for the constraints and objective 

(e.g., quadratic program, quadratically-constrained 

program, conic program). Specialized algorithms exist 

for these as well, though more attention has been given 

to the linear case and typically those algorithms are 

much more effective in practice. 
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Manufacturing site selection

• A manufacturer is planning to construct new buildings at four 

local sites designated 1, 2, 3, and 4. At each site, there are three 

possible building designs labeled A, B, and C. There is also the 

option of not using a site. The problem is to select the optimal 

combination of building sites and building designs. Preliminary 

studies have determined the required investment and net annual 

income for each of the 12 options. This information is shown in 

Table 7.1 with A1, for example, denoting design A at site 1. The 

company has an investment budget of $100 million ($100M). 

The goal is to maximize total annual income without exceeding 

the investment budget. As the optimization analyst, you are 

given the job of finding the optimal plan.
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Manufacturing site selection

• It is an obvious requirement here that only whole 

buildings may be built and only whole designs may be 

selected. To begin creating a model, variables must be 

defined to represent each decision. Let I = {A,B,C} be 

the set of design options, and let J = {1,2,3,4} be the 

set of site options.

• Let yij = 1 if design i is used at site j, and 0 otherwise

• Also, denote by pij the annual net income and by aij 

the investment required for the design/site combination 

i,j. As a first try, you propose the following model for 

finding the maximum of annual income:
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Manufacturing site selection

• Maximize z = sumi sumj pij yij

• Subject to:

– sumi sumj aij yij <= 100

– yij in {0,1} for all i in I and j in J
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Manufacturing site selection

• Solving the model with an appropriate algorithm for 

the parameter values given in the table, the optimal 

solution is:

– yA1=yA3=yB3=yB4=yC1=1, with all other values of yij 

equal to zero and z = 40. Of the available budget, $99M is 

used.
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Manufacturing site selection

• Your supervisor reviews the solution and questions your basic 

reasoning. You seem to have omitted some of the logic of the 

problem, because two designs are built on the same site—that is, 

A1 and C1, and also A3 and B3, are all in the solution. In 

addition, your supervisor now realizes that you were not alerted 

to several other logical restrictions imposed by the owners and 

architects—i.e., site 2 must have a building, design A can be 

used at sites 1, 2, and 3 only if it is also selected for site 4, and at 

most two of the designs may be included in the plans.

• Your solution violates all of these restrictions and must be 

discarded. The following additional constraints are needed to 

guarantee a feasible solution:
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Manufacturing site selection

• Site 2 must have a building: sumi yi2 = 1

• There can be at most one building at each of the other 

sites: sumi yij <= 1 for j = 1,3,4

• Design A can be used at sites 1, 2, and 3 only if it is 

also selected for site 4: yA1 + yA2 + yA3 <= 3yA4.

• To formulate the constraints associated with design 

selection, three new binary variables are introduced. 

– Let wi = 1 if design i is used, 0 otherwise, for i = A,B,C

– At most two designs may be used: wA + wB + wC <= 2

– Finally, the yij and wi variables must be tied together: sumj

yij <= 4wi for i = A, B, C 
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Manufacturing site selection

• The new model has 15 variables and 10 constraints not 

including the integrality requirement. Solving, you find 

that the optimal solution is 

yA1=yA4=yB2=yB3=wA=wB=1 with all other 

variables equal to zero and z = 37. All the budget is 

spent, but the profit has decreased.
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Traveling salesman problem

• The travelling salesman problem (TSP) asks the following 

question: "Given a list of cities and the distances between each 

pair of cities, what is the shortest possible route that visits each 

city exactly once and returns to the origin city?“

• The problem was first formulated in 1930 and is one of the most 

intensively studied problems in optimization. It is used as a 

benchmark for many optimization methods. Even though the 

problem is computationally difficult, a large number of 

heuristics and exact algorithms are known, so that some 

instances with tens of thousands of cities can be solved 

completely and even problems with millions of cities can be 

approximated within a small fraction of 1%.
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Traveling salesman problem
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Traveling salesman problem

• The TSP has several applications even in its purest formulation, 

such as planning, logistics, and the manufacture of microchips. 

