
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 942 | P a g e

A PROFICIENT SECURE MECHANISM FOR

RANDOM OWNERSHIP MANAGEMENT IN

CLOUD BASED ENVIRONMENT

Mr. T.SANDEEP 1, Mrs. V. TEJASWINI2*

1 Final Year MCA Student, QIS College of Engineering and Technology, Ongole

2* Assistant Professor, MCA Dept., QIS College of Engineering and Technology, Ongole

Abstract: Data deduplication is a technique for

eliminating duplicate copies of data, and has been widely used

in cloud storage to reduce storage space and upload

bandwidth. However, there is only one copy for each file

stored in cloud even if such a file is owned by a huge number

of users. As a result, deduplication system improves storage
utilization while reducing reliability. Furthermore, the

challenge of privacy for sensitive data also arises when they

are outsourced by users to cloud. Aiming to address the above

security challenges, this paper makes the first attempt to

formalize the notion of distributed reliable deduplication

system. We propose new distributed deduplication systems

with higher reliability in which the data chunks are distributed

across multiple cloud servers. The security requirements of

data confidentiality and tag consistency are also achieved by

introducing a deterministic secret sharing scheme in

distributed storage systems, instead of using convergent
encryption as in previous deduplication systems. Security

analysis demonstrates that our deduplication systems are

secure in terms of the definitions specified in the proposed

security model. As a proof of concept, we implement the

proposed systems and demonstrate that the incurred overhead

is very limited in realistic environments.

Keywords: Data deduplication, Cloud Storage, Security

model.

I. INTRODUCTION

Distributed computing is a field of computer science that

studies distributed systems. A distributed system is a software

system in which components located on networked computers

communicate and coordinate their actions by passing

messages. The components interact with each other in order to
achieve a common goal. There are many alternatives for the

message passing mechanism, including RPC-like connectors

and message queues. Three significant characteristics of

distributed systems are: concurrency of components, lack of a

global clock, and independent failure of components. An

important goal and challenge of distributed systems is location

transparency. Examples of distributed systems vary from

SOA-based systems to massively multiplayer online games to

peer-to-peer applications.

A computer program that runs in a distributed system is

called a distributed program, and distributed programming is

the process of writing such programs.

Distributed computing also refers to the use of distributed

systems to solve computational problems. In distributed

computing, a problem is divided into many tasks, each of

which is solved by one or more computers, which

communicate with each other by message passing.

The word distributed in terms such as "distributed system",

"distributed programming", and "distributed algorithm"

originally referred to computer networks where individual
computers were physically distributed within some

geographical area. The terms are nowadays used in a much

wider sense, even referring to autonomous processes that run

on the same physical computer and interact with each other by

message passing. While there is no single definition of a

distributed system, the following defining properties are

commonly used:

 There are several autonomous computational entities,

each of which has its own local memory.

 The entities communicate with each other by

message passing.

In this article, the computational entities are called

computers or nodes.

A distributed system may have a common goal, such as

solving a large computational problem.] Alternatively, each
computer may have its own user with individual needs, and

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 943 | P a g e

the purpose of the distributed system is to coordinate the use

of shared resources or provide communication services to the

users.

Other typical properties of distributed systems include the

following:

 The system has to tolerate failures in individual

computers.

 The structure of the system (network topology,

network latency, number of computers) is not known in

advance, the system may consist of different kinds of

computers and network links, and the system may change

during the execution of a distributed program.

 Each computer has only a limited, incomplete view

of the system. Each computer may know only one part of the

input.

Distributed systems are groups of networked computers,

which have the same goal for their work. The terms

"concurrent computing", "parallel computing", and

"distributed computing" have a lot of overlap, and no clear

distinction exists between them. The same system may be

characterised both as "parallel" and "distributed"; the
processors in a typical distributed system run concurrently in

parallel. Parallel computing may be seen as a particular tightly

coupled form of distributed computing, and distributed

computing may be seen as a loosely coupled form of parallel

computing. Nevertheless, it is possible to roughly classify

concurrent systems as "parallel" or "distributed" using the

following criteria:

 In parallel computing, all processors may have access

to a shared memory to exchange information between

processors.

 In distributed computing, each processor has its own

private memory (distributed memory). Information is

exchanged by passing messages between the processors.

