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Abstract—We consider stochastic learning dynamics in games
and present a novel notion of robustness to heterogeneous players
for a stochastically stable action profile. A standard assumption
in these dynamics is that all the players are homogeneous, and
their decision strategies can be modeled as perturbed versions
of myopic best or better response strategies. We relax this as-
sumption and propose a robustness criteria, which characterizes
a stochastically stable action profile as robust to heterogeneous
behaviors if a small fraction of heterogeneous players cannot alter
the long-run behavior of the rest of the population. In particular,
we consider confused players who randomly update their actions,
stubborn players who never update their actions, and strategic
players who attempt to manipulate the population behavior.
We establish that radius-coradius based analysis can provide
valuable insights into the robustness properties of stochastic
learning dynamics for various game settings. We derive sufficient
conditions for a stochastically stable profile to be robust to
a confused, stubborn, or strategic player and elaborate these
conditions through carefully designed examples. Then we explore
the role of network structure in our proposed notion of robustness
by considering graphical coordination games and identifying
network topologies in which a single heterogeneous player is
sufficient to alter the population’s behavior. Our results will
provide foundations for future research on designing networked
systems that are robust to players with heterogeneous decision
strategies.

I. INTRODUCTION

An important objective in evolutionary game theory is to
understand how collective behaviors evolve when independent
players with bounded rationality repeatedly interact with each
other [1], [2], and [3]. A variety of learning behaviors have
been presented in the literature that can be classified as
variations of imitation or playing best or better response
to the actions of other players (see [4], [5], and [6] for a
detailed account of various behavioral rules). We consider
stochastic learning dynamics in which players update their
actions according to learning behavior such as best/better
response but make errors on rare occasions for exploring the
action space. These dynamics are popular because they assume
bounded rationality and have equilibrium selection properties.
Moreover, stochastic learning dynamics have applications in
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designing multi-agent systems in engineering applications as
discussed in [7], [8], [9], [10], and [11]. An example of
stochastic learning dynamics is Log-Linear Learning (LLL),
in which the probability of selecting an action is proportional
to its utility [2] and [12].

An important assumption in the standard setup of these
dynamics is that all the players are homogeneous in the sense
that they play myopic best or better response with a high
probability [1], [13], and [14]. We claim that this assumption
can be overly restrictive for population settings comprising a
large number of players. To establish our claim, we relax this
assumption and ask the following question: If a small number
of heterogeneous players, whose decision strategies cannot be
modeled as noisy best response, are included in the population,
what will be the impact on the long-run behavior of the rest of
the population? In particular, we consider three fundamental
behaviors for the heterogeneous players:

• Confused player who updates his actions uniformly at
random,

• Stubborn player who never updates his action, and
• Strategic player who is not myopic and can adjust his

influence on players to manipulate the population’s be-
havior to his advantage.

To quantify the impact of heterogeneous players, we present
a novel notion of robustness of stochastically stable action
profiles. We say that a stochastically stable profile is robust
to a particular type of heterogeneous behavior if replacing a
subset of players in the population with heterogeneous players
of that type does not alter the long-run behavior of the rest
of the population. Using Radius-Coradius analysis from [15]
and [16], we explicitly derive scenarios in which even a single
heterogeneous player can alter the entire population’s behavior.
The fact that even a single heterogeneous player can impact
the global population behavior provides a strong motivation for
a detailed analysis of stochastic learning dynamics in various
heterogeneous settings. Initial results were presented in [17]
in which we proposed the notion of robustness and analyzed
the setup with confused and stubborn players.

Robustness analysis of stochastically stable profiles is an
important research topic in the literature on learning in games.
For instance, in [18] and [19], the impacts of slowly varying
environments and noisy measurements on the stochastically
stable behavior under LLL were analyzed. In [20], the authors
investigated the robustness of stochastically stable action pro-
files against specific structural properties of different stochastic
learning dynamics such as player revision protocols or tie-
breaking rules. In [21], it was shown that the stochastically

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 13,2022 at 23:48:32 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3166717, IEEE
Transactions on Automatic Control

2

stable equilibria under the imitation dynamics of [13] were
not robust to the player interaction patterns. However, we are
interested in scenarios in which a small number of heteroge-
neous players with different decision behaviors are included in
a population of myopic players, and our objective is to analyze
the robustness of the stochastically stable behavior of the rest
of the population.

Heterogeneity in various aspects of decision rules in
stochastic learning dynamics has been considered in the liter-
ature. In [22], a notion of degree of rationality was introduced
based on the levels of iterative reasoning that a player can
process for developing conjectures about other players. Players
with a higher level of rationality in [22], which were termed as
clever agents in [23], could incorporate sophisticated models
for opponents’ behavior and could best respond to these
sophisticated models. A similar setup was considered in [24],
in which one rational player was included in the population
who knew that all the other players were myopic planners,
and could plan over future to manipulate the population’s
behavior. These works provide a motivation for our definition
of a strategic player but do not consider confused or stubborn
players. Moreover, the results in [23] were presented for
Young’s bargaining model [25] and the analysis in [24] was
for the setup in which myopic players follow fictitious play
with limited memory [26]. In [27], the author analyzed the
impact of heterogeneous behaviors on an asymmetry property,
which was presented in [28], in coordination games. Similarly,
the authors in [29] analyzed coordination games in which
players were heterogeneous with respect to their payoffs and
preferences. In [30], [31], and [32], impact of adversarial
players on population behavior under various information
settings was analyzed for graphical coordination games over
generalized ring networks.

Contribution Statement: We present a framework for ana-
lyzing the robustness of stochastically stable behaviors against
heterogeneous players for general normal form games for a
class of noisy best response dynamics. Our framework for
analyzing the robustness of stochastically stable profiles is
based on Radius-Coradius (Rd−CR) criteria as presented in
[16], which is an important contribution since our framework
is applicable to a class of finite normal form games in which
stochastically stable profiles satisfy this criterion. Rd − CR
result was initially presented in [15] for noisy best response
dynamics with mistake model and was later extended to a
generalized version of LLL in [16]. Therefore, although we
consider standard LLL as presented in [2], our results can
easily be extended to the class of dynamics discussed in
[15] and [16]. The paper can be divided into two parts. In
Section III, we present qualitative conditions for scenarios in
which a single player of a particular type can change the be-
havior of the rest of the population. These results are supported
by carefully designed examples in which the impacts of our
conditions are highlighted and discussed for deeper insights. In
Section IV, we consider graphical coordination games, which
is one of the most important game setups and has been studied
extensively, particularly in the context of innovation diffusion
in social networks ([1], [33], [34], and [35]).

Coordination games have been a focus of existing literature

on stochastic dynamics with heterogeneous players such as
[36], [37], [38], [29], and [39]. Similarly, some of the previous
works on robustness have focused entirely on coordination
games for specific networks like random networks [24] and
generalized ring networks [31] and [30]. We consider graphical
coordination games in a population setting for several impor-
tant network topologies such as path graph, ring graph, two-
dimensional grid, and wheel network, and determine whether
these topologies are robust to heterogeneous decision strategies
or not. We analyze the robustness of these topologies and
identify which of these topologies are robust to a confused,
stubborn, or strategic player. We also consider the setup
in which, at each decision time, the network is generated
randomly according to the Erdős-Rényi (ER) graph model.

Outline: Section II defines notations and provides the related
background discussion on stochastic learning dynamics and
resistance tree analysis. Section III presents our notion of
robustness and derives sufficient conditions using the Radius-
Coradius result. Section IV considers graphical coordination
games over networks and analyzes the robustness of various
network topologies. Finally, Section V concludes the paper.

II. BACKGROUND

In this section, we define the notations used throughout
the paper and present the background material on stochastic
learning dynamics.

A. Notation

The distance between any two vectors u and v in Rn is the
Hamming distance,

d(u, v) = |{p | up 6= vp}|,

where up and vp are the pth elements in vectors u and v,
respectively. We consider finite state Markov chains with state
space S. Let P0 be the transition matrix of an unperturbed
Markov chain and let Pε represent a family of perturbed
Markov chains, where ε is the perturbation parameter. We will
refer to a Markov chain by its transition matrix. A perturbed
Markov chain Pε is a regular perturbation of an unperturbed
chain P0 if the following properties are satisfied.

1) Pε is ergodic for sufficiently small perturbations ε.
2) For any state pair x and y in S, lim

ε→0
Pε(x, y) = P0(x, y),

where Pε(x, y) and P0(x, y) are the transition probabil-
ities from x to y for perturbed and unperturbed Markov
chains, respectively.

