
 1

Running E-Z Reader 10.3 Simulations

The E-Z Reader 10.3 model was written in Java, version 1.8. Both the executable (.jar)
version of the program and the source code (i.e., .java classes) are available from my
website (www.erikdreichle.com) and upon request (erik.reichle@mq.edu.au). The first part
of these instructions describes how to run simulations using the executable program and
the Schilling, Rayner, and Chumbley (1998) sentence corpus. The second part describes how
to run simulations using your own sentence corpus.

1. Running Simulations

You will need three files to run E-Z Reader simulations: (1) the program file containing the
actual model (E-Z Reader 10.jar); (2) a file containing the sentences that will be used in the
simulation (e.g., SRC98Corpus.txt); and (3) a file used to identify specific target words of
interest (e.g., SRC98Targets.txt). To run a simulation, first download these files to your
computer desktop or a common folder and then double-click on the program file. This
should open a graphic-user interface, or GUI (see Fig. 1, below), with buttons and text fields
that can be selected or modified for running different types of simulations. Here is a brief
explanation of the GUI.

Figure 1. E-Z Reader GUI.

The only information that must be entered into the GUI before you can start running a
simulation is the following:

(1) Corpus File Name – Enter the name of the file containing the sentences that will be used
in the simulation. The example file SRC98Corpus.txt contains 48 sentences used by Schilling

 2

et al. (1998) in their eye-movement experiment and subsequently used to evaluate different
versions of the E-Z Reader model.

(2) Target File Name – Enter the name of the file containing the pre-specified target words
in each sentence. For example, Schilling et al.’s (1998) experiment examined the effects of
word frequency by examining how low- and high-frequency target affected various eye-
movement measures; these specific target words are listed (one per sentence) in
SRC98Targets.txt.

(3) Output File Name – This field designates the file where simulation results will be written
(default name: SimulationResults.txt). This file will appear in the same location as the
program file after the program executes. (Note that changing the .txt file extension to .xls
will cause the output to be formatted as a space delimited Microsoft EXCEL file, making the
output easier to analyze.)

(4) # Subjects – Enter the number of statistical subjects (1-10,000) that will be used in
completing the simulation.

(5) RUN – Press this button to start the simulation. The length of time required to complete
a simulation will depend upon the speed of your computer and other variables, including
the number of statistical subjects, number of sentences, type of simulation, etc.

(6) Include Regressions? – This button determines whether (yes) or not (no) simulation trials
containing inter-word regressions will be included in the output.

(7) Parameter Values – These fields contain E-Z Reader’s default parameter values. Two
things are important to remember about these values. First, the values of “I(n)” and “pF(n)”
are respectfully used to set the values of “I” and “pF” for the specific target words. Second,
the parameter that controls the gamma distribution variability, “σγ”, is set equal to a value
(=20) that generates gamma distributions with standard deviations equal to 0.22 of their
means. (For more information about the gamma distribution function that is used in the
E-Z Reader program, see Press, Teukolsky, Vetterling, & Flannery, 1992.)

(8) Simulation Output – These buttons can be selected to execute a variety of different
simulations, each providing a different type of output:

(a) Word IVs – Selecting this button will output the independent variables associated with
each of the words in the sentence file. Because these variables are calculated by the
program prior to executing a simulation (e.g., each word’s optimal viewing position, or OVP),
it’s good practice to run this simulation prior to completing any others to ensure that the
sentence file has been formatted correctly. (It’s also a good idea to use a single statistical
subject to avoid generating an extremely large text file.) Figure 2 shows an example of the
output that is generated:

 3

Figure 2. Example output from “Word IVs” simulation.