The figure on the right illustrates the difference between

distributed and parallel systems. Figure (a) is a schematic view

of a typical distributed system; as usual, the system is

represented as a network topology in which each node is a

computer and each line connecting the nodes is a
communication link. Figure (b) shows the same distributed

system in more detail: each computer has its own local

memory, and information can be exchanged only by passing

messages from one node to another by using the available

communication links. Figure (c) shows a parallel system in

which each processor has a direct access to a shared memory.

The situation is further complicated by the traditional uses

of the terms parallel and distributed algorithm that do not

quite match the above definitions of parallel and distributed

systems; see the section Theoretical foundations below for

more detailed discussion. Nevertheless, as a rule of thumb,

high-performance parallel computation in a shared-memory

multiprocessor uses parallel algorithms while the coordination

of a large-scale distributed system uses distributed algorithms.

II RELATED WORK

Secure deduplication with efficient and reliable

convergent key management

Data deduplication is a technique for eliminating duplicate
copies of data, and has been widely used in cloud storage to

reduce storage space and upload bandwidth. Promising as it is,

an arising challenge is to perform secure deduplication in

cloud storage. Although convergent encryption has been

extensively adopted for secure deduplication, a critical issue of

making convergent encryption practical is to efficiently and

reliably manage a huge number of convergent keys. This

paper makes the first attempt to formally address the problem

of achieving efficient and reliable key management in secure

deduplication. We first introduce a baseline approach in which

each user holds an independent master key for encrypting the
convergent keys and outsourcing them to the cloud. However,

such a baseline key management scheme generates an

enormous number of keys with the increasing number of users

and requires users to dedicatedly protect the master keys. To

this end, we propose Dekey , a new construction in which

users do not need to manage any keys on their own but instead

securely distribute the convergent key shares across multiple

servers. Security analysis demonstrates that Dekey is secure in

terms of the definitions specified in the proposed security

model. As a proof of concept, we implement Dekey using the

Ramp secret sharing scheme and demonstrate that Dekey

incurs limited overhead in realistic environments.

Proofs of ownership in remote storage systems

Cloud storage systems are becoming increasingly popular.

A promising technology that keeps their cost down is

deduplication, which stores only a single copy of repeating

data. Client-side deduplication attempts to identify

deduplication opportunities already at the client and save the

bandwidth of uploading copies of existing files to the server.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 944 | P a g e

In this work we identify attacks that exploit client-side

deduplication, allowing an attacker to gain access to arbitrary-

size files of other users based on very small hash signatures of
these files. More specifically, an attacker who knows the hash

signature of a file can convince the storage service that it owns

that file, hence the server lets the attacker download the entire

file. (In parallel to our work, a subset of these attacks was

recently introduced in the wild with respect to the Dropbox

file synchronization service.) To overcome such attacks, we

introduce the notion of proofs-of ownership (PoWs), which

lets a client efficiently prove to a server that that the client

holds a file, rather than just some short information about it.

We formalize the concept of proof-of-ownership, under

rigorous security definitions, and rigorous efficiency
requirements of Petabyte scale storage systems. We then

present solutions based on Merkle trees and specific

encodings, and analyze their security. We implemented one

variant of the scheme. Our performance measurements

indicate that the scheme incurs only a small overhead

compared to naive client-side deduplication.

III PROPOSED SYSTEM

We propose a secure deduplication scheme for encrypted

data that has dynamic owner- ship management capability.

The proposed scheme is constructed based partially on a
randomized convergent encryption scheme [20] in order to

randomize the encrypted data, which renders the proposed

scheme secure against the chosen-plaintext attack while still

allowing deduplication over the data. The proposed scheme is

further integrated into the re-encryption protocol for owner

revocation. The owner revocation is executed by re-encrypting

the outsourced ciphertext and selectively distributing the re-

encryption key to valid (that is, not revoked) owners by the

cloud server. The following figure shows the overview of the

proposed scheme and its corresponding security goals.

IV ARCHITECTURE & SYSTEM COMPONENTS

The architecture of the data deduplication system, which

consists of the following entities.