3) For any state pair x and y in S and for any ε > 0, a
resistance function R(x, y) exists such that,

Pε(x, y) > 0 =⇒ 0 < lim
ε→0

Pε(x, y)

εR(x,y)
<∞.

Here Pε(x, y) is the probability of transition and R(x, y)
is the resistance in transition from x to y.

A state x in S is stochastically stable if and only if
limε→0 πε(x) > 0, where πε is the stationary distribution of
Pε.

A path ωS is a sequence of distinct states (ω1, ω2, · · · , ωk)
such that ωi ∈ S, Pε(ωi, ωi+1) > 0, and d(ωi, ωi+1) = 1 for
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all i ∈ {1, 2, . . . , k−1}. We will drop the superscript S when
the set in which the path exists is clear from the context. We
denote a path between any two states x and y in S as ωSx,y
such that ω1 = x, ωk = y. Given a subset A of S, a path ω
belongs to A if ωi ∈ A for all i ∈ {1, 2, . . . , |ω|}, where |ω|
is the path length.

The set of all paths between x and y is Ω(x, y). For any
two sets A and B in S, Ω(A,B) is the set of all paths starting
from states in A and terminating on states in B, i.e.,

Ω(A,B) = {ωx,y for all x ∈ A and y ∈ B}.

The resistance of a path ω is

Rpath(ω) =

|ω|−1∑
i=1

R(ωi, ωi+1). (1)

For any state pair x and y such that either Pε(x, y) = 0 or
there exist multiple paths from x to y, the resistance from x
to y is

Rmin(x, y) = min{Rpath(ωx,y) ∀ ωx,y ∈ Ω(x, y)}. (2)

Thus, Rmin(x, y) is the minimum resistance between x and y.
In a regularly perturbed Markov chain, there always exists a
bounded resistance path between any two states in S.

B. Game Setup

We consider a standard setup of normal form games with
a finite set of players Sp = {1, 2, . . . , n} such that each
player i has a finite set of actions Ai = {1, 2, . . . ,mi}
and has preferences over the set of joint action profiles A
defined through utility functions Ui : A → R, where
A = A1 × A2 × · · ·An. Given a joint action profile a ∈ A,
we represent it with respect to some player i as a = (ai, a−i),
where ai is the action of player i in a and a−i represents
the actions of all the other players. Here, a−i belongs to the
set A−i = A1 × · · · × Ai−1 × Ai+1 × · · · × An. We also
represent an action profile a with respect to a subset H ⊂ Sp
as a = (aH , a−H), where aH and a−H are the actions of the
players in the sets H and Sp\H , respectively. Given any a−i
in A−i, the best response set of i is

Bi(a−i) = {ai ∈ Ai | Ui(ai, a−i) ≥ Ui(a′i, a−i) ∀ a′i ∈ Ai}.

An action profile α∗ = (a∗1, a
∗
2, · · · , a∗n) is a Nash Equi-

librium (NE) if and only if a∗i belongs to the best response
set Bi(a∗−i) for every i. Thus, an action profile is a NE if no
player has any incentive to unilaterally change his action. The
neighborhood of an action profile a is

N (a) = {a′ ∈ A | d(a, a′) = 1}, (3)

i.e., N (a) is the set of all action profiles in which exactly one
player is playing an action that is different from his action in
a. The player specific neighborhood of a is

Ni(a) = {a′ ∈ A | a′i ∈ Ai\ai and a′−i = a−i}. (4)

A game is a potential game if there exists a global potential
function φ : A → R such that for any two action profiles

a = (ai, a−i) and a′ = (a′i, a−i) that differ in the action of
one player only, the following condition holds:

Ui(a)− Ui(a′) = φ(a)− φ(a′).

Thus, a game is a potential game if local utilities of all the
players are aligned with some global potential function.

Let ωAa,a′ = (ω1, . . . , ωk) be a path from action profile
a to a′ having total resistance as defined in (1). Then, the
contribution of a player h ∈ Sp in the resistance of this path
is

Rh(ωAa,a′) =
∑

j∈Ih(ωA
a,a′ )

R(ωj , ωj+1), where (5)

Ih(ωAa,a′) = {j ∈ {1, . . . , k − 1} | wj = (ah, a−h) and

wj+1 = (a′h, a−h) for any ah and a′h in Ah},

i.e., Ih(ωAa,a′) is the set of indices for the path ωAa,a′ that
correspond to player h updating his action. Here Ah is the
action set of player h.

C. Stochastic Learning Dynamics

In stochastic learning dynamics, each player uses a com-
bination of exploration and exploitation for selecting actions.
We consider the setup in which players update their actions
at discrete time instances. In this setup, a player assumes that
all the other players repeat their actions from the previous
time step. Then, he selects a noisy version of best/better
response to the assumed actions of the other players. In the
noisy best response dynamics, a player plays an action from
his best response set with high probability. However, with a
small but non-zero probability, he randomly selects an action
from his action set. In this work, we will consider LLL as a
representative dynamics from the class of stochastic learning
dynamics.

Log-Linear Learning (LLL), as presented in [2], is an
example of noisy-best response dynamics. Let a(t − 1) =
(ai(t−1), a−i(t−1)) be the action profile at time t−1. Then
the steps involved in decision making at t are as follows:
• A player i is randomly selected from Sp such that every

player has a non-zero probability of being selected.
• The other players repeat their actions, i.e., a−i(t) =
a−i(t− 1).

• Player i selects an action ai from Ai with probability

pLLL
i (ai, a−i(t)) =

e−
1
T [Ui(a

∗
i ,a−i(t))−Ui(ai,a−i)]

Zi(a−i)
,

Zi(a−i) =
∑
āi∈Ai

e−
1
T [Ui(a

∗
i ,a−i)−Ui(āi,a−i)],

(6)
where Zi(a−i) is a normalizing constant and a∗i is an
action from the best response set Bi(a−i(t)).

In (6), parameter T determines the level of noise in decision
making. When T approaches to infinity, players randomly
select actions from their action sets with uniform distribution.
However, as T approaches to zero, players select actions from
their best response sets with a probability approaching to one.
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In LLL, action profile at time t only depends on the action
profile at time t − 1 and decision at time t. Therefore, the
evolution of action profiles under LLL can be modeled as a
Markov chain over the set of joint action profiles A. Let PLLL

be the transition matrix for the Markov chain induced by LLL.
The transition probability between any two action profiles a
and a′ is

PLLL(a, a′) =
1

n

{
0 d(a, a′) > 1,
pLLL
i (a′i, a−i) a′ ∈ Ni(a).

Here, the resistance in transition from a to a′ is

RLLL(a, a′) =

{
Ui(a

∗
i , a−i)− Ui(a′) a′i 6= ai, a

′
−i = a−i,

∞ otherwise.
(7)

where a∗i ∈ Bi(a−i). We will consider LLL for our analysis
in this work and therefore the resistance function will be

R(a, a′) = RLLL(a, a′)

throughout the paper.
1) Radius-Coradius Analysis: Resistance tree analysis, as

presented in [1], completely characterizes stochastic stability
for a wide class of stochastic learning dynamics. However,
computing stochastically stable states through this approach
is computationally intensive since it requires evaluating re-
sistances of all the possible trees rooted at all the states. To
address this issue, an alternative approach was presented in
[15] for a particular noisy best response dynamics in which
players select a noisy action with uniform distribution. In [16],
the approach was extended to a generalized version of LLL,
in which the probability of a noisy action is proportional to its
utility. In this approach, two quantities, namely Radius (Rd)
and Coradius (CR) are computed for states that are candidates
for being stochastically stable. Then a simple comparison be-
tween Rd and CR provides a sufficient condition for stochastic
stability.

Next, we define the terms involved in Radius-Coradius
(Rd − CR) based analysis from [16] and a brief discussion
on its significance.

Definition 2.1: Consider a Markov chain over the set of
joint action profiles A.
• The basin of attraction of an action profile a, BA(a), is

the set of all action profiles a′ in A such that there exists
a path of zero resistance from a′ to a.

• The recurrent class of a profile a, L(a), is the set of all
profiles a′ such that a and a′ are connected to each other
through paths of zero resistances.

• The radius of an action profile a is

Rd(a) = min{Rmin(a, a′) | a′ ∈ BAc(a)}, (8)

where BAc(a) = A\BA(a) is the complement of the
set BA(a) and Rmin(a, a′) is the resistance as defined in
(2). Thus, Rd(a) is the minimum resistance of leaving
BA(a).