The above example shows the first sentence (i.e., “Sentence: 0”) and part of the second (i.e.,
“Sentence: 1”). Following Java conventions, sentences and words are always numbered
starting from 0, so that a set of N sentences/words will be numbered from 0 to N-1. Each
row shows the following information for a given word: (i) its frequency of occurrence in
printed text (e.g., as tabulated by Francis & Kucera, 1982); (ii) its cloze predictability (Taylor,
1953); (iii) its length (i.e., number of letters); (iv) the cumulative character position of the
space immediately to the left of the word; (v) the cumulative character position of the
center of the word (i.e., its OVP); (vi) the cumulative character position of the right side the
last character in a word; (vii) the actual word, with asterisks marking target words.

(b) Model States – Selecting this button will cause the model program to write out all of the
internal states that the model progresses through as it “reads” the sentences. This type of
output is useful for seeing how the model works, and for figuring out precisely why the
model makes certain predictions. Because the output files are very large (each word that is
processed might cause the model to go through more than 10 states), it is a good idea to
use only a very small number of subjects when running this type of simulation. Figure 3
shows an example of the output generated:

Figure 3. Example output from “Model States” simulation.

 4

The above example shows consecutive model states, displayed one per row. Within each
row going from left to right the following are indicated: (i) the current sentence being read
(e.g., the first sentence, or “S: 0”, in this example); (ii) an index “N” of where attention is
located (i.e., the word being processed); (iii) “fix#”, the fixation number; (iv) “word”, the
word currently being fixated; (v) “pos”, the cumulative character position of the current
fixation location; (vi) “dur”, the duration of the current fixation; (vii) “pr”, the current lexical
processing rate; (viii) a list of on-going processes and their associated completion times (in
ms), with the first process listed in square brackets (e.g., [L1] in line 2) being the process
that has just completed; and (ix) an indicator, “IF:”, of those words (if any) for which
integration failure may have occurred.

These on-going processes are: (i) “V”, pre-attentive vision; (ii) “L1”, the first stage of lexical
processing (i.e., the familiarity check); (iii) “L2”, the second stage of lexical processing (i.e.,
lexical access); (iv) “I”, post-lexical integration; (v) “A”, attention shift; (vi) “M1”, labile
saccadic programming; (vii) “M2”, non-labile saccadic programming; and (viii) “S”, the
saccade.

For “M1”, the two numbers in parentheses respectively indicate the word being targeted by
the saccade and its intended length. Similarly, for “M2”, the number in parentheses
indicates the saccade length after both random and systematic error have been added to its
intended length. For example, in the second line, the duration of M1 is 81 ms, the
impending saccade will be being directed towards the center of word 1 (i.e., its OVP), with
an intended length of 6.5 character spaces. However, as line 6 shows, the actual saccade
length is only 4.9 character spaces, which as line 8 then shows, moves the eyes from the
OVP of word 0 (i.e., cumulative character position 4.0) to cumulative character position 8.9
in word 1. For a detailed discussion of the model states and how state transitions occur in
E-Z Reader, see Reichle, Pollatsek, Fisher, and Rayner (1998).

(c) Trace – Selecting this button will cause the model to generate a trace file that is similar
to those that are generated by eye-trackers in experiments involving human participants.
Figure 4 shows the “trace file” output, with each line containing the following information
about a given fixation: (i) its duration (dur); (ii) its position (pos); (iii) the word being fixated
(word); and (iv) the word.

Figure 4. Example output of “Trace File” simulation.

 5

(d) Word DVs – This output will probably be most useful for running simulations.
Selecting this button will generate a number of the standard dependent measures (e.g.,
mean gaze durations, etc.) for each word in the sentence file. With this type of
simulation, it is advisable to use a large number of subjects (e.g., 1,000) to obtain stable
simulation results. Also, the predicted results for the first and last words in each sentence
are not included in the output because the model: (1) starts processing the first word from
its middle and with no parafoveal preview, and (2) halts abruptly (regardless of whatever
is happening) when the last word has been integrated. (For those reasons, the
dependent values of the first and last words are never included in our analyses; see
Reichle, Pollatsek, Fisher & Rayner, 1998). Figures 5-8 provide examples of the
simulation output:

Figure 5. First example output from “Word DVs” simulation, showing mean word-based dependent
measures for each word.