Data owner: This is a client who owns data, and wishes to

upload it into the cloud storage to save costs. A data owner
encrypts the data and outsources it to the cloud storage with its

index information, that is, a tag. If a data owner uploads data

that do not already exist in the cloud storage, he is called an

initial uploader; if the data already exist, called a subsequent

uploader since this implies that other owners may have

uploaded the same data previously, he is called a subsequent

uploader. Hereafter, we refer to a set of data owners who share

the same data in the cloud storage as an ownership group.

Cloud service provider: This is an entity that provides

cloud storage services. It consists of a cloud server and cloud

storage. The cloud server deduplicates the outsourced data
from users if necessary and stores the deduplicated data in the

cloud storage. The cloud server maintains ownership lists for

stored data, which are composed of a tag for the stored data

and the identities of its owners. The cloud server controls

access to the stored data based on the ownership lists and

manages (e.g., issues, re-vokes, and updates) group keys for

each owner-ship group as a group key authority. The cloud

server is assumed to be honest-but-curious. That is, it will

honestly execute the assigned tasks in the system; however, it

would like to learn as much information about the encrypted

contents as possible. Thus, it should be deterred from
accessing the plaintext of the encrypted data even if it is

honest.

Fig: System Architecture

System Model

In this first module, we develop two entities: User and

Secure-Cloud Service Provide.

User: The user is an entity that wants to outsource data

storage to the S-CSP and access the data later. In a storage

system supporting deduplication, the user only uploads unique

data but does not upload any duplicate data to save the upload

bandwidth. Furthermore, the fault tolerance is required by

users in the system to provide higher reliability.

S-CSP: The S-CSP is an entity that provides the

outsourcing data storage service for the users. In the

deduplication system, when users own and store the same

content, the S-CSP will only store a single copy of these files

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 945 | P a g e

and retain only unique data. A deduplication technique, on the

other hand, can reduce the storage cost at the server side and

save the upload bandwidth at the user side. For fault tolerance
and confidentiality of data storage, we consider a quorum of

S-CSPs, each being an independent entity. The user data is

distributed across multiple S-CSPs.

Data Deduplication:

Data Deduplication involves finding and removing of

duplicate datas without considering its fidelity. Here the goal

is to store more data with less bandwidth.

 Files are uploaded to the CSP and only the Dataowners

can view and download it.

 The Security requirements are also achieved by Secret

Sharing Scheme.

 Secret Sharing Scheme uses two algorithms, share and

recover.

 Data are uploaded both file and block level and the

finding duplication is also in the same process.

 This is made possible by finding duplicate chunks and

maintaining a single copy of chunks.

File Level Deduplication Systems:

To support efficient duplicate check, tags for each file will

be computed and are sent to S-CSPs.

To upload a file F , the user interacts with S-CSPs to

perform the deduplication.

More precisely, the user firstly computes and sends the file

tag ϕF = TagGen(F) to S-CSPs for the file duplicate check.

If a duplicate is found the user computes and sends it to a

server via a secure channel.

Otherwise if no duplicate is found the process continues,

i.e secret sharing scheme runs and the user will upload a file to

CSP.

To download a file the user will use the secret shares and

download it from the SCSP’s . This approach provides fault

tolerance and allows the user to remain accessible even if any

limited subsets of storage servers fail.

In this paper, x $ S denotes the operation of selecting an

element x at random and uniformly from a finite set S and

assigning it to x. For an algorithm , y (x1, . . .) denotes running

on inputs x1, . . . and assigning the output to the variable y. 1λ

denotes a string of λ ones, if λ€N, which is the security

parameter4. For two bit-strings a and b, we denote by a b their

concatenation.

Let = u1, , un be the universe of users. Let IDt be the

identity of a user ut. Let tti be a set of users that owns the data

Mi, which is referred to as an ownership group. Let Li = Ti, tti

be an ownership list for Mi, maintained by the cloud server,

which consists of a tag Ti and tti for Mi. Let KGi be the

ownership group key that is shared among the valid owners in

tti.

In this section, we define a secure deduplication

framework for encrypted data with ownership management

capability. The scheme consists of the follow- ing algorithms:

1. KEK $ KEKGen(U): The KEK generation algorithm

takes a set of users U as input, and outputs. KEKs for each

user in U for secure ownership group key distribution.

2. C $ Encrypt(M, 1λ): The encryption algorithm is a

randomized algorithm that takes as input data M and a security

parameter λ, and outputs a ciphertext C of the data. C consists

of the encrypted message and its tag information for indexing.