• The coradius of an action profile a is

CR(a) = max{Rmin(a′, a) | a′ ∈ BAc(a)}. (9)

Based on the definitions in (8) and (9), the radius of a is a
measure of how easy it is to leave a and coradius of a is a

a1

a2

a3

a4

a5

φ(a1) = 1

φ(a2) = 4

φ(a3) = 2

φ(a4) = 3

φ(a5) = 6

a0

φ(a0) = 1

Fig. 1. Induced Markov chain under LLL for an identical interest game with
five players and two actions each {0, 1}. The game is a potential game and
φ(ai) is the potential of the state ai.

measure of how difficult it is to reach a if the Markov chain
is initialized randomly at a profile outside of BA(a). Given
any subset B of A, the definitions of radius and coradius can
be extended to B as follows:

Rd(B) = min{Rd(a) | a ∈ B}, and
CR(B) = min{CR(a) | a ∈ B}.

(10)

Using the concepts of radius and coradius, the following
criteria for stochastically stable states in LLL was presented
in Prop. 2 of [16].

Proposition 1: [16] Let a be an action profile in A that
satisfies Rd(a) > CR(a). Then, stochastically stable states
are exactly those in L(a).

The condition in Prop. 1 is a sufficient condition for an action
profile to be stochastically stable. Moreover, if an action profile
a ∈ A satisfies Rd−CR criteria, then it was also established
in the proof of Prop. 2 in [16] that no action profile outside
of the equivalent class L(a) can be stochastically stable. In
this work, we will use this result extensively for verifying
stochastic stability of various states.

2) Illustrative example: We present a simple example to
illustrate the implications of the basin of attraction, radius,
and coradius in stochastic stability analysis. The basic setup
of our example is presented in Fig. 1. We consider a game
with five players in which each player has two actions {0, 1}.
The state of the system is the number of players playing
action 0. Thus, the state space is S = {a0, a1, . . . , a5}, where
ak is the state with k players playing 0. The links between
the states correspond to valid transitions under a stochastic
learning dynamics. The game is an identical interest game in
which all the players have the same utility at a particular state,
which leads to a potential game setup. Here φ(·) is the global
payoff function, which is also a potential function for identical
interest games.

We assume that the players update their actions according
to LLL. Based on the payoff structure in Fig. 1, the set
of NE is {a2, a5}. Moreover, for potential games, potential
function maximizers are stochastically stable, which imply
that a5 is the unique stochastically stable state. We will also
arrive at this solution using Rd − CR result. The one step
resistance between any two states under LLL is given in (7).
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The resulting resistance matrix is

R =


0 0 ∞ ∞ ∞ ∞
3 3 0 ∞ ∞ ∞
∞ 3 0 2 ∞ ∞
∞ ∞ 0 2 1 ∞
∞ ∞ ∞ 4 3 0
∞ ∞ ∞ ∞ 3 0

 ,

where R(ai, aj) is the resistance between ai and aj for i and
j in {0, 1, . . . , 5}. The basin of attractions of the two NE are

BA(a2) = {a0, a1, a2, a3} and BA(a5) = {a4, a5}.

Since φ(a2) > φ(a4), the best response from a3 is to transition
to a2 instead of a4. Therefore, R(a3, a2) = 0 whereas
R(a3, a4) = φ(a2)−φ(a4) = 1. The only path leaving BA(a2)
is (a2, a3, a4) and the only path leaving BA(a5) is (a5, a4, a3).
Therefore,

Rd(a2) = 3 and Rd(a5) = 7.

The resistance of the path (a5, a4, a3, a2), which is the only
path from a5 to a2 is 7. Similarly, the resistance of the path
(a2, a3, a4, a5), which is the only path from a2 to a5 is 3.
Thus,

CR(a2) = 7 and CR(a5) = 3.

Since Rd(a5) > CR(a5), state a5 is the only stochastically
stable state.

III. ROBUSTNESS IN GAMES WITH HETEROGENEOUS
PLAYERS

In this section, we start by presenting our new notion of
robustness for stochastic learning dynamics. These learning
dynamics are often employed in population settings that com-
prise a large number of players. In such scenarios, assuming
a population of homogeneous players may be overly restric-
tive because human populations generally have idiosyncratic
individuals with strong tendencies to defy standard decision-
making practices. Such individuals may or may not have an
impact on the decisions of the rest of the population. Similarly,
in the engineering applications of multi-agent systems, some
agents may be faulty or are compromised by an adversarial
attack.

We assume a population in which a set of heterogeneous
players has a different decision strategy than the rest of the
players. Having a heterogeneous player in the population raises
several interesting questions regarding the long-run behavior
of the population under stochastic learning dynamics. For
instance, can a small group of heterogeneous players affect
the long-run behavior of the entire population, and how to
quantify and analyze this impact? To investigate the impact of
player heterogeneity, we consider three types of behaviors.
• Confused player: Randomly updates his actions.
• Stubborn player: Never updates his action.
• Strategic player: Can update his actions strategically to

alter the stochastically stable behavior of the population.
We refer to the setups with and without heterogeneous players
as the heterogeneous and standard setups, respectively. Let Θ

be the set of possible heterogeneous behaviors. In this work,
we consider

Θ = {cnf, stb, str},

where cnf , stb, and str refer to confused, stubborn, and
strategic behaviors, respectively.

Definition 3.1: Let Ass ⊂ A be the set of stochastically
stable action profiles for a stochastic learning dynamics in
the standard setup, and let s belongs to Ass.
• Suppose all the players in a subset H ⊂ Sp are replaced

with θ ∈ Θ players, and let Aθ,Hss be the set of stochas-
tically stable action profiles in the heterogeneous setup.
Then, s = (sH , s−H) is robust to θ players in H if there
exists an s′ in Aθ,Hss such that s′−H = s−H .

• A stochastically stable action profile s ∈ S is robust to
θ ∈ Θ players if s is robust to θ players in any subset H
of Sp.

• A stochastic learning dynamics is robust to θ ∈ Θ players
if all stochastically stable profiles in the set S are robust
to θ players.

Thus, a stochastically stable action profile under the standard
setup is robust to a heterogeneous behavior if replacing any
subset of players H with heterogeneous players of that type
cannot affect the behavior of other players in the population.
To analyze the impact of player heterogeneity on the long-
run behavior, we thoroughly investigate the three types of
heterogeneous players in the set Θ.

In our analysis, we restrict our attention to LLL and a
simple scenario in which a single player, say player h, is
replaced with a heterogeneous player, i.e., H = {h} for
some h ∈ Sp. We establish that even a single heterogeneous
player can significantly alter the long-run behavior of the entire
population under certain conditions. Then, we present several
insightful examples that provide a better understanding of the
conditions in which a single heterogeneous player can change
the population’s behavior.

A. Confused Player: Random Action Updates

We begin with the case of a confused player who randomly
updates his action whenever given the opportunity. To keep
the analysis simple, we assume that for all s ∈ Ass, the
equivalence class L(s) is a singleton. The main results related
to the addition of a confused player are as follows:

1) Under certain scenarios, a stochastically stable profile s
is not robust to a single confused player.

2) There exist scenarios in which s is robust if player h
is confused but is not robust if some other player h′ is
confused.

3) There exist scenarios in which an action profile a that
was not stochastically stable under the standard setup
may become stochastically stable after replacing a player
with a confused player.

Proposition 2: Let s be a stochastically stable action pro-
file in the standard case such that Rd(s) > CR(s). Then, s
is robust to a confused player h ∈ Sp if

Rd(Lcnf(s, h)) > CR(Lcnf(s, h)),
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Uc(c1) = 10
b1 b2 b3

a1 10 6 7
a2 6 0 0
a3 0 0 9

Uc(c1) = 5
b1 b2 b3

a1 10 0 0
a2 0 1 1
a3 0 1 1

Fig. 2. A game with three players {a, b, c}. Players a and b select the rows
and columns of the matrices and player c selects between left and right matrix.
Players a and b are identical interest with utilities given in the matrices. The
utility of c1 is 10 and c2 is 5, i.e, c1 is the dominant action for c..

where
Lcnf(s, h) =

⋃
s′∈ Nh(s)

s′, (11)

and Nh(s) is the neighborhood of s defined in (4).
Since a confused player randomly updates his actions, all

the transitions that involve h have zero resistance, i.e.,

Rcnf(a, a′) =

{
0 a′ ∈ Nh(a)

R(a, a′) a′ /∈ Nh(a).

Thus, by replacing h with a confused player, transitions be-
tween s and any member of the set Nh(s) have zero resistance,
which can change the radius and coradius of s−h. Therefore,
the Rd−CR based sufficient condition for stochastic stability
will be defined on the set Lcnf instead of a single state in the
case of a confused player.