Slightly modified, it appears as a sub-problem in many areas, 

such as DNA sequencing. In these applications, the concept city

represents, for example, customers, soldering points, or DNA 

fragments, and the concept distance represents travelling times 

or cost, or a similarity measure between DNA fragments. The 

TSP also appears in astronomy, as astronomers observing many 

sources will want to minimize the time spent moving the 

telescope between the sources. In many applications, additional 

constraints such as limited resources or time windows may be 

imposed.
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Traveling salesman problem
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Linear programming

• Similar to ILP (both constraints and objective are linear 

functions of the variables). However, for LP the 

variables are not restricted to be integers; they can be 

any real number. So not only are the domains infinite 

for each variable, they are uncountably infinite. Integer 

(and e.g., binary) variables are not allowed for LP.

– Often there are nonnegativity constraints on some of the 

variables, e.g., Xi >= 0.

– Cannot impose integrality constraints, e.g., for manufacturing 

problem could not use binary variables to ensure whole 

buildings are built, and may end up with solution such as 

yij=0.8, which is nonsensical (can’t build 0.8 of a building).
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LP vs ILP

• Which is easier to solve, LP or ILP?
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LP vs. ILP

• Every LP is also an ILP (can just not include any integer 

variables), so clearly ILP is at least as hard as LP. It turns out 

that LP can be solved in polynomial-time, while ILP is NP-hard. 

In fact, several algorithms for ILP involve solving a series of LP 

“relaxations,” where several of the integer variables are assigned 

to specific values and the resulting optimization formulation is 

solved as a linear program without any integrally-constrained 

variables.

• This is perhaps counterintuitive, as for LP variables all have 

infinite domain, but for ILP they may even just have domains of 

size 2.

• That said, of course huge LPs are more difficult to solve than 

tiny ILPs in practice, and worst-case complexity does not tell the 

full story.
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ILP algorithms

• Exhaustive enumeration: can be performed if all 

variables have finite domain (can’t be done if there are 

non-integral variables or integral variables over infinite 

domain). Can iterate over all possible combinations of 

variable values. For each combination, test for 

feasibility (whether it satisfies all constraints). If it is 

feasible, compute the objective value, and ultimately 

output the assignment that has highest objective value 

out of feasible solutions.

• Is this algorithm efficient?
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ILP algorithm

• Unfortunately, the number of possible solutions 

is 2n, where n is the number of variables. For n 

= 20, there are more than 1,000,000 candidates; 

for n=30, the number is greater than 

1,000,000,000, which is too large to be solved 

by computers. 
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0-1 integer program example
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ILP search tree
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ILP search tree

• We draw the tree with the root at the top and the leaves

at the bottom. The circles are called nodes, and the 

lines are called branches. At the very top of the tree, 

we have node 0 or the root. As we descend the tree, 

decisions are made as indicated by the numbers on the 

branches. A negative number, -j, implies that the 

variable xj has been set equal to 0, whereas a positive 

number, +j, implies that xj has been set equal to 1.



28

ILP algorithm

• The nodes are numbered sequentially as the variables are fixed 

to either 0 or 1. The sequence will vary depending on the 

enumeration scheme. Each node k inherits all the restrictions 

defined by the branches on the path joining it to the root. This 

path is given the designation Pk. For example, at node 1 the 

decision +1 is indicated y the branch joining node 0 to node 1. 

