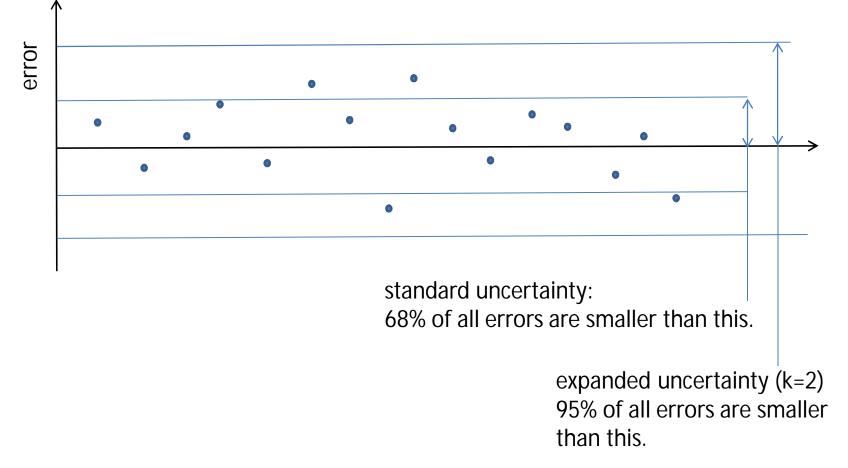


Calibration methods for Ultrasonic Clamp-on flowmeter

IEC seminar Mumbai, Nov 2018

How can we know measurement accuracy in the field?

→ Calibration and Uncertainty analysis



Content

- Terms and Methods
 - Accuracy, error, uncertainty
- Uncertainty analysis
- Calibration concept
- Specification of Measurement uncertainty

Option one: The experimental approach

Imagine to test the meter under similar conditions on various similar pipes:

The term accuracy

Can we call uncertainty accuracy?

International vocabulary of metrology – Basic and general concepts and associated terms (VIM):

2.13 (3.5) measurement accuracy accuracy of measurement accuracy closeness of agreement between a measured quantity value and a true quantity value of a measurand

NOTE 1 The concept 'measurement accuracy' is not a **quantity** and is not given a **numerical quantity value**. A **measurement** is said to be more accurate when it offers a smaller **measurement error**.

Is the experimental approach practical?

Can we assess uncertainty for our whole application range experimentally?

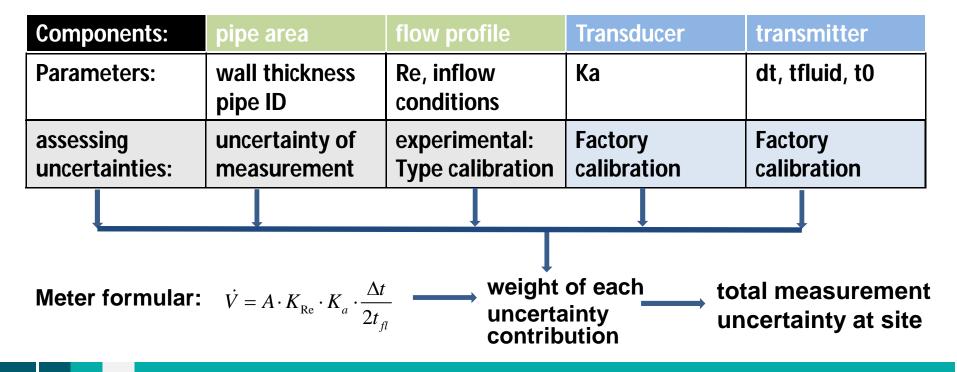
Test program for our total application range would include:

(at minimum)

- about 10 pipe sizes
- each with 4 transducer types (2 frequencies, Lamb and shear)
- repeats at 10 Labs
- all of this with liquid and gas
- \rightarrow 10x4x10x2= 800 Tests, without even taken inflow conditions into account!

 \rightarrow Impossible


Pro:


very reliable result

Con:

- Expensive: Practical only for a single application in rare cases
- Reason for the errors is not visible

Alternative: Uncertainty analysis

Uncertainty analysis:

Pro:

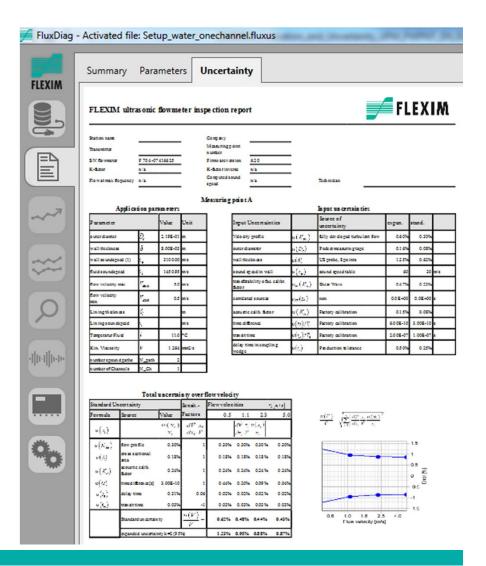
- covers the whole application range
- inexpensive
- shows contribution of each parameter