We illustrate the implications of the result in Prop. 2 through
an example for which the matrix form is presented in Fig. 2.
Consider a game with three players Sp = {a, b, c}. In the
standard setup, players a and b have identical interests, i.e.,
their utilities are identical for all action profiles. For player c,
action c1 strictly dominates c2. Thus, the game has two pure
NE in the standard setup, which are α∗1 = (a1, b1, c1) and
α∗2 = (a3, b3, c1). To check for stochastically stable states, we
need to compute radius and coradius for both of the NE. The
basin of attraction of α∗1 contains all the states except α∗2. The
minimum resistance path from α∗1 to BAc(α∗1) is

ωα∗1 ,α∗2 = ((a1, b1, c1), (a1, b3, c1), (a3, b3, c1)). (12)

The minimum resistance path entering BA(α∗1) from outside
is ((a3, b3, c1), (a1, b3, c1)). Therefore,

Rd(α∗1) = 3 and CR(α∗1) = 2.

Since Rd(α∗1) > CR(α∗1), equilibrium α∗1 is stochastically
stable based on the Rd− CR criteria.

Next, we study the impact of replacing one of the players
with a confused player. We will have s = (a1, b1, c1) in the
two cases below.
Case 1: Player c is confused.

If player c is confused, i.e., h = c, then the transitions be-
tween the entries from the left matrix to the right matrix have
resistance zero. To verify the robustness of the stochastically
stable state s with c as confused player, we apply the result
of Prop. 2. We start with the set Lcnf(s, c). The neighborhood
Nc(s) has one member only, which is (a1, b1, c2). Thus,

Lcnf(s, c) = {(a1, b1, c1), (a1, b1, c2)}.

c1
b1 b2

a1 10, 10, 10 6, 5, 3
a2 7, 5, 3 4, 5, 6

c2
b1 b2

a1 10, 2, 6 6, 5, 5
a2 7, 6, 5 8, 8, 8

Fig. 3. Matrix form representation of a three player game with Sp =
{a, b, c}. Player a selects rows, player b selects columns, player c selects
left or right matrix.

To compute the radius and coradius of Lcnf(s, c), we observe
that the minimum resistance path leaving Lcnf(s, c) is still
ωα∗1 ,α∗2 in (12). Similarly, the easiest access to Lcnf(s, c) is
also through (a1, b1, c1). Therefore,

Rd(Lcnf(s, c)) = 3 and CR(Lcnf(s, c)) = 2.

Since Rd(Lcnf(s, c)) > CR(Lcnf(s, c)), the set Lcnf(s, c) is
stochastically stable and the action profile s is robust if c is
confused.
Case 2: Player b is confused.

If player b is confused, then

Lcnf(s, b) = {(a1, b1, c1), (a1, b2, c1), (a1, b3, c1)}.

In this case, player c will still play action c1 with high
probability. A minimum resistance path from Lcnf(s, b) to
α∗2 will be ((a1, b3, c1), (a3, b3, c1)), which has a resistance
of zero. Similarly, a minimum resistance path form α∗2 to
Lcnf(s, b) will be ((a3, b3, c1), (a3, b1, c1), (a1, b1, c1)), which
again has a resistance of zero. Therefore, in the case with b
as confused player,

Acnf,b
ss = Lcnf(s, b) ∪ {(a3, b1, c1), (a3, b2, c1), (a3, b3, c1)}.

Since s−b = (a1, c1) belongs to Acnf,b
ss , we say that s is robust

if b is confused. However, the size of the set of stochastically
stable strategies Acnf,b

ss has significantly increased.
Proposition 3: Let s be an action profile that is not

stochastically stable under the standard setup. Then, there can
exist a player h ∈ Sp such that replacing it with a confused
player can result in Lcnf(s, h) to become stochastically stable.

Proof: By replacing player h with a confused player,
Rd(Lcnf(s, h)) in the heterogeneous setup cannot be greater
that Rd(s) under the standard setup because a confused
player can only reduce the resistance of a path. Therefore, for
Lcnf(s, h) to be stochastically stable, we need to show that
it is possible to reduce the coradius such that the Rd − CR
criteria is satisfied. We establish our claim through a simple
example.

Consider a three player game with each player having two
actions. The matrix form representation of the game is given
in Fig. 3. The game has two NE, which are α∗1 = (a1, b1, c1)
and a∗2 = (a2, b2, c2). We assume that the players are updating
their actions according to LLL. The basin of attraction of
α∗1 includes all the action profiles except (a2, b2, c2) and
(a1, b2, c2). The paths that determine the Rd(α∗1) and CR(α∗1)
are

ωα∗1 ,α∗2 = ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2), (a2, b2, c2)),

ωα∗2 ,α∗1 = ((a2, b2, c2), (a2, b1, c2), (a1, b1, c2), (a1, b1, c1)).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 13,2022 at 23:48:32 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3166717, IEEE
Transactions on Automatic Control

7

Then, the radius and coradius of α∗1 are

Rd(α∗1) = 3 and CR(α∗1) = 2,

which implies that α∗1 is stochastically stable and α∗2 is not
stochastically stable. For α∗2, Rd(α∗2) = Rpath(ωα∗2 ,α∗1 ) = 2
and CR(α∗2) = Rpath(ωα∗1 ,α∗2 ) = 3.

Now suppose that player a is replaced with a confused
player, i.e., h = a. Then

Lcnf(α∗1, a) = {(a1, b1, c1), (a2, b1, c1)}, and

Lcnf(α∗2, a) = {(a2, b2, c2), (a1, b2, c2)}.

The radius and coradius of Lcnf(α∗2, a) under the heteroge-
neous setup are the following.

Rd(Lcnf(α∗2, a)) = 2, CR(Lcnf(α∗2, a)) = 0.

Thus, replacing a with a heterogeneous player reduced the
coradius of α∗2, and resulted in Lcnf(α∗2, a) to be stochastically
stable, which verifies the proposition statement.

The important takeaway from this section is that the pres-
ence of even a single confused player can significantly alter
the long-term behavior of the entire population.

B. Stubborn Player: No Action Updates

A stubborn player is the one who never updates his action ir-
respective of the number of revision opportunities he receives.
Consequently, having a stubborn player restricts the state space
over which the Markov chain induced by a stochastic learning
dynamics evolves. Let A be the set of joint action profiles in
the standard setup. Replacing player h with a stubborn player
restricts A to Astb(h), where

Astb(h) = {a ∈ A | a = (astb, a−h) for all a−h ∈ A−h}.

Here, astb is the action of the stubborn player. Because of
a stubborn player, the resistance between action profiles is
updated as follows:

Rstb(a, a′) =

{
R(a, a′) if ah = a′h = astb,
∞ otherwise.

Proposition 4: Suppose player h is replaced with a stub-
born player having action astb and let s = (sh, s−h) be a
stochastically stable action profile under the standard setup.

1) There exist scenarios in which s is not robust to a
stubborn player h.

2) Even if sh = astb, there exist conditions in which s =
(sh, s−h) is not robust to a stubborn player h.

Proof: To prove the statement, we present two conditions
in which s will not be robust to the addition of a stubborn
player, i.e., we will provide sufficient conditions in which
(astb, s−h) will not be stochastically stable.

Condition 1: Suppose sh 6= astb, i.e., player h
had a different action in the stable profile under
the standard setup. If there exists an action profile
a = (astb, a−h) such that the Hamming distance
d(s−h, a−h) = 1, R((astb, s−h), (astb, a−h)) = 0 and
Rmin((astb, a−h), (astb, s−h)) > 0, then (astb, s−h) is

c1
b1 b2

a1 10, 10, 10 6, 5, 3
a2 7, 6, 2 4, 5, 6

c2
b1 b2

a1 2, 6, 5 8, 5, 5
a2 8, 8, 8 7, 7, 5

Fig. 4. Matrix form representation of a three player game with Sp =
{a, b, c}.

not stochastically stable. If this condition is satisfied then
(astb, s−h) cannot be stochastically stable because there will
be a zero resistance path from (astb, s−h) to (astb, a−h)
whereas all the paths from (astb, a−h) to (astb, s−h) will
have non-zero resistance. In this condition, player h had an
important role in the standard setup since the resistance from
(sh, s−h) to (astb, s−h) was large enough to keep (sh, s−h)
stochastically stable. However, stubborn behavior of h
reduced this resistance to zero, which shifted the behavior of
the population away from s−h.