This means we have set variable x1 equal to 1. At node 5, the 

decision -2 is indicated by the branch joining nodes 1 and 5, so 

we have the additional restriction x2 = 0. The leaves at the 

bottom of the tree signal that all variables have been fixed. Each 

of these eight nodes represents a complete solution that can be 

identified by tracing the path from the leaf node to the root and 

noting the decisions associated with the branches traversed 

along the way. Thus, node 6 represents the solution x = (1,0,1), 

whereas node 10 represents x = (0,1,1).
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ILP algorithm

• Can perform a recursive DFS backtracking search 

algorithm (similar to both CSP backtracking search and 

minimax search) on this search tree.

• Could always branch to the left, arbitrary branching, or 

use more intelligent heuristics.

• Can integrate various pruning techniques like we did 

for minimax search (e.g., alpha-beta pruning) and for 

CSP search.
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Branch and bound 

• LP relaxation: the ILP but without the integrality constraints

• Suppose we have an incumbent solution with objective value 

zB, and zK is the objective value of the LP relaxation at node k.

• Four alternatives:

– LP has no feasible solution (in which IP also has no feasible solution)

– LP has an optimal solution with lower objective value (in which the 

current IP optimal solution is better than the LP optimal one and cannot 

provide an improvement over the incumbent).

– Optimal solution to the LP is integer valued and feasible, and yields 

improved solution.

– None of the above: i.e., the optimal LP solution improves the objective 

but is not integer-valued.

• For first 3 cases nothing more to be done. Only for case 4 is 

further branching needed.
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Branch and bound

• Note that the relaxed problem associated with each 

node does not have to be an LP. A second choice could 

be an IP that is easier to solve than the original. Typical 

relaxations of the traveling salesman problem, for 

instance, are the assignment problem and the minimum 

spanning tree (MST) problem.



32

Branch and bound (B&B)

• We now elaborate and present the basic steps that are 

needed for solving a 0-1 integer program using B&B 

(can also be used for IPs with larger domains). 

Although most steps are general in that they are 

appropriate for a variety of problem classes, several 

computational procedures are problem dependent. 

Although a maximization objective is assumed, if the 

goal is to minimize, the problem can be solved with the 

same algorithm after making a few modifications, or 

directly by converting it to a maximization problem. 

The five routines below are used to guide the search for 

the optimal solution and to extract information that can 

be used to reduce the size of the B&B tree.
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Branch and Bound

• Bound: This procedure examines the relaxed problem 

at a particular node and tries to establish a bound on 

the optimal solutions. It has two possible outcomes:

1. An indication that there is no feasible solution in the set of 

integer solutions represented by the node

2. A value zUB– an upper bound on the objective for all 

solutions at the node and its descendent nodes
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Branch and Bound

• Approximate: This procedure attempts to find a 

feasible integer solution from the solution of the 

relaxed problem. If one is found, it will have an 

objective value, call it Z_LB, that is a lower bound on 

the optimal solution for a maximization problem.

• Variable fixing: This procedure performs logical tests 

on the solution found at a node. The goal is to 

determine if any of the free binary variables are 

necessarily 0 or 1 in an optimal integer solution at the 

current node or at its descendants, or whether they 

must be set to 0 or 1 to ensure feasibility as the 

computations progress.
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Branch and Bound

• Branch: A procedure aimed at selecting one of the free 

variables for separation. Also decided is the first 

direction (0 or 1) to explore. 

• Backtrack: This is primarily a bookkeeping procedure 

that determines which node to explore next when the 

current node is fathomed. It is designed to enumerate 

systematically all remaining live nodes of the B&B tree 

while ensuring that the optimal solution to toe original 

IP is not overlooked.
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Branch and bound algorithm
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Linear programming (LP)
• Countless real-world applications have been successfully 

modeled and solved using LP techniques. This has produced an 

ongoing revolution in the way decisions are made throughout all 

sectors of the economy. Typical applications include the 

scheduling of airline crews, the distribution of products through 

a manufacturing supply chain, and production planning in the 

petrochemical industry. 

• Because of the simplicity of the LP model, software has been 

developed that is capable of solving problems containing 

millions of variables and tens of thousands of constraints. 

