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Abstract

Two fundamental problems in computational game theory are
computing a Nash equilibrium and learning to exploit op-
ponents given observations of their play (opponent exploita-
tion). The latter is perhaps even more important than the for-
mer: Nash equilibrium does not have a compelling theoreti-
cal justification in game classes other than two-player zero-
sum, and for all games one can potentially do better by ex-
ploiting perceived weaknesses of the opponent than by fol-
lowing a static equilibrium strategy throughout the match.
The natural setting for opponent exploitation is the Bayesian
setting where we have a prior model that is integrated with
observations to create a posterior opponent model that we
respond to. The most natural, and a well-studied prior dis-
tribution is the Dirichlet distribution. An exact polynomial-
time algorithm is known for best-responding to the poste-
rior distribution for an opponent assuming a Dirichlet prior
with multinomial sampling in normal-form games; however,
for imperfect-information games the best known algorithm is
based on approximating an infinite integral without theoreti-
cal guarantees. We present the first exact algorithm for a nat-
ural class of imperfect-information games. We demonstrate
that our algorithm runs quickly in practice and outperforms
the best prior approaches. We also present an algorithm for
the uniform prior setting.

1 Introduction

Imagine you are playing a game repeatedly against one or
more opponents. What algorithm should you use to maxi-
mize your performance? The classic “solution concept” in
game theory is the Nash equilibrium. In a Nash equilibrium
o, each player is simultaneously maximizing his payoff as-
suming the opponents all follow their components of o. So
should we just find a Nash equilibrium strategy for ourselves
and play it in all the game iterations?

Unfortunately, there are some complications. First, there
can exist many Nash equilibria, and if the opponents are
not following the same one that we have found (or are not
following one at all), then our strategy would have no per-
formance guarantees. Second, finding a Nash equilibrium is
challenging computationally: it is PPAD-hard and is widely
conjectured that no polynomial-time algorithms exist (Chen
and Deng 2006). These challenges apply to both extensive-
form games (of both perfect and imperfect information) and
strategic-form games, for games with more than two play-
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ers and non-zero-sum games. While a particular Nash equi-
librium may happen to perform well in practice, there is
no theoretically compelling justification for why comput-
ing one and playing it repeatedly is a good approach. Two-
player zero-sum games do not face these challenges: there
exist polynomial-time algorithms for computing an equilib-
rium (Koller, Megiddo, and von Stengel 1994), and there
exists a game value that is guaranteed in expectation in
the worst case by all equilibrium strategies regardless of
the strategy played by the opponent (and this value is the
best worst-case guaranteed payoff for any of our strategies).
However, even for this game class it would be desirable to
deviate from equilibrium in order to learn and exploit per-
ceived weaknesses of the opponent; for instance, if the oppo-
nent has played Rock in each of the first thousand iterations
of rock-paper-scissors, it seems desirable to put additional
weight on paper beyond the equilibrium value of %

Thus, learning to exploit opponents’ weaknesses is desir-
able in all game classes. One approach would be to construct
an opponent model consisting of a single mixed strategy that
we believe the opponent is playing given our observations of
his play and a prior distribution (perhaps computed from a
database of historical play). This approach has been success-
fully applied to exploit weak agents in limit Texas hold ’em
poker, a large imperfect-information game (Ganzfried and
Sandholm 2011). A drawback is that it is potentially not ro-
bust. It is very unlikely that the opponent’s strategy matches
this point estimate exactly, and we could perform poorly if
our model is incorrect. A more robust approach, which is the
natural one to use in this setting, is to use a Bayesian model,
where the prior and posterior are full distributions over
mixed strategies of the opponent, not single mixed strate-
gies. A natural prior distribution, which has been studied and
applied in this context, is the Dirichlet distribution. The pdf
of the Dirichlet distribution is the belief that the probabili-
ties of K rival events are x; given that each event has been
observed a; — 1 times: f(z,a) = ﬁ [T=51.! Some
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notable properties are that the mean is E[X;] = 4 and
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that, assuming multinomial sampling, the posterior after in-
cluding new observations is also Dirichlet, with parameters

'B(a) is the beta function B(a) = % where I'(n) =

(n — 1)!is the gamma function.



updated based on the new observations.

Prior work has presented an efficient algorithm for op-
timally exploiting an opponent in normal-form games in
the Bayesian setting with a Dirichlet prior (Fudenberg
and Levine 1998), which is essentially the fictitious play
rule (Brown 1951). Given prior counts «; for each opponent
action, the algorithm increments the counter for an action
by one each time it is observed, and then best responds to a
model for the opponent where he plays each strategy in pro-
portion to the counters. This algorithm would also extend
directly to sequential games of perfect information, where
we maintain independent counters at each opponent decision
node; this would also work for games of imperfect informa-
tion where the opponent’s private information is observed
after each round (so that we would know exactly what infor-
mation set he took the observed action from). For all of these
game classes the algorithm would apply to both zero and
general-sum games, for any number of players. However, it
would not apply to imperfect-information games where op-
ponents’ private information is not observed after play.

