

Formation Evaluation Society of Malaysia (FESM) A Chapter of the Society of Petrophysicists and Well Log Analysts (SPWLA)

"Master Seminar on Clay" Wednesday 22nd April 2015

A Review of Log-Based Techniques for Measuring Clay Volume

Sherif Farag Schlumberger

Richard Holland

The Effect of Archie's 'm' and 'n'

Clays Coating the Grains

Figure 22--Bridging illite (IL), which appears to consist of very thin membrane covering most of framework grains and authigenic calcite (Ca) and quartz (OV). Some illite is whiskery. Sotong 5G-5.1, 2175.0 m msl. SEM photograph. Scale bar = $3 \mu m$.

UPPER OLIGOCENE - LOWER MIOCENE SANDSTONE RESERVOIRS, SOUTHERN MALAY BASIN¹ Khalid Ngah² Search and Discovery Article #10008 (2000) ¹ Adaptation for online presentation of part of Ph.D. Thesis submitted to Imperial College, University of London, 1990. ² Kaysham Resources SDN BHD, Kuala Lumpur, Malaysia. Special appreciation is expressed to the management of PETRONAS and to R.C. Selley and R. Stoneley Imperial College, University of London http://www.searchanddiscovery.com/documents/khalid/

The Effect of Clay

Clay coating sand grains, current path (m and n) dominated by clay

Popular Saturation Equations

Indonesia Equation

•Waxman-Smits Equation

Dual Water Equation

$$C_{t} = \frac{\phi_{t}^{m} S_{wt}^{n}}{a} \left(C_{w} + \frac{S_{wb}}{S_{wt}} (C_{wb} - C_{w}) \right)$$

Clay Volume from Logs

- Triple combo logs (GR Density Neutron Porosity)
 - Clay is radioactive, dense and absorbs neutron
- Natural GR Spectroscopy
 - Sensitive to the fraction of Thorium, Uranium and Potassium
 - Clay type from the relationship between Th vs K ???
- Neutron GR Spectroscopy
 - Sensitive to elements in the rock
 - Elemental composition interpreted to give mineralogy
- Clay-bound water
 - NMR Swb can be used directly in dual water model
 - Suitable T2 cutoff is required (default 3ms)
- Grain size
 - Can be derived from NMR with suitable calibration
 - Easier to calibrate to core than clay-bound water
- The electrical effect of the clay
 - This is actually what we need for saturation calculation
 - Dispersive dielectric measurements are sensitive to CEC

Density – Neutron - Natural GR

Density – Neutron Crossplot

Graphical Methods from Density-Neutron

Natural GR: Lith-1 and Lith-2 (CP-18, CP-19)

Clay Typing From GR Spectroscopy

PEF from Neutron-GR Spectroscopy

PEF vs TH/K and PEF vs K

PEF vs K

PEF vs TH/K

	CLAY MINERALOGY				
	(Weight %)				
Total Clay	Illite + Mica	Kaolinite	Chlorite	Mixed Layer Illite/Smectite *	
15.9	2.7	8.2	2.7	2.3	
21.4	3.4	12.0	1.7	4.3	
24.2	3.0	14.5	3.8	2.9	
25.5	3.7	15.7	3.2	2.9	
26.4	2.9	11.8	8.1	3.6	
22.0	2.8	9.3	7.5	2.4	
17.6	3.9	9.4	2.0	2.4	
28.4	6.5	14.9	2.0	5.0	
16.8	1.2	5.2	8.7	1.7	

A Review of Log Based Techniques for Measuring Clay Volume

HTPR

We can conclude that the clay type does not vary much

	CLAY MINERALOGY				
	(Weight %)				
Total		Kaolinite	Chlorite	Mixed Layer	
Clay	Illite + Mica			Illite/Smectite *	
15.9	2.7	8.2	2.7	2.3	
21.4	3.4	12.0	1.7	4.3	
 24.2	3.0	14.5	3.8	2.9	
25.5	3.7	15.7	3.2	2.9	
26.4	2.9	11.8	8.1	3.6	
22.0	2.8	9.3	7.5	2.4	
17.6	3.9	9.4	2.0	2.4	
28.4	6.5	14.9	2.0	5.0	
16.8	1.2	5.2	8.7	1.7	

Neutron Spectroscopy Total Clay Volume

Neutron Spectroscopy: Elemental Composition

Elemental abundance		
in earth's crust		
<i>O</i> 46.7 –]	
Si 27.6		
Al 8.1		
<i>Fe</i> 5.1		
<i>Ca</i> 3.7	\geq	> 99 %
Na 2.8		
K 2.6		
Mg 2.1		
S, Ti, Gd, Mn _	J	
Carbon		

Neutron – Gammaray Spectroscopy

Each Element Generates a Unique GR Spectrum

Spectrum Analysis : Element Concentrations

Elements to Minerals Interpretation

Neutron – GR Spectroscopy

Dry Weight Clay Fraction From Neutron Spectroscopy

Dry Weight Clay Fraction From Neutron Spectroscopy

Modern MRI Images

Volume of measurement

MRI

Each pixel in Image has an amplitude and T2

Logging tool

Volume of investigation is several cubic inches so it can include millions of pores.