→we learn why a certain application is more or less accurate

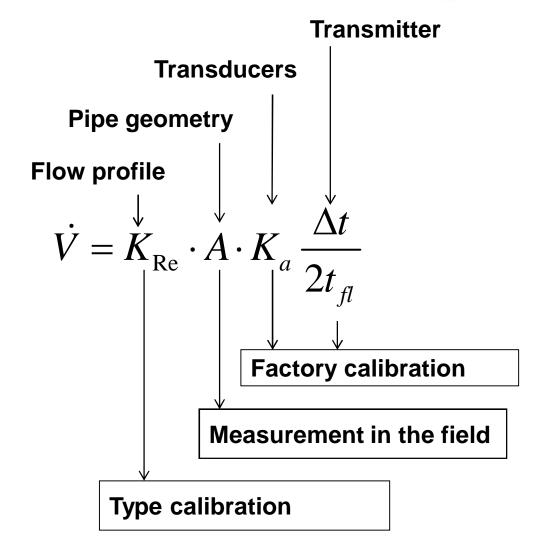
Con:

 precision is limited to the limits of the meter model

Recomendations for uncertainty analysis are provided by


ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement ("GUM")

This is applied to ultrasonic flow meters in


ISO 12242:2012, Measurement of fluid flow in closed conduits

— Ultrasonic transit-time meters for liquid

The Calculation is implemented in Fluxdiag

Calibration concept

Each component of the measurement is calibrated individually:

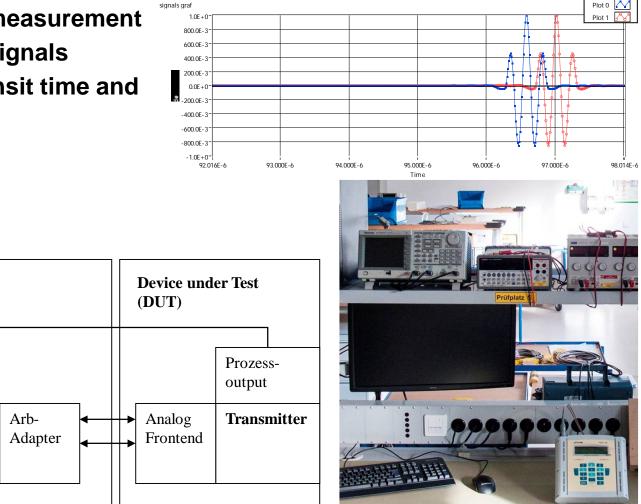
IEC seminar Mumbai, Nov 2018

Calibration concept - Transmitter

Calibration of time measurement by using synthetic signals with pre-defined transit time and time difference