3. C′ $ ReEncrypt(C, tt): The re-encryption algorithm is

a randomized algorithm that takes a ciphertext C and an

ownership group tt, and outputs a re-encrypted ciphertext C′.

Specifi- cally, it outputs a re-encrypted ciphertext such that

only valid owners in tt can decrypt the message.

4. M Decrypt (C′, K, PK): The decryption algorithm is a

deterministic algorithm that takes as input C′, message

encryption key K, and a set of KEKs PK for encrypting an

ownership group key ttK, and outputs a message M , iff K is

derived from M and ttK is not revoked for the ownership

group tt (that is, the decryptor is in tt) for M .

Table 1 shows the comparison results of t he se-cure data

deduplication schemes that is convergent encryption (CE)
[15], leakage -resilient (LR) dedupli-cation [19], and

randomized convergent encryption (RCE) [20] in terms of the

data deduplication over encrypted data, tag consistency, and

dynamic owner-ship management. Since all the schemes allow

data owners to en-crypt their data and enable deduplication

over them, they can guarantee the data confidentiality or

privacy against the cloud server and unauthorized outside

adversaries. With regard to data integrity, convergent

encryption cannot guarantee the integrity of dedupli-cated data

in the face of a poison attack, whereas the other schemes

preserve it by adopting an additional mechanism that enables

data owners to check the tag consistency of the received data.
In the proposed scheme, upon every membership change in

the ownership list (e.g., subsequently up-loading the same

data, or modifying/deleting the existing data), access to the

corresponding data is per-mitted to owners only for the time

windows during which the owners maintain valid ownership

of the data by re- encrypting it using an updated ownership

group key and selectively distributing it. This re-solves the

dynamic ownership management problem as opposed to the

other schemes. The rekeying in the proposed scheme can be

done immediately upon any ownership change. This enhances

the security of the outsourced data in terms of
backward/forward secrecy by reducing the windows of

vulnerability

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 946 | P a g e

Table 1: Comparison of Secure deduplication schemes

Scheme Encrypted Tag Ownership

 deduplication consistency Management

CE [15] yes no No

LR [19] yes yes No

RCE [20] yes yes No

Proposed yes yes Yes

V CONCLUSION

In this paper, we proposed the distributed deduplication

systems to improve the reliability of data while achieving the

confidentiality of the users’ outsourced data without an

encryption mechanism. Four constructions were proposed to

support file-level and fine-grained block-level data

deduplication. The security of tag consistency and integrity

were achieved. We implemented our deduplication systems

using the Ramp secret sharing scheme and demonstrated that it

incurs small encoding/decoding overhead compared to the
network transmission overhead in regular upload/download

operations.

VI REFERENCES

[1] Amazon, “Case Studies,”

https://aws.amazon.com/solutions/casestudies/#backup.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big

data, bigger digi tal shadows, and biggest growth in the

far east,” http://www.emc.com/collateral/analyst-

eports/idcthe-digital-universe-in-2020.pdf, Dec 2012.

[3] M. O. Rabin, “Fingerprinting by random polynomials,”

Center for Research in Computing Technology, Harvard

University, Tech. Rep. Tech. Report TR-CSE-03-01,

1981.

[4] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.

Theimer, “Reclaiming space from duplicate files in a

serverless distributed file system.” in ICDCS, 2002, pp.

617–624.

[5] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless:

Serveraided encryption for deduplicated storage,” in

USENIX Security Symposium, 2013.

[6] ——, “Message-locked encryption and secure

deduplication,” in EUROCRYPT, 2013, pp. 296–312.

[7] G. R. Blakley and C. Meadows, “Security of ramp

schemes,” in Advances in Cryptology: Proceedings of

CRYPTO ’84, ser. Lecture Notes in Computer Science, G.

R. Blakley and D. Chaum, Eds. Springer-Verlag

Berlin/Heidelberg, 1985, vol. 196, pp. 242–268.

[8] A. D. Santis and B. Masucci, “Multiple ramp schemes,”

IEEE Transactions on Information Theory, vol. 45, no. 5,

pp. 1720–1728, Jul. 1999.

[9] M. O. Rabin, “Efficient dispersal of information for

security, load balancing, and fault tolerance,” Journal of

the ACM, vol. 36, no. 2, pp. 335–348, Apr. 1989.