Condition 2: Let sh = astb, i.e., s = (astb, s−h) is
stochastically stable in the standard setup. Even in this case,
we cannot guarantee that (astb, s−h) will be stochastically
stable under the heterogeneous setup. Consider the matrix
game in Fig. 4 with three players. The game has two NE,
which are α∗1 = (a1, b1, c1) and α∗2 = (a1, b1, c1). The
minimum resistance paths between α∗1 and α∗2 are

ωα∗1 ,α∗2 = ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2)) and

ωα∗2 ,α∗1 = ((a2, b1, c2), (a2, b2, c2), (a2, b2, c1), (a2, b1, c1),

(a1, b1, c1)).

The radius and coradius of α∗1 are

Rd(α∗1) = Rpath(ωα∗1 ,α∗2 ) = 3 and

CR(α∗1) = Rpath(ωα∗2 ,α∗1 ) = 1.

Since Rd(α∗1) > CR(α∗1), α∗1 is stochastically stable.
Next, we replace player b with a stubborn player with astb =

b1. Note that b1 is the action of b in the stochastically stable
profile, i.e., sh = astb, as in condition 2. With player b fixed
at b1, the game is now restricted to the first columns of the
left and right matrices. For this restricted game, the minimum
resistance paths between α∗1 and α∗2 are

ωstb
α∗1 ,α

∗
2

= ((a1, b1, c1), (a2, b1, c1), (a2, b1, c2)) and

ωstb
α∗2 ,α

∗
1

= ((a2, b1, c2), (a1, b1, c2), (a1, b1, c1)),

and the resulting radius and coradius of α∗2 are

Rd(α∗2) = Rpath(ωstb
α∗2 ,α

∗
1
) = 6 and

CR(α∗2) = Rpath(ωstb
α∗1 ,α

∗
2
) = 3.

Thus, in the heterogeneous case with player b as a stubborn
player fixed at b1, the stochastically stable profile switched
to α∗2, i.e., α∗1 was not robust to the replacement of b with a
stubborn player. The key observation here is that the minimum
resistance exit path from α∗2 required player b to transition
from b1 to b2. This transition only had a resistance of one
but the resulting action profile (a2, b2, c2) was in the basin of
attraction of α∗1. When player b restricted itself to b1, this low
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resistance path was no longer available. The remaining options
to leave the basin of attraction of α∗2 were either a transition
by player a to a1 or a transition by player c to c1, and both
of these transitions had a resistance of 6.

Conditions 1 and 2 are not the only conditions under which
a stochastically stable profile is not robust to a stubborn player.
However, these conditions establish the fact that even a single
stubborn player can be sufficient to alter the behavior of the
entire population. Even if sh = astb, the behavior of the rest
of the population can be impacted by the stubborn nature of
the heterogeneous player.

C. Strategic Player

In this section, we assume that player h is replaced with a
strategic player interested in achieving some desired behavior.
In the case of confused or stubborn players, the heteroge-
neous players could not control their impact over the long-
run behavior of the system because their strategies were
independent of the population state. However, strategic players
are fundamentally different from the other two types because
they can adapt their strategies to steer the global behavior
towards their desired behavior. Thus, the potential impact of
a strategic player should be more serious than the impact of
a stubborn or a confused player.

The desired behavior of a strategic player will depend on
the details of the game setup. For instance, in 2 × 2 coordi-
nation games, in which the risk dominant Nash equilibrium
is stochastically stable, the desired behavior of the strategic
player may be to move the population away from the stable
profile or to steer the population towards the other Nash equi-
librium [30], and [31]. Similarly, in the Nash bargaining game
considered in [23], the objective of strategic players can be
to increase their shares as compared to the Nash equilibrium.
Thus, in general, we can say that a strategic adversary’s desired
behavior is to either stop the population from reaching an
equilibrium behavior or to steer the population towards specific
behavior.

In Props. 5 and 6, we present a set of sufficient con-
ditions that are based on the qualitative description of the
path resistances and highlight the requirements on strategic
adversaries for achieving their objective. Then, in Section
IV-B, we explore two specific models for strategic players in
the context of graphical coordination games. In the first model,
we assume that the strategic adversary is rational and can plan
over the future as was modeled in [24]. In the second model,
we explore the role of network connectivity of a strategic
adversary on the robustness of coordination games over Erdős-
Rényi random networks.

Proposition 5: Let s be a stochastically stable profile un-
der the standard setup and let player h be replaced with a
strategic adversary. If any of the statements below are true, s
is not robust to a strategic player h.

a) For an action ah 6= sh of player h, there exist pro-
files a = (ah, s−h) and a′ = (ah, a−h) such that
d(s−h, a−h) = 1 and R(a, a′) = 0 but Rmin(a′, a) > 0.

b) There exists an action profile a ∈ A such that for each
ω ∈ Ω(a, s), there is an index j ∈ {0, 1, . . . , |ω − 1|}

such that ωj = (ah, a−h), ωj+1 = (a′h, a−h), and
d(a−h, s−h) > 1.

Proof: The argument for statement (a) is similar to the
the argument in condition 1 of Prop. 4. However, in this case,
we argue that the strategic adversary will switch from sh to
ah with probability one, i.e., he will reduce R(s, a) = 0. From
a, there is a zero resistance path to a′ but all the paths from
a′ to a have non-zero resistance because of which s will not
be robust to strategic behavior of h.

In statement (b), the set Ω(a, s) is the set of all paths
from a to s. If in each ω ∈ Ω(a, s), the strategic player h
is involved, his strategy will be to not update his action and
increase the resistance of all the paths in Ω(a, s) to infinity.
Moreover, at the transition that involves the adversary, the
action profile of rest of the population a−h is at least one
Hamming distance away from the stochastically stable action
profile s−h. Consequently, there will be no path from a−h
to s−h which implies that s will not be robust to strategic
behavior of h.

Proposition 6: Let α∗ be a NE in the standard setup such
that α∗ /∈ Ass. Let player h be replaced with a strategic
player. The strategic player can steer the global behavior to
α∗, i.e., make α∗ stochastically stable, if either of the following
statements are true.

a) Let ΩCR(α∗, BAc(α∗)) be the set of all paths ω from α∗

to BAc(α∗) such that Rpath(ω) < CR(α∗). In each ω ∈
ΩCR(α∗,BAc(α∗)), there exists a transition from ωj to
ωj+1 such that ωj = (ah, a−h) ∈ BA(α∗), ωj+1 =
(a′h, a−h), where a′h is any action in Ah, i.e, player h
has to update his action to leave BA(α∗).

b) For each a ∈ BAc(α∗), the set Ω(a, α∗) is the set of all
paths from a to α∗. There exists an ω ∈ Ω(a, α∗) such
that Rpath(ω)−Rh(ω) < Rd(α∗) for all a ∈ BAc(α∗).

Proof: In statement (a), ΩCR(α∗,BAc(α∗)) is the set
of all paths from α∗ to outside the basin of attraction and
have resistance less than or equal to CR(α∗). If in each
ω ∈ ΩCR(α∗,BAc(α∗)), strategic adversary is required to
update his action to leave BA(α∗), his strategy would be to
not update his action. As a result of this strategy, the resistance
of all the paths in ΩCR(α∗,BAc(α∗)) will become infinity and
Rd(α∗) will be guaranteed to be greater than CR(α∗).

The condition in (b) states that for each a that does not
belong to BA(α∗), there exists at least one path ω ∈ Ω(a, α∗)
such that Rpath(ω) − Rh(ω) < Rd(α∗), where Rh(ω) is
the contribution of player h in the resistance of the path as
defined in (5). If the strategic adversary decides to update his
actions involved in ω with probability one, he will reduce
his contribution Rh(ω) to zero and the resistance of the path
will be less than Rd(α∗). If this condition is satisfied for all
a ∈ BAc(α∗), we can guarantee CR(α∗) < Rd(α∗), which
implies α∗ will be stochastically stable.

The conditions in Prop. 6 appear restrictive for population
settings, which is expected because only one strategic player
is assigned the task of changing the behavior of the entire
population. These conditions signify the degree of influence
that a single strategic player should possess in the network
in order to steer the population behavior towards his desired
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A B
A 1 + α, 1 + α 0, 0
B 0, 0 1, 1

Fig. 5. Payoff matrix of a 2× 2 coordination game.

behavior. Using Rd−CR results, the conditions state that the
strategic player can lead the population to a desired profile
α∗ if it he has the ability to change the radius and/or the
coradius of α∗ to the desired values. Condition (a) represents
the scenario in which the strategic player can increase the
resistance for leaving the basin of attraction of the desired
profile, which in turn will increase the radius of α∗ from
its coradius. Condition (b) represents the scenario in which
for every action profile a outside the basin of attraction of
α∗, there exists at least one path ωa,α∗ such that the strategic
player can reduce the resistance of this path below Rd(α∗),
which will reduce the coradius of α∗ from its radius and will
lead to the desired result. Thus, if either of the two conditions
in the proposition statement is satisfied, the strategic player
has the capability to achieve his objective and steer the global
behavior to α∗.