Synthetic signal reference

Ch1


Ch2

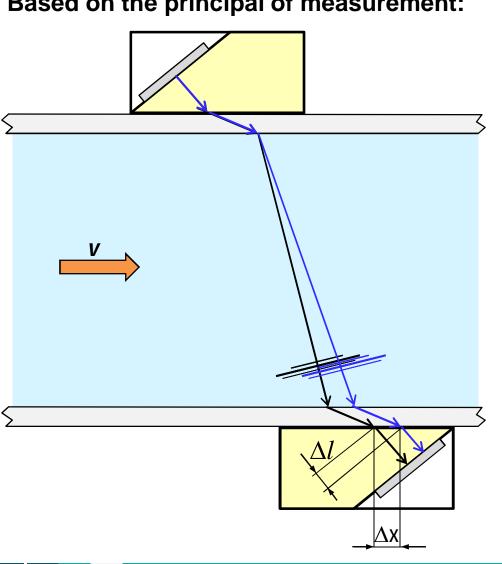
Trigger

PC

Arb

Signal pair

Calibration concept - Transducer



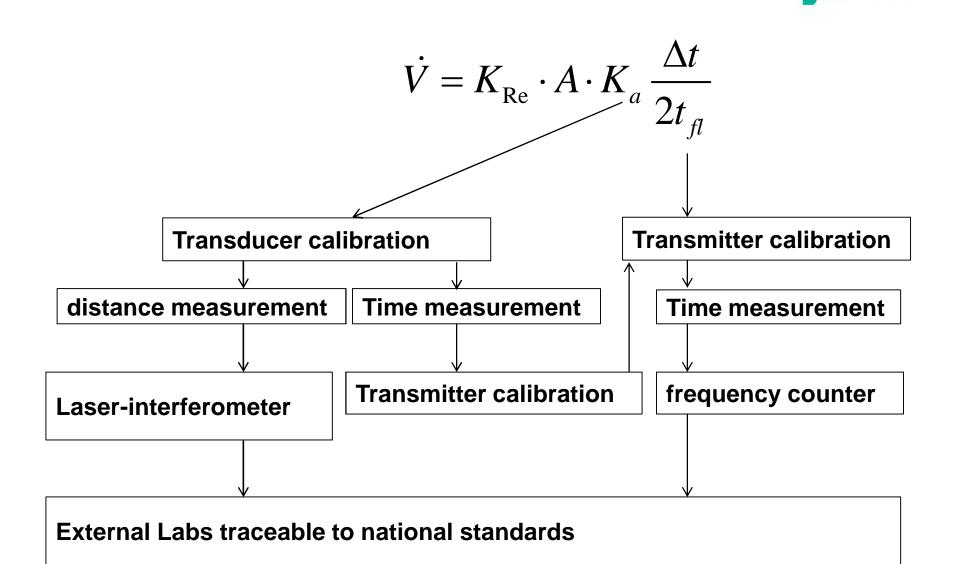
Aperture Calibration

 direct measurement of transducer constant by measuring distance and time

- Uncertainty of distance measurement: 1 μm
- Uncertainty of time difference: 1/5000 of signal period
- Total uncertainty of Reference: 0.16 %,

Calibration concept - Transducer

Based on the principal of measurement:


Acoustical calibration factor is

$$K_a = \frac{\Delta x}{\Delta t}$$

Calibration method:

Relocation of transducers is equivalent to relocation of the beam caused by the flow

Factory calibration: Traceability chain

Calibration of Transducer and Transmitter is independent off pipe and fluid.

→ Calibration transferable to all pipe sizes and fluids within application range

Calibration concept: Repeatability of Calibration

Transducer and Transmitter are calibrated independent off each other and independent off pipe and fluid.

 \rightarrow Calibration of the installation is not effected by

- replacing or recalibrating transducers after installation
- replacing or recalibrating transmitters after installation

Specification of measurement uncertainty

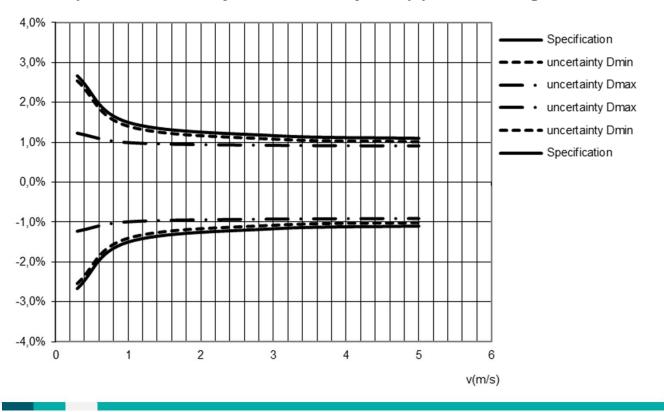
How to derive the specification from uncertainty calculation? How to provide a specification the customer understands?

Most of the contributions are independent of flow velocity.

The contribution of time difference depends on flow velocity.

Uncertainty contributions and total uncertainty:

X% +Ycm/s


Total uno	certainties for V= 3			Total uncertainty over flow velocity					
Standard Uncertainty			Sensitivi	Contri-	$\overline{v}_a[m/s]$	0,3	1	3	5
Formula	Source Value			bution		Contribution			
$u(x_i)$		$\frac{u(x_i)}{x_i}$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}\frac{u(x_i)}{x_i}$	$u(x_i)$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}\frac{u(x_i)}{x_i}$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}\frac{u(x_i)}{x_i}$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}\frac{u(x_i)}{x_i}$	$\frac{d\dot{V}}{dx_i}\frac{x_i}{\dot{V}}\frac{u(x_i)}{x_i}$
$u(K_{\rm Re})$	flowprofile	0,30%	1	0,30%					
u(A)	cross sectional area	0,23%	1	0,23%					
$u(K_a)$	acoustic calib.factor	0,26%	1	0,26%					
$u(\Delta t)$	time difference	0,08%	1	0,08%					
$u(t_0)$	delay time $\frac{t_0}{t_{tr} - t_0} =$	0,39%	0,06	0,02%					
$u(t_{tr})$	transit time	0,03%	-1	0,03%					
	Standard uncertainty		$\frac{u(\dot{V})}{\dot{V}} =$	0,47%	$\frac{u(\dot{V})}{\dot{V}} =$	0,91%	0,52%	0,47%	0,46%
	expanded uncertainty k=2 (95%)			0,94%	k=2 (95%)	1,83%	1,04%	0,94%	0,93%

Specification of Measurement uncertainty

Total measurement uncertainty varies with site parameters.

How to specify measurement uncertainty independent of site parameters?

Total measurement uncertainty needs to be smaller than specified uncertainty within full specified application range.

specified uncertainty and uncertainty over pipe diaeter range

Advantages of Flexims calibration concept:

- Traceable Calibration of Transmitter and Transducers
- Transmitter and Transducers are calibrated separately.
 - Transducer and/or transmitter can be replaced without losing the calibration of the system → repeatable calibration
 - Calibration is transferable to all pipe sizes and fluids within application range
- Re-calibration of Transmitter and Transducers without process interruption
- Measurement uncertainty in the field can be calculated based on calibration and site parameters.

Thank You!

IEC seminar Mumbai, Nov 2018