An algorithm exists for approximating a Bayesian best re-
sponse in imperfect-information games, which uses impor-
tance sampling to approximate an infinite integral. This al-
gorithm has been successfully applied to limit Texas hold
em poker (Southey et al. 2005). However, it is only a heuris-
tic approach with no guarantees. The authors state,

“Computing the integral over opponent strategies de-
pends on the form of the prior but is difficult in any
event. For Dirichlet priors, it is possible to compute the
posterior exactly but the calculation is expensive ex-
cept for small games with relatively few observations.
This makes the exact BBR an ideal goal rather than a
practical approach. For real play, we must consider ap-
proximations to BBR.”

However, we see no justification for the claim that it is possi-
ble to compute the posterior exactly in prior work, and there
could easily be no closed-form solution. In this paper we
present a solution for this problem, leading to the first ex-
act optimal algorithm for performing Bayesian opponent ex-
ploitation in imperfect-information games. While the claim
is correct that the computation is expensive for large games,
we show that in a small (yet realistic) game it outperforms
all prior approaches. Furthermore, we show that the compu-
tation can run extremely quickly even for large number of
observations (though it can run into numerical instability),
contradicting the second claim. We also present general the-
ory, and an algorithm for another natural prior distribution
(uniform distribution over a polyhedron).

2 Meta-algorithm

The problem of developing efficient algorithms for opti-
mizing against a posterior distribution, which is a proba-
bility distribution over mixed strategies for the opponent
(which are themselves distributions over pure strategies)
seems daunting. We need to be able to compactly represent
the posterior distribution and efficiently compute a best re-
sponse to it. Fortunately, we show that our payoff of playing
any strategy o; against a probability distribution over mixed

strategies for the opponent equals our payoff of playing o;
against the mean of the distribution. Thus, we need only rep-
resent and respond to the single strategy that is the mean of
the distribution, and not to the full distribution. While this re-
sult was likely known previously, we have not seen it stated
explicitly, and it is important enough to be highlighted so
that it is on the radar of the Al community.

Suppose the opponent is playing mixed strategy o_;
where o_;(s_;) is the probability that he plays pure
strategy s_; € S_j;. By definition of expected util-
ity, U,’(O’j/, 0'_7;) = ZS,JES,J- U_i(s_j)ui(oi, S_j). We
can generalize this naturally to the case where the op-
ponent is playing according to a probability distribu-
tion with pdf f_, over mixed strategies: w;(o;, f—;) =
fa,iezﬂl [f-i(o—;) - ui(o;,0-;)] . Let f_; denote the mean

of f_;. That is, f_; is the mixed strategy that selects s_;
with probability [ . [o_i(s_;)- f_i(c_;)]. Then we
have the following:
Theorem 1. L

ui(Uz‘,fﬂ‘) = ui((fm ffi)~
That is, the payoff against the mean of a strategy distribution equals
the payoff against the full distribution.

Proof.
wi(oq, f—i)
= Lj;gij |:“‘i((7i’s_j)-/f‘f7i627i [U_j(s_j).f_i(o_i)]:|
) S—J';g—j [/“—16)3—71 [wilos, s—5) - o—ils—5) - ffi(o'fi)]:|
7—i€%—i |jes_;
= / [ui(o'“o',i) . f*i(o'fi)]
o_,€_;
= ui(”’ﬁf—i)

O

Theorem 1 applies to both normal and extensive-form
games (with perfect or imperfect information), for any num-
ber of players (o_; could be a joint strategy profile for all
opposing agents).

Now suppose the opponent is playing according a prior
distribution p(o_;), and let p(c_;|x) denote the posterior
probability given observations x. Let p(o_;|z) denote the
mean of p(o_;|x). As an immediate consequence of Theo-
rem 1, we have the following corollary.

Corollary 1. u;(c;, p(o—;i|z)) = ui(os, p(o—i|x)).

Corollary 1 implies the meta-procedure for optimizing
performance against an opponent using p:

There are several challenges for applying Algorithm 1.
First, it assumes that we can compactly represent the prior
and posterior distributions p;, which have infinite domain
(the set of opponents’ mixed strategy profiles). Second, it re-
quires a procedure to efficiently compute the posterior distri-
butions given the prior and the observations, which requires



Algorithm 1 Meta-algorithm for Bayesian opponent exploitation
Inputs: Prior distribution pg, response functions r; for 0 <
t<T
Mo < po(o—;)
Ry + To(Mo)
Play according to Ry
fort =1to T do
x; < observations of opponent’s play at time step ¢
p; < posterior distribution of opponent’s strategy
given prior p;_1 and observations x;
M; < mean of p;
Ry + Tt(Mt)
Play according to R;

updating potentially infinitely many strategies. Third, it re-
quires an efficient procedure to compute the mean of p;. And
fourth, it requires that the full posterior distribution from one
round be compactly represented to be used as the prior in the
next round. We can address the fourth challenge by using a
modified update step:

p: < posterior distribution of opponent’s strategy given
prior pg and observations 1, ..., xy.