Computer implementations are widely available for most 

mainframes, workstations, and microcomputers. A variety of 

problems with nonlinear functions, multiple objectives, 

uncertainties, or multiple decision makers, such as those arising 

in game theory, can be modeled as linear programs.
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LP solution concepts

• Solution: An assignment of values to the decision variables is a 

solution to the LP model. Given a solution, the expressions 

describing the objective function and the constraints can be 

evaluated. A solution is feasible if all the constraints, the non-

negativity restrictions, and the simple upper bounds are satisfied. 

If any one of the restrictions is violated, the solution is infeasible.

• Optimal solution: A feasible solution that maximizes or 

minimizes the objective function (depending on the criterion). 

The purpose of an LP algorithm is to find the optimal solution or 

to determine that no feasible solution exists.
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LP solution concepts
• Alternative optima: If there is more than one optimal solution 

(solutions that yield the same value of the objective z), the model 

is said to have multiple or alternative optimal solutions. Many 

practical problems have alternative optima.

• No feasible solution: If there is no specification of values for the 

decision variables that satisfies all the constraints, the problem is 

said to have no feasible solution. In practical problems, it is 

possible that the set of constraints does not allow for a feasible 

solution (e.g., x >= 3, x <=2). Such a situation might result from a 

mistake in the problem statement or an error in data entry. 

Redundant equality constraints or nearly identical inequality 

constraints in the problem formulation may lead to a false 

indication that no feasible solution exists. Although the set of 

equalities may have a solution in theory, rounding errors inherent 

in computer computations may make the simultaneous satisfaction 

of these equalities (and sometimes inequalities) impossible.
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LP solution concepts

• Unbounded model: If there are feasible solutions for which the 

objective function can achieve arbitrarily large values (if 

maximizing) or arbitrarily small values (if minimizing), the 

model is said to be unbounded. When all variables are restricted 

to be nonnegative and have finite simple upper bounds, this 

condition is impossible. If no bounds are specified for some 

variables, the model may have an unbounded solution. However, 

since most decisions must take into account limitations on 

resources and laws of nature, such a model is probably a poor 

representation of the real problem.
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Simplex algorithm

• The simplex algorithm, developed by George Dantzig in 1947, solves LP 

problems by constructing a feasible solution at a vertex of the polytope and then 

walking along a path on the edges of the polytope to vertices with non-

decreasing values of the objective function until an optimum is reached for sure. 

In many practical problems, "stalling" occurs: Many pivots are made with no 

increase in the objective function. In rare practical problems, the usual versions 

of the simplex algorithm may actually "cycle". To avoid cycles, researchers 

developed new pivoting rules.

• In practice, the simplex algorithm is quite efficient and can be guaranteed to find 

the global optimum if certain precautions against cycling are taken. The simplex 

algorithm has been proved to solve "random" problems efficiently, i.e. in a cubic 

number of steps, which is similar to its behavior on practical problems.

• However, the simplex algorithm has poor worst-case behavior: Klee and Minty 

constructed a family of linear programming problems for which the simplex 

method takes a number of steps exponential in the problem size. In fact, for some 

time it was not known whether the linear programming problem was solvable in 

polynomial time, i.e. of complexity class P.
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Interior point algorithm

• In contrast to the simplex algorithm, which finds an optimal 

solution by traversing the edges between vertices on a 

polyhedral set, interior-point methods move through the interior 

of the feasible region.