NMR Grain Size Calibration

NMR Grain Size Example

Swb From NMR

						DMR_Clay_Cutoff
					DIVIK_CLBW	0.3 ms 3000
				DMR_SWIRR	DMR_BFV	DMR_T2_Cutoff
				DMD SWD	DMP DMPD	NMR
				DIVIN_SVVB	DIVIK_DIVIKP	0.00 0.02
		HCGR/HSGR	Sand - Shale (ND)	DMR_SWIRR	0.5 m3/m3 0	0.3 (ms) 3000
		HCGR	TNPH	DMR_SWIRR	DMR_CLBW	T2Cutoff03_mSilt
Death mark	ECCR	0 gAPI 200	0.6 m3/m3 0	1 m3/m3 0	0.5 v/v 0	0.3 ms 3000
0 m 400	0 gAPI 200	0 gAPI 200	1.7 g/cm3 2.7	1 m3/m3 0	0.5 m3/m3 0	0.3 ms 3000
140			2 3	> >	45	
	<u> </u>	کسر ا			<u> </u>	
	2	22-				
150			3-			i 🚄 🥑 🔁 🖂
1		33	33			
160		33				
1	2	<u>s</u>	5	ل ې ا		
170		रेड				
190		22	53		57	
100		22				
1						
190					<u> </u>	
			52			
200		535		2		
200		35				
1		22	<u> </u>			
210		-55				
	2	22	2			
		3-3-3-			<u> </u>	
220			5			
1	<u> </u>			<u> </u>		
230		65	Y I		<u>↓</u>	
	Ž	2 V	2	34	<u> </u>	
1		2		< <		
- 240 -						
-						
250		5-5-5-	23			
200		1 million	5	2		
1	٤	¥				
260	2	22		<u></u>		
		14				

Swb From NMR

CEC From NMR and N-Spectroscopy Logs

Willy Tan et al. computed Qv and CEC using NMR and N-GR Spectroscopy and went on to derive m using Sxo from a **Dielectric** measurement.

PETROPHYSICS, VOL. 55, NO. 1 (FEBRUARY 2014); PAGE 14-23; 8 FIGURES

Solving Complex Dual-Water Equation using Dielectric-NMR-Spectroscopy and Conventional Logs

Willy Tan¹, Ryan Lafferty², and Thomas J. Neville³

High Frequency Electromagnetic Waves

Principle of the Dielectric Scanner

Dielectric Permittivity ϵ

- Oil : ε ~ 2
- Rock : ε ~ 5-9
- Water : ε ~ 50-80
- Big contrast between water and oil
- Different frequencies sensitive to different properties

Dielectric Permittivity vs CEC

Unfortunately CEC is not alone

Equivalent Conductivity Solution

Measure Sw by one or more other methods that don't require resistivity

All log measurements are in the invaded zone except resistivity

So

Measure Sxo and Rxo in the invaded zone
Derive a relationship between Rxo and Sxo
Apply this relationship to Rt to derive Sw.

This is complicated in water based mud due to different filtrate and formation water resistivity

We still need to know Rw

Archie's n may be different between drainage and imbibition

m=n (µ) can vary with Sw

" μ " from Dielectric Includes CEC Excess Conductivity, m and n

Summary

- Triple combo logs (GR Density Neutron Porosity)
 - Clay is radioactive, dense and absorbs neutrons
- Natural GR Spectroscopy
 - Low cost and widely used
 - Difficult to derive quantitative total clay volume
 - Clay type ??
- Neutron GR Spectroscopy
 - Elemental composition interpreted to give mineralogy
 - Dry weight mineral fractions, convenient for XRD and FTIR comparison
 - The most accurate of the techniques presented without core calibration
- Clay-bound water
 - NMR Swb can be used directly in dual water model
 - Useful when only the porosity associated with the clay is needed
 - T2 cutoff required
- Grain size
 - Can be derived from NMR with suitable calibration
 - Easier to calibrate to core than clay-bound water
- The electrical effect of the clay (and Rw and Archie parameters)
 - This is actually what we need for saturation calculation
 - Dielectric measurements are still considered exotic and few users are comfortable with them
 - Not suited to other applications such as predicting fines migration, rock properties etc.