The top part of the output file contains several mean dependent measures for each word in
the sentence corpus: (i) single-fixation duration (SFD); (ii) first-fixation duration (FFD); (iii)
gaze duration (GD); (iv) total time (TT); (v) fixation probability (PrF); (vi) probability of
making exactly one fixation (Pr1); (vii) probability of making two or more fixations (Pr2);
(viii) probability of skipping (PrS); and (ix) the word, with target words indicated by asterisks.

As Figure 6 shows, the next part of the output file contains the first-fixation landing-site
distributions for each word:

Figure 6. Second example output from “Word DVs” simulation, showing the first-fixation landing-site
distributions for each word.

 6

As Figure 7 shows, the next part of the output file contains the refixation-probability
distributions (i.e., probability of refixating as a function of initial fixation position) for each
word:

Figure 7. Third example output from “Word DVs” simulation, showing refixation-probability distributions
for each word.

Finally, as Figure 8 shows, the bottom part of the output file contains the mean durations
of single fixations as function of their positions (i.e., IOVP curves):

Figure 8. Final example output from “Word DVs” simulation, showing IOVP curves for each word.

(e) Distributions – As Figure 9 shows, this final type of simulation will generate three
distributions across words of each given length: (i) first-fixation landing-site distributions; (ii)
refixation-probability distributions; and (iii) IOVP curves.

 7

Figure 9. Example output from “Distributions” simulation.

2. Setting Up Sentence and Target-Word Files

As indicated previously, two files are required to run simulations: (1) a sentence file
containing information about each word’s frequency, length, cloze predictability, and
identity; and (2) a file identifying a specific target word in each sentence. This section
describes how to set up these files to run simulations using sentences other than the
Schilling et al. (1998) corpus.

The sentence file should contain four columns of information about each word’s: (1)
frequency of occurrence; (2) length in character spaces; (3) cloze predictability; and (4)
identity. The last word of each sentence should also be followed by an ampersand (i.e.,
@), as indicated in Figure 10, below. Without this marker, the program will treat all of
the words in the file are a single sentence, which may or may not be useful. (For more
information about the Schilling et al., 1998 sentence corpus, see Reichle et al., 1998.)

 8

Figure 10. Example of sentence file.

The target-word file is a list identifying target words, as shown in Figure 11. The file
contains a single column containing one number per sentence. (Following Java conventions,
the numbers range from 0 to N-1 for a sentence containing N words; e.g., the “5” in the first
row specifies the sixth word as the target for the first sentence.) These target words will be
tagged in the simulation output (with asterisks) to make their analyses easier. However, if
you are not interest in specific target words, this file can be set up with “dummy” numbers
(e.g., a single column of 0s).

Figure 11. Example of target-word file.

The model program should be fairly robust and handle slight variations in formatting (e.g.,
using blank spaces vs. tabs between columns). However, it’s a good idea to make sure that
the model is reading in the files correctly using the WordIVs output option before you run
any real simulations. Also, the sentence and target-word files should be ascii files (i.e., files
that only contains alphanumeric characters, and no hidden control characters.) Finally, it’s
important to remember that fixations on the first and last word of each sentence are
excluded from the analyses because the lexical processing of these words starts and ends
(respectively) abruptly.

Don’t hesitate to contact me if you have any questions or run into any problems. Good luck!

Best regards,
Erik

 9

References

Francis, W. N. & Kucera, H. (1982). Frequency analysis of English usage: Lexicon and

grammar. Boston: Houghton Mifflin.

Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Numerical recipes in C: The

art of scientific computing. New York: Cambridge University Press.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye-

movement control in reading. Psychological Review, 105, 125-157.

Schilling, H. E. H., Rayner, K., & Chumbley, J. I. (1998). Comparing naming, lexical decision,

and eye fixation times: Word frequency effects and individual differences. Memory
& Cognition, 26, 1270-1281.

Taylor, W. L. (1953). Cloze procedure: A new tool for measuring readability. Journalism

Quarterly, 30, 415-433.