• The ellipsoid algorithm (Khachiyan) is the first worst-case 

polynomial-time algorithm for linear programming. To solve a 

problem which has n variables and can be encoded in L input 

bits, this algorithm uses O(n^4 L) pseudo-arithmetic operations 

on numbers with O(L) digits. Khachiyan's algorithm and his 

long standing issue was resolved by Leonid Khachiyan in 1979 

with the introduction of the ellipsoid method. The convergence 

analysis has (real-number) predecessors, notably the iterative 

methods developed by Naum Z. Shor and the approximation 

algorithms by Arkadi Nemirovski and D. Yudin.
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Nonlinear optimization

• Maximize (or minimize) f(x)

subject to g_i(x) <= 0 for each i in {1,…,m}

h_j = 0 for each j in {1,…,p)}

x in X 

• n,m,p positive integers

• X is subset of R^n (e.g., [0,1], or [-infinity,infinity]

• F, g_i, h_j real-valued functions on X for each I and 

each j, with at least one of f, g_i, h_j being nonlinear
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Nonlinear optimization

• If the objective function f is linear and the constrained space is a 

polytope, the problem is a linear programming problem, which 

may be solved using well-known linear programming techniques 

such as the simplex method.

• If the objective function is concave (maximization problem), or 

convex (minimization problem) and the constraint set is convex, 

then the program is called convex and general methods from 

convex optimization can be used in most cases.

• If the objective function is quadratic and the constraints are 

linear, quadratic programming techniques are used.

• If the objective function is a ratio of a concave and a convex 

function (in the maximization case) and the constraints are 

convex, then the problem can be transformed to a convex 

optimization problem using fractional programming techniques.
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Nonlinear optimization

• Several methods are available for solving nonconvex problems. One 

approach is to use special formulations of linear programming 

problems. Another method involves the use of branch and bound 

techniques, where the program is divided into subclasses to be solved 

with convex (minimization problem) or linear approximations that 

form a lower bound on the overall cost within the subdivision. With 

subsequent divisions, at some point an actual solution will be obtained 

whose cost is equal to the best lower bound obtained for any of the 

approximate solutions. This solution is optimal, although possibly not 

unique. The algorithm may also be stopped early, with the assurance 

that the best possible solution is within a tolerance from the best point 

found; such points are called ε-optimal. Terminating to ε-optimal 

points is typically necessary to ensure finite termination. This is 

especially useful for large, difficult problems and problems with 

uncertain costs or values where the uncertainty can be estimated with 

an appropriate reliability estimation.
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Nonlinear programming

• Quadratic programming: For positive definite Q, the ellipsoid 

method solves the problem in polynomial time. If, on the other 

hand, Q is indefinite, then the problem is NP-hard. In fact, even 

if Q has only one negative eigenvalue, the problem is NP-hard.

• Convex optimization: variability complexity, often solved by 

gradient or subgradient methods.

• The following problems are all convex minimization problems, 

or can be transformed into convex minimizations problems via a 

change of variables: Least squares, Linear programming, 

Convex quadratic minimization with linear constraints, 

quadratic minimization with convex quadratic constraints, Conic 

optimization, Geometric programming, Second order cone 

programming, Semidefinite programming, Entropy 

maximization with appropriate constraints
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Planning

• AI planning arose from investigations into state-space search, 

theorem proving, and control theory and from the practical 

needs of robotics, scheduling, and other domains.

• Shakey the robot was the first general-purpose mobile robot to 

be able to reason about its own actions. While other robots 

would have to be instructed on each individual step of 

completing a larger task, Shakey could analyze commands and 

break them down into basic chunks by itself.

• Due to its nature, the project combined research in robotics, 

computer vision, and natural language processing. Because of 

this, it was the first project that melded logical reasoning and 

physical action. Some of the most notable results of the project 

include the A* search algorithm, the Hough transform, and the 

visibility graph method.



48

Shakey

• https://www.youtube.com/watch?v=7bsEN8mwUB8
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Planning example: air cargo transport

• Three actions: 

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at 

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not 

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action



50

Air cargo transport problem
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Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies 

from one airport to another, all the cargo inside the 

plane goes with it. In first-order logic it would be easy 

to quantify over all objects that are inside the plane. 

But basic PDDL (Planning Domain Definition 

Language) does not have a universal quantifier, so we 

need a different solution. The approach we use is to say 

that a piece of cargo ceases to be At anywhere when it 

is In a plane; the cargo only becomes At the new 

airport when it is unloaded. So At really means 

“available for use at a given location.” 