IV. NETWORK TOPOLOGY AND ROBUSTNESS

In the previous section, we presented sufficient conditions
for a single heterogeneous player to alter the behavior of the
rest of the population. In this section, we extend our analysis
to population settings comprising a large number of players. In
particular, we consider the setup of coordination games played
over a network of N players. First, in Section IV-A, we will
analyze the robustness against stubborn and confused players
in the case of path graph, cycle graph, grid graph, Peterson
graph, and a class of networks with diameter D > 1. Then, in
Section IV-B, we will consider strategic players and investigate
their robustness properties for wheel graph and Erdős-Rényi
(ER) random networks.

In a standard setup of a two player coordination game, each
player has two actions A and B and the payoff matrix is as
shown in Fig. 5. In this game setup, (A,A) and (B,B) are the
two NE and α ∈ (0, 1) is the added benefit of coordinating on
action A as compared to B. Thus, (A,A) is Pareto optimal as
well as risk dominant. In any 2×2 coordination game, the risk
dominant NE, which in our case is (A,A), is stochastically
stable as shown in [1], [2], and [3]. We will consider the setup
in which the game is played over a network that is represented
by a graph G(V,E). In the network scenario, each player i ∈
Sp plays the game against all the players in his neighborhood
set NG(i), where NG(i) is the set of all vertices adjacent to
vertex i in the network, i.e.,

NG(i) = {j ∈ Sp | (i, j) ∈ E} (13)

Let ηA(i) and ηB(i) be the fraction of players with actions
A and B in the neighborhood set NG(i). These fractions will
depend on time t as well but we will suppress time dependence
for notational convenience. The utility function of player i is

Ui(A, a−i) = ηA(i)(1 + α) and Ui(B, a−i) = ηB(i), (14)

where ηB(i) = 1− ηA(i). Then, given a−i

A ∈ Bi(a−i) if ηA(i) >
1

2 + α
, and

B ∈ Bi(a−i) if ηB(i) >
1 + α

2 + α
.

(15)

Since α belongs to the open interval (0, 1), ηA(i) and ηB(i)
satisfy following bounds.

1

3
< ηA(i) <

1

2
and

1

2
< ηB(i) <

2

3
,

for all i. In the network setup, the population state at any time
corresponds to the number of players with actions A and B.
We will use the notations 1A and 1B to represent the states
in which all the players play action A and B, respectively.
Moreover, starting from 1A, let 1kA represent the situation
when k players have switched to action B while the remaining
players are still playing action A. Similarly, starting from 1B ,
let 1kB represent the situation when k players have switched to
action A while the remaining players are still playing action
B.
This setup of network coordination games was considered in
[36] for best response dynamics and various conditions were
derived on network structure that will cause risk dominant or
risk dominated equilibrium to spread as a contagion. In this
work, we consider LLL, which is asynchronous noisy best re-
sponse dynamics, and investigate certain fundamental network
structures and verify the robustness of the stochastically stable
profile 1A after including a heterogeneous player of the three
types.

A. Stubborn and Confused Players

1) Path network: A path network of N players has N − 1
total edges such that all the inner players have two neighbors
and the two end players have one neighbor only. According
to the condition in (15), action A is the best response of a
player if the fraction of his neighbors playing A is greater
than 1/(2 + α). Thus, in a path network, a player would
choose action A with zero resistance as long as one of his
neighbors is playing action A. On the other hand, a player
has action B as his best action if the fraction of neighbors
playing action B is greater than (1 +α)/(2 +α). Therefore, a
player would switch to action B if both of his neighbors are
already playing action B. The end players have one neighbor
only, which implies that placing a stubborn player next to an
end player will change his behavior. A confused player will
be unable to change the action of the end player from B to
A because of the higher payoff of A. Thus, a path network
is robust to a single stubborn player if the stubborn player is
not placed in the neighborhood of the end players. Moreover,
a path network is robust to a confused player.

2) Cycle network: A cycle network of N players is a 2-
regular network and is constructed by connecting the end
players of a path network. The conditions for an action to
be best response for a given player are the same as presented
in the case of path network. Since there are no end players in
a cycle network, this network is robust to a single stubborn or
a confused player.
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(a) Minimum resistance path from 11
A to 1B (b) Minimum resistance path from 1B to 11

A

Fig. 6. Minimum resistance paths between the states 1A and 1B in the Peterson graph. The shaded nodes are the players with action B, the clear nodes
are the players with action A, and the top shaded square is the stubborn player playing action B.

3) Grid network: In a two dimensional grid network, all
the inner players have four neighbors. Thus, the condition in
(15) implies that B will be the best response if more than
half of the neighboring players are already playing B. Thus, a
player in a two dimensional grid network would choose B with
zero resistance if three of his neighbors are already playing
B, which renders this network robust to the presence of single
heterogeneous player.

The robustness of path, cycle, and grid networks can easily
be established through Rd−CR criteria or the resistance tree
analysis. We have omitted detailed analysis of these cases
because of its simplicity. Next we will present examples of
networks that are not robust to a stubborn player. Our analysis
will be based on the Rd−CR criteria as presented in Prop. 1.
For coordination games over networks, action profiles 1A and
1B are the two candidates for stochastically stable states. Let
ω1A,1B

and ω1B ,1A
be the minimum resistance paths from 1A

to 1B and 1B to 1A, respectively. Then radius and coradius
of 1A and 1B are

Rd(1A) = Rpath(ω1A,1B
), Rd(1B) = Rpath(ω1B ,1A

),

CR(1A) = Rpath(ω1A,1B
), CR(1B) = Rpath(ω1B ,1A

).

Since the radius of 1A is the coradius of 1B and the radius
of 1B is the coradius of 1A, proving one of these states
as stochastically stable implies that the other one is not
stochastically stable.

4) Peterson Graph: Peterson graph is a special undirected
graph with ten nodes and 15 edges as shown in Fig. 6. The
network is such that each node has three neighbors. This graph
is popular in graph theory since it serves as example and
counter example for various network phenomenon.

Proposition 7: Peterson graph is not robust to a stubborn
player for α < 1/4.

Proof: We consider Peterson graph as shown in Fig. 6 in
which the top player, which is represented by a shaded square,
is replaced with a stubborn player that always plays B i.e.
astb = B. To prove that the network is not robust, we need
the minimum resistance paths ω1B ,11A

and ω11A,1B
and show

that Rpath(ω1B ,11A
) > Rpath(ω11A,1B

) for α < 1/4. Minimum
resistance paths from 11

A to 1B and 1B to 11
A are shown

in Figs. 6(a) and 6(b) respectively. Based on these paths, the
radius and coradius of 1B are

Rd(1B) = 7− 4α, CR(1B) = 4 + 8α.

The maximum value of α for which radius of 1B remains
greater than its coradius turns out to be 1/4. We want to
highlight here that there exist many paths of least resistance
between 1B and 11

A. However, it can be easily verified that
the paths considered in Fig. 6 are indeed the least resistance
paths.

5) Wheel network: Wheel network is constructed by adding
a node to a cycle graph such that the additional node is
connected to all the players on the cycle. We will refer to the
additional node as the central node and the cycle nodes as the
peripheral nodes. Thus, the central node has N − 1 neighbors
and a peripheral node has three neighbors. An important aspect
of this network is that the players can be divided into two
categories based on their importance. Central player has a
global influence over the network whereas any peripheral node
has a local influence only.

Proposition 8: Wheel network is robust to a peripheral
stubborn player, but not robust to a central stubborn player.

Proof: The impact of a peripheral stubborn player is
localized to his two neighbors on the periphery and the central
node. Since the central node has N − 1 neighbors, the impact
on the stubborn player is of limited nature, particularly for
large values of N . Although the stubborn player does reduce
the resistance of his peripheral neighbors in switching from
A to B, this impact on resistance is not sufficient to change
the stochastically stable states. For action B to become the
best response of a peripheral player, at least two of his three
neighbors should play B. Thus, introducing a single stubborn
player on the periphery can not induce a change in the global
behavior.

