Math 1496 Calc 1 - Homework \#6

Pg. 211, \#15, 17, 19, 21, 29, 30 and 33
Pg. 219, \#43, 45 and 47
Pg. 227, \#23, 27, 29 and 41
Pg. 236, \#3, 5, 15, 19, 29, 39 and 43

Pg. 211, \#15, 17, 19, 21
Find the critical numbers (points) of the following

$$
\begin{array}{ll}
\text { \#15 } & f(x)=4 x^{2}-6 x \\
\text { \#17 } & g(t)=t \sqrt{4-t}, t<3 \\
\text { \#19 } & h(x)=\sin ^{2} x+\cos x, 0<x<\pi \\
\text { \#21 } & f(f)=t e^{-2 t},
\end{array}
$$

Pg. 211, \#29, 30, 33
Find the absolute extrema of the function on the closed interval

$$
\begin{array}{ll}
\text { \#29 } & f(x)=x^{3}-\frac{3}{2} x^{2},[-1,2] \\
\text { \#30 } & f(x)=2 x^{3}-6 x,[0,3] \\
\text { \#33 } & g(x)=\frac{6 x^{2}}{x-2},[-2,1]
\end{array}
$$

Pg. 219, \#43, 45 and 47
Determine whether the Mean Value Theorem applieds and if so, find c such that

$$
\begin{array}{cl}
& \frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \\
\# 43 & f(x)=6 x^{3},[1,2] \\
\# 45 & f(x)=x^{3}+2 x,[-1,1] \\
\# 47 & f(x)=\frac{x+2}{x-1},[-3,3]
\end{array}
$$

Pg. 227, \#23, 27, 29 and 41
Find the critical numbers of f, and find the open intervals on which the function is increasing or decreasing. Apply the first derivative test to identify all relative extrema.

$$
\begin{aligned}
& \text { \#23 } f(x)=x^{2}-8 x \\
& \text { \#27 } f(x)=-7 x^{3}+21 x+3 \\
& \text { \#31 } f(x)=(x-1)^{2}(x+3) \\
& \text { \#41 } f(x)=\frac{x^{2}}{x^{2}-9}
\end{aligned}
$$

Pg. 236, \#3, 5, 15, 19 and 29
Find the points of inflection and discuss the concavity of the following

$$
\begin{aligned}
\text { \#3 } & f(x)=x^{2}-4 x+8 \\
\text { \#5 } & f(x)=x^{4}-3 x^{3} \\
\text { \#15 } & f(x)=x^{3}-9 x^{2}+24 x-18 \\
\text { \#19 } & f(x)=x(x-4)^{3} \\
\text { \#29 } & f(x)=2 \sin x+\sin 2 x,[0,2 \pi]
\end{aligned}
$$

Pg. 236, \#39 and 43
Find all relativ e extrema and use the second derivative test to determine min/max.

$$
\begin{array}{ll}
\text { \#39 } & f(x)=(x-1)^{2}(x+3) \\
\text { \#43 } & f(x)=(x-1)^{2}(x+3)
\end{array}
$$

Due: Friday Oct. 8, 2021