52

Air cargo transport problem

• What is a solution for this problem?
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Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].
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Air cargo transport problem

• What about “degenerate” actions like 

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it 

apparently has contradictory effects according to the 

definition (the effect would include At(P1,JFK) AND 

!At(P1,JFK)).

• It is common to ignore such problems and assume that 

the effects just cancel out. A perhaps better approach is 

to add inequality preconditions saying that the from

and to airports must be different. We will see another 

similar example shortly.
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Spare tire problem

• The goal is to have a good spare tire properly mounted 

onto the car’s axle, where the initial state has a flat tire 

on the axle and a good spare tire in the trunk. 

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad 

neighborhood, so that the effect of leaving it overnight 

is that the tire disappear.
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Spare tire problem
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Spare tire problem

• Solution?
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Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk), 

PutOn(Spare, Axle)].
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Blocks world

• One of the most famous planning domains is known as 

the blocks world. This domain consists of a set of 

cube-shaped blocks sitting on a table. The blocks can 

be stacked, but only one block can fit directly on top of 

another. A robot arm can pick up a block and move it 

to another position, either on the table or on top of 

another block. The arm can pick up only one block at a 

time, so it cannot pick up a block that has another one 

on it. The goal will always be to build one or more 

stacks of blocks, specified in terms of what blocks are 

on top of what other blocks. For example, a goal might 

be to get block A on B and block B on C.
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Blocks world
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Blocks world

• We use On(b,x) to indicate that block b is on x, where x 

is either another block or the table. The action for 

moving block b from the top of x to the top of y will be 

Move(b,x,y). One of the preconditions on moving b is 

that no other block be on it. In first-order logic, this 

would be !Exists x On(x,b), or alternatively, ForAll x 

~On(x,b). Basic PDDL does not allow quantifiers, so 

instead we introduce a predicate Clear(x) that is true 

when nothing is on x.
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Blocks world
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Blocks world

• Solution?
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Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]
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Blocks world

• The action Move moves a block b from x to y if both b 

and y are clear. After the move is made, b is still clear 

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND 

~Clear(y).
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Blocks world

• Unfortunately, this does not maintain Clear properly 

when x or y is the table. When x is the Table, this 

action has the effect Clear(Table), but the table should 

not become clear; and when y=Table, it has the 

precondition Clear(Table), but the table does not have 

to be clear for us to move a block onto it. To fix this, 

we do two things. First we introduce another action to 

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))
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Blocks world

• Second, we take the interpretation of Clear(x) to be 

“there is a clear space on x to hold a block.” Under this 

interpretation, Clear(Table) will always be true. The 

only problem is that nothing prevents the planner from 

using Move(b,x,Table) instead of MoveToTable(b,x), 

which leads to a larger than needed search space, 

though functionally is not problematic. We can fix this 

by introducing the predicate Block and add Block(b) 

AND Block(y) to the precondition of Move.
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Planning in relation to other class modules

• We have seen that planning and search are very intertwined for 

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language 

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in 

Conjunctive-Normal Form (conjunction (or AND) of clauses), 

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming 

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf
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Have cake and eat cake too
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Planning graph
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Satisfiability

• A sentence (in logic) is satisfiable if it is true in, or satisfied by, 

some model. For example, the knowledge base, (R1 AND R2 

AND R3 AND R4 AND R5), is satisfiable because there are 

three models in which it is true.

• Satisfiability can be checked by enumerating the possible 

models until one is found that satisfies the sentence. The 

problem of determining the satisfiability of sentences in 

propositional logic – the SAT problem—was the first problem 

proved to be NP-complete. Many problems in computer science 

(including the planning graph one, and integer programming) 

are really satisfiability problems.
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Truth table for wumpus world
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Homework for next class

• Chapter 13 from Russel/Norvig