Next, we consider the case of central stubborn player with
action B. Starting from 11

A, each peripheral node has one
neighbor (central player) with action B and two players with
action A. Thus, the resistance faced by a peripheral player in
switching his action from A to B is

Rmin(11
A,1

2
A) = 2(1 + α)− 1 = 1 + 2α.

After the first peripheral player switches to B, each of his
peripheral neighbors now have two neighbors playing action
B, which implies that B is now their best response. Thus,
after the switch of the first peripheral node, action B spreads
with zero resistance as shown in Fig. 7(a), which implies that

Rpath(ω11
A,1B

) = 1 + 2α.
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(a) Minimum resistance path from 1A to 1B (b) Minimum resistance path from 1B to 1A

Fig. 7. Minimum resistance paths between the states 11
A and 1B in the wheel network. The shaded nodes are the players with action B, the clear nodes

are the players with action A, and the central shaded square is the stubborn player playing action B.

If the initial configuration is 1B with the central stubborn
player, the first peripheral node will have a resistance of 3
for choosing action A. After the first switch to A, all the
subsequent nodes will have a resistance of 1−α as shown in
Fig. 7(b). Thus,

Rpath(ω1B ,11
A

) = 3 + (N − 2)(1− α).

Since Rd(1B) = R(ω1B ,11
A

) and CR(1B) = R(ω11
A,1B

), the
Rd − CR criteria implies that 1B is stochastically stable if
the central player is stubborn.

Proposition 9: Wheel network is robust to a confused
player.

Proof: Recall that a confused player selects an action
from his action set uniformly at random. In the coordination
game, the confused player will select A or B with equal
probability. If the confused player is on the periphery, then
his response will be limited to his immediate neighbors and
the central player. In this case, the confused player cannot alter
the behavior of the rest of the population.

If the confused player is placed at the central node, then
he influences the behavior of all the players. We can verify
through Rd − CR analysis that the confused player will not
change the stochastically stable state 1A. Intuitively, since
confused player selects his actions with uniform probability,
the impact of acnf = A will be higher as compared to
acnf = B because A has a higher payoff. Thus, the steady
sate behavior of the rest of the players will not be impacted
by a confused player and we can declare wheel network to be
robust to a confused player.

6) Network with diameter D > 1: Next, we present a class
of networks for any diameter D that is not robust to a stubborn
player.

Proposition 10: Given a positive integer D > 1, there
exists a graph with diameter D such that the graph is not
robust to one stubborn player for 0 < α < 1.

Proof: For a given D, we construct the graph as follows:
Consider two perfect binary trees X and Y , each of height
D−1, with root nodes x and y, respectively. Let the leaf nodes
of X be denoted by `xi where i ∈ {1, 2, · · · , 2D−1}. Moreover,
`xi and `xi+1 have a common parent if i is odd. Similarly, we
denote the leaf nodes of Y by `yi . In each tree, we create
edges between leaf nodes having a common parent. In other
words, if i is odd, we create edges between `xi and `xi+1 in
X , and between `yi and `yi+1 in Y . Then, we also add an edge
between root nodes x and y. Additionally, consider another
node s and create edges between s and `xi , ∀i. Similarly, we
add edges between s and `yi , ∀i. A general construction is
shown in Fig. 8(a). Note that the graph obtained will have
2D+1 − 1 nodes and diameter D.

We assume that the central player s is stubborn with astb =
B and we need to compute minimum resistance paths ω1B ,11

A

and ω11
A,1B

between 11
A and 1B . In Figs. 8(b) and 8(c), we

present these minimum resistance paths for the case of D = 3.
For a general analysis, we start with the state 11

A. For each i,
`xi player (similarly, `yi player) is connected to the stubborn
player s in addition to his parent and sibling players. Thus, the
neighborhood of each player `xi (similarly, `yi ) has two players
with action A and one player with action B. For ω11

A,1B
, we

require one player in each pair `xi , `xi+1 (similarly, `yi , `yi+1),
where i is odd, to play the noisy response with resistance
1 + 2α and switch to B. From a population state in which
each pair of nodes `xi , `xi+1 (similarly, `yi , `yi+1), where i is
odd, contains one player with action B and the other with
action A, action B will spread in the population with zero
resistance. Since there are a total of 2D−1 such node pairs in
the graph, the total resistance of a path from 11

A to 1B will
be

Rpath(ω11
A,1B

) = (1 + 2α)2D−1.

Next, we start with the state 1B . Since the central player is
stubborn with astb = B, action A will be a noisy response for
all `xi and `yi . Within each pair of nodes `xi and `xi+1 (similarly,
`yi and `yi+1), where i is odd, the resistance of the player
selecting action A first will be 3, and the resistance of the
player selecting action A second will be 1−α. Thus, the total
resistance for a pair of players `xi , `

x
i+1 (similarly, `yi and `yi+1),

where i is odd, to switch from B to A will be 4 − α. Once
all the players `xi and `yi have switched their actions, action A
will spread in the population with zero resistance. Thus, the
resistance of a minimum resistance path from 1B to 11

A is

Rpath(ω1B ,11
A

) = (4− α)2D−1.

Comparing the two resistances, the Rd−CR criteria implies
that 1B is stochastically stable, which concludes the proof.

B. Strategic Player

In this section, we present a setup for evaluating the impact
of a strategic player on the population behavior with particular
focus on the following.
• We compare the impact of a strategic player who is a

myopic planner with a strategic player who can plan a
strategy over the game horizon.

• We analyze the significance of resources and network
influence required by a strategic player to achieve his
objective.

For the first item, we will consider a network coordination
game with three actions in which a myopic strategic adversary
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(a) Network configuration

1 + 2α 1 + 2α 1 + 2α

1 + 2α

0 00

(b) Minimum resistance path from 1B to 1A

3 3 3 3 1− α

1− α

1− α1− α000

(c) Minimum resistance path from 1B to 1A

Fig. 8. Minimum resistance paths between the states 11
A and 1B in the proposed network with diameter D and N = 2D+1 − 1. The shaded nodes are the

players with action B, the clear nodes are the players with action A, and the central shaded square is the stubborn player playing action B.

A B C
A 6, 6 0, 5 0,0
B 5, 0 7, 7 3,5
C 0, 0 5, 3 8,8

Fig. 9. Matrix form representation of a two player and three actions game.

will not succeed but a fully rational player, who can plan a
strategy over the game horizon will succeed. For the second
item, we will present a random network setup in which a
strategic player can succeed if he has a relatively higher degree
of influence over the network.

1) Wheel network with a strategic player: We consider a
wheel network in which the central player is replaced with a
strategic player. Moreover, the players are now engaged in a
three action game with payoff matrix in Fig. 9. In the standard
setup, the game has three Nash equilibria: {1A,1B ,1C}.
Applying the Rd−CR result, we can easily verify that 1C is
the unique stochastically stable state in the standard setup.

Suppose that the objective of the strategic player is to shift
the action of all the players to B. If the strategic player is
a myopic planner, his strategy will be to select an action
which will maximally improve the utility of action B for the
rest of the players in one step. If astr = B, where astr is
the action of the strategic player, then the neighborhood of
every peripheral player will have one player with action B
and two players with action C, i.e., a−i = (B,C,C). This
neighborhood configuration will result in

Ui(B, a−i) = Ui(B,B) + Ui(B,C) + Ui(B,C) = 13.

However, if astr = A, then a−i = (A,C,C) for the peripheral
players and

Ui(B, a−i) = 5 + 6 = 11.

Thus, the strategy of a myopic player will be astr = B for all

time. However, the stochastically stable profile 1C is robust
to the central strategic player if astr = B.

If the strategic player is fully rational, i.e., plans his long-
run strategy, then he will select astr = A for all time. Then,
each peripheral player will have one neighbor with action A
and two neighbors with action C, i.e., for any player i, the
neighbors action profile is a−i = (A,C,C) and the resulting
utility function is

Ui(A, a−i) = 6, Ui(B) = 11, Ui(C, a−i) = 16.

The resistance for any player to switch to B will be equal to 5.
After the first peripheral player switches to B, its immediate
neighbors will have a−i = (A,B,C) and the resulting utility
function will be

Ui(A, a−i) = 6, Ui(B, a−i) = 15, Ui(C, a−i) = 13.

Thus, for the immediate neighbors of the peripheral player
who selected B, switching to B will have zero resistance.
Therefore, action B will spread throughout the peripheral
network with a total resistance of 5.