[10] A. Shamir, “How to share a secret,” Commun. ACM, vol.

22, no. 11, pp. 612–613, 1979.

[11] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, “Secure

deduplication with efficient and reliable convergent key

management,” in IEEE Transactions on Parallel and

Distributed Systems, 2014, pp. vol. 25(6), pp. 1615–1625.

[12] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,

“Proofs of ownership in remote storage systems.” in ACM

Conference on Computer and Communications Security,

Y. Chen, G. Danezis, and V. Shmatikov, Eds. ACM,

2011, pp. 491–500.

[13] J. S. Plank, S. Simmerman, and C. D. Schuman,

“Jerasure: A library in C/C++ facilitating erasure coding

for storage applications - Version 1.2,” University of

Tennessee, Tech. Rep. CS-08-627, August 2008.

[14] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-

solomon Codes for fault-tolerant network storage

applications,” in NCA-06: 5th IEEE International

Symposium on Network Computing Applications,

Cambridge, MA, July 2006.

[15] C. Liu, Y. Gu, L. Sun, B. Yan, and D. Wang, “R-admad:

High reliability provision for large-scale de-duplication

archival storage systems,” in Proceedings of the 23rd

international conference on Supercomputing, pp. 370–

379.

[16] M. Li, C. Qin, P. P. C. Lee, and J. Li, “Convergent

dispersal: Toward storage-efficient security in a cloud-of-

clouds,” in The 6th USENIX Workshop on Hot Topics in

Storage and File Systems, 2014.

[17] P. Anderson and L. Zhang, “Fast and secure laptop

backups with encrypted de-duplication,” in Proc. of

USENIX LISA, 2010.

[18] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-

authority filesystem,” in Proc. of ACM StorageSS, 2008.

[19] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and J.

C. S. Lui, “A secure cloud backup system with assured

deletion and version control,” in 3rd International

Workshop on Security in Cloud Computing, 2011.

https://aws.amazon.com/solutions/casestudies/#backup

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 947 | P a g e

[20] M. W. Storer, K. Greenan, D. D. E. Long, and E. L.

Miller, “Secure data deduplication,” in Proc. of

StorageSS, 2008.

[21] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A

secure data deduplication scheme for cloud storage,” in

Technical Report, 2013.

[22] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side

channels in cloud services: Deduplication in cloud

storage.” IEEE Security & Privacy, vol. 8, no. 6, pp. 40–

47, 2010.

[23] R. D. Pietro and A. Sorniotti, “Boosting efficiency and

security in proof of ownership for deduplication.” in ACM

Symposium on Information, Computer and

Communications Security, H. Y. Youm and Y. Won, Eds.

ACM, 2012, pp. 81–82.

[24] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient

client-side deduplication of encrypted data in cloud

storage,” in ASIACCS, 2013, pp. 195–206.

[25] W. K. Ng, Y. Wen, and H. Zhu, “Private data

deduplication protocols in cloud storage.” in Proceedings

of the 27th Annual ACM Symposium on Applied

Computing, S. Ossowski and P. Lecca, Eds. ACM, 2012,

pp. 441–446.

[26] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable data
possession at untrusted stores,” in Proceedings of the 14th

ACM conference on Computer and communications

security, ser. CCS ’07. New York, NY, USA: ACM,

2007, pp. 598–609. [Online].

Available:http://doi.acm.org/10.1145/1315245.1315318

[27] A. Juels and B. S. Kaliski, Jr., “Pors: proofs of

retrievability for large files,” in Proceedings of the 14th

ACM conference on Computer and communications

security, ser. CCS ’07. New York, NY, USA: ACM,

2007, pp.584–597.[Online].

Available:http://doi.acm.org/10.1145/1315245.1315317

[28] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in ASIACRYPT, 2008, pp. 90–107.

Authors Profile:

Mr. T. Sandeep pursuing MCA 3rd

year in Qis College and Engineering

and Technology in Department of

Master of Computer Applications,

Ongole.

Mrs. V. Tejaswini is currently

working as an Assistant Professor in

Department of Master of Computer
Applications in QIS College of

Engineering & Technology.

http://doi.acm.org/10.1145/1315245.1315318