Once all the peripheral players are switched to B and the
central strategic player is playing A, a player who wants to
switch to C will face a resistance of 9 because

Ui(A, a−i) = 0, Ui(B, a−i) = 19, and Ui(C, a−i) = 10,

where a−i = (A,B,B) for all the peripheral players. The
minimum resistance path from all B to all C will have a
higher resistance as compared to the minimum resistance path
from all C to B if the central strategic player always plays
A. Therefore, a fully rational strategic player can achieve his
objective in this scenario although his strategy of selecting astr

results in an initial decrease in utility.
We verified these result through MATLAB simulations, and

the results are presented in Fig. 10. In the simulations, we
considered a wheel network over N = 100 players for the
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(a) Standard setup (b) Myopic strategic player with action B (c) Rational strategic player with action A

Fig. 10. Population behavior for wheel network with the game structure in Fig. 9 and a strategic player placed at the center node. Simulation parameters are
N = 100, noise T = 0.07, and simulation iterations 5×105. Figs 10(a)-10(b) represent scenarios with standard setup, astr = B, and astr = A, respectively.
Vertical axes represents, fraction of players playing A (ηA), B (ηB), and C (ηC).

game setup in Fig. 9 and the game was simulated for 5× 105

iterations with T = 0.07. In Figs. 10(a)-10(c), the vertical
axes correspond to ηA, ηB , and ηC , which are the fractions
of players with actions A, B, and C, respectively. We started
the simulations with the standard setup and Fig. 10(a) shows
that 1C is stochastically stable. Then, we placed a strategic
player at the central node with astr = B. Fig. 10(b) shows
that the network is robust to strategic player with astr = B.
Finally, the strategic player switched his action to astr = A
and Fig. 10(c) shows that the network is not robust to the
strategic player in this case.

2) Erdős-Rényi (ER) Networks: The standard setup in
graphical coordination games assumes a fixed network struc-
ture, which implies that the neighborhood sets of all the play-
ers remain the same. However, when modeling interactions
in a large population setting, random sampling of players at
each time instant is also a well-studied model in game theory
literature (see for instance [1] and [24]). Next, we consider ER-
network model, which is suitable to model random interactions
among players. In this section, we will refer back to the two
player coordination game presented in Fig. 5.

In an ER random network model, player interactions are de-
termined by the model parameter p, where p is the probability
of an undirected edge between any two players in Sp. Thus, p
determines the degree of connectivity of the network. Once the
network is setup, a player is randomly selected to update his
action while all the other players repeat their actions from
previous time step. The randomly selected player observes
the actions of his current neighbors and responds according
to LLL by selecting an action with probability in (6). In the
ER network model, the parameter p can be interpreted as the
degree of influence that the players have on each other. For
the coordination game played over ER network, we can show
through the Rd − CR criteria that the population state 1A
is stochastically stable for the standard coordination game in
Fig. 5.

In our setup, we introduce a strategic adversary by replacing
a random player h ∈ Sp with a strategic player whose objec-
tive is to drive the system to 1B , i.e., change the stochastically
stable state. To achieve his objective, the strategic player has to
influence the behaviors of the others. Since the strategic player
himself is not impacted, his influence is modeled by directed
edges from the strategic player to the other players. If the
strategic player has the same level of influence as the other
players in the population, then it will not be possible for him

to alter the behavior of the entire population when the number
of players N is large enough. Therefore, we assume that the
strategic player can have a higher level of influence than the
rest of the population. This higher influence is modeled by
having ph to be greater than p, where ph is the probability
that the strategic player has a directed connection to a player
i for all i ∈ Sp\h. We present a sufficient condition on ph
that will ensure that the network is not robust to the strategic
player.

Proposition 11: An Erdős-Rényi (ER) random network is
not robust to a strategic player if

ph
p
>

(N − 2)α

2
and ph ≤ 1. (16)

Proof: We assume that the strategy of the strategic player
is to always play action B, i.e., astr = B. In the random
network setup, the utility function of any player, say player
i, is the expected utility. Let nA and nB be the number of
homogeneous players other than i playing actions A and B,
respectively such that nA + nB = N − 2. Then, the utility
function of player i is

Ui(A, a−i) = p
nA

N − 1
(1 + α),

Ui(B, a−i) = p
nB

N − 1
+ ph

1

N − 1
.

(17)

Consider the case when all players are initially playing
action B. Then, the resistance of going from 1B to 11

B can be
computed as follows. Suppose player i switches action from B
to A when all the other players including the strategic player
are playing B, i.e., nA = 0 and nB = N − 2. Then, from
(17)

R(1B ,1
1
B) =

p(N − 2) + ph
N − 1

.

In general, for any k ≥ 0, the resistance of going from 1kB to
1k+1
B , when nA = k and nB = N − 2− k, is

R(1kB ,1
k+1
B ) = max

{
0,
p(N − 2− k) + ph

N − 1
− p(1 + α)k

N − 1

}
(18)

On the other hand, when all players except the strategic player
are playing A and the initial network configuration is 11

A, the
resistance of going from 1kA to 1k+1

A , where k ≥ 1, is either

R(1kA,1
k+1
A ) =

p(N − (k + 1))(1 + α)

N
− ph + p(k − 1)

N
,

(19)
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or the resistance is zero if the RHS in the above equation is
non-positive. Note that in (18) and (19), there is an offset in
the value of k because of the effect of strategic adversary when
starting from 11

A. To prove the stochastic stability of the state
1B in the presence of a strategic player, we need to show that
overall resistance of going from 1B to 11

A is greater than the
resistance of going from 11

A to 1B i.e

Rpath(ω1B ,11
A

) > Rpath(ω11
A,1B

).

If ph is equal to p, i.e,. the influence of strategic player
is the same as any other player, then the above condition
can never be true. However, if ph is allowed to be greater
than p, then under certain conditions, we can find ph that
will satisfy the desired condition. A sufficient condition for
1B to be stochastically stable is that the resistance of each
transition in the path ω1B ,11

A
is greater than the resistance of

the corresponding transition in the path ω11
A,1B

, i.e.,

R(1B → 11
B) > R(11

A → 12
A),

R(11
B → 12

B) > R(12
A → 13

A),

...

R(1k−1
B → 1kB) > R(1kA → 1k+1

A ).

Using Eqs. (18) and (19), it is straightforward to prove that
all the above inequalities hold if

ph
p
>

(N − 2)α

2
.

In addition to the above inequality, the condition ph ≤ 1 has
to be imposed to ensure that ph is a probability.

The result in Prop. 11 quantifies the degree of influence that
the strategic adversary must possess to impact the population
behavior. For large N , this condition requires the strategic
adversary to have significantly higher influence as compared to
the rest of the players. To verify the result in the proposition,
we simulated a population with N = 50 players. At each
time, a random network was generated with parameter p =
6/N − 1, i.e., each player was connected to six other players
on average. The coordination game parameter was α = 0.3.
The players updated their actions using LLL with T = 0.25. A
strategic player was included in the population with ph = 0.8,
which was selected according to the condition in Prop. 11.
The value of this parameter signifies that the strategic player
needs to influence majority of the players directly to achieve
his objective. The results of the simulation are presented in
Fig. 11. The system was initialized at 11

A and was simulated
for 106 iterations. The vertical axis represents the fraction of
players playing action A. The simulation clearly depicts that
the strategic player was successful in changing the behavior
of the population from 11

A to 1B .

V. CONCLUSIONS

In this paper, we presented a new notion of the robustness
of stochastic learning dynamics to heterogeneous decision
strategies of players in games. By analyzing three types
of heterogeneous players, including confused, stubborn, and
strategic players, we demonstrated, using our proposed notion

Fig. 11. Evolution of behavior in graphical coordination game over ER
random network model with parameters N = 50, α = 0.3, p = 6/N − 1,
noise T = 0.25. For the strategic player, the parameter ph = 0.88 according
to the condition in Prop. 11.

of robustness, that the presence of even a single player can
alter the behavior of an entire population. We then presented
qualitative results and concrete examples of standard game
setups and network structures to show the impact of a single
heterogeneous agent. The results presented were not restricted
to coordination game setup like most of the previous related
works.

This paper identifies an interesting set of problems in the
important domain of stochastic learning dynamics in games.
The paper also presents a basic framework that should serve as
a starting point for future research. Some interesting research
directions are as follows:

1) Develop graph theoretic notions to categorize networks
that are robust or not robust to heterogeneous players
for various game setups.

2) Explore the role of different update rules in stochastic
learning dynamics in the context of our notion of ro-
bustness.

3) Analyze the impact of multiple heterogeneous players
with different behaviors on the population behavior.
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