We will be using this new rule in our main algorithm.

The response functions r; (which return a strategy for our-
selves that performs well against input opponents’ strate-
gies) could be standard best response, for which linear-time
algorithms exist in games of imperfect information (and a
recent approach has enabled efficient computation in ex-
tremely large games (Johanson et al. 2011)). They could also
be a more robust response, e.g., one that places a limit on the
exploitability of our own strategy, perhaps one that varies
over time based on performance (or a lower-variance estima-
tor) (Johanson, Zinkevich, and Bowling 2007; Johanson and
Bowling 2009; Ganzfried and Sandholm 2015). In particu-
lar, the restricted Nash response has been demonstrated to
outperform best response against agents in limit Texas hold
’em whose actual strategy may differ substantially from the
exact model (Johanson, Zinkevich, and Bowling 2007).

3 Robustness of the approach

It has been pointed out that, empirically, the approach de-
scribed is not robust: if we play a full best response to a point
estimate of the opponent’s strategy we can have very high
exploitability ourselves, and could perform very poorly if in
fact we are wrong about our model (Johanson, Zinkevich,
and Bowling 2007). This could happen for several reasons.
Our modeling algorithm could be incorrect: it could make an
incorrect assumption about the prior and form of the oppo-
nent’s distribution. This could happen because the opponent
changes his strategy over time (possibly either by improving
his own play or by adapting to our play), in which case a
model that assumes a static opponent could be predicting a
strategy that the opponent is no longer using. The opponent
could also have modified his play strategically in an attempt
to deceive us (e.g., the opponent initially starts off playing

extremely conservatively, then switches to a more aggressive
style as he suspects we try to exploit his conservatism).

A second reason that we could be wrong in our opponent
model other than our modeling algorithm incorrectly mod-
eling the opponents’ dynamic approach is that our observa-
tions of his play are very noisy (due to both randomization
in the opponent’s strategy and to the private information se-
lected by chance), particularly over a small sample. Even if
our approach is correct and the opponent is in fact playing a
static strategy according to the distribution assumed by the
modeling algorithm, it is very unlikely that our actual per-
ception of his strategy is precisely correct. A third reason, of
course, is that the opponent may be following a static strat-
egy that does not exactly conform to our model for the prior
and/or sampling method used to generate the posterior.

Suppose we believe the opponent is playing x_,;, while
he is actually playing =’ ;. Let M be the maximum absolute
value of a utility to player ¢, and let N be the maximum num-
ber of actions available to a player. Let € > 0 be arbitrary.
Then, if [x_;(j) —2_;(j)| < d for all j, where § = 5, we
can show that |u;(c*,x_;) — u;(c*,2"_;)| < e. This same
analysis can be applied to show that our payoff is continuous
in the opponent’s strategy for many popular distance func-
tions (i.e., for any distance function where one strategy can
get arbitrarily close to another as the components get arbi-
trarily close). For instance this would apply to L1, L2, and
earth mover’s distance, which have been applied previously
to compute distances been strategies for opponent model-
ing (Ganzfried and Sandholm 2011). Thus, if we are slightly
off in our model of the opponent’s strategy, even if we are
doing a full best response we will do only slightly worse.

4 Exploitation algorithm for Dirichlet prior

As described in Section 1 the Dirichlet distribution is the
conjugate prior for the multinomial distribution, and there-
fore the posterior is also a Dirichlet distribution, with the pa-
rameters «; updated to reflect the new observations. Thus,
the mean of the posterior can be computed efficiently by
computing the strategy for the opponent in which he plays
each strategy in proportion to the updated weight, and Algo-
rithm 1 yields an exact efficient algorithm for computing the
Bayesian best response in normal-form games with a Dirich-
let prior. However, the algorithm does not apply to games
of imperfect information since we do not observe the pri-
vate information held by the opponent, and therefore do not
know which of his action counters we should increment. In
this section we will present a new algorithm for this setting.
We present it in the context of a representative motivating
game where the opponent is dealt a state of private informa-
tion and then takes publicly-observable action, and present
the algorithm for the general setting in Section 4.3.

We are interested in studying the following two-player
game setting. Player 1 is given private information state x;
(according to a probability distribution). Then he takes a
publicly observable action a;. Player 2 then takes an action
after observing player 1’s action (but not his private informa-
tion), and both players receive a payoff. We are interested
in player’s 2’s problem of inferring the (assumed station-
ary) strategy of player 1 after repeated observations of the



public action taken (but not the private information). Note
that this setting is very general. For example, in poker z;
could denote the opponent’s private card(s) and a; denote
the amount he bets, and in an ad auction x; could denote his
valuation (e.g., high or low), and a; could denote the amount
he bids (Tang, Wang, and Zhang 2016).

4.1 Motivating game and algorithm

For concreteness and motivation, consider the following
poker game instantiation of this setting, where we play the
role of player 2. Let’s assume that in this two-player game,
player 1 is dealt a King (K) and Jack (J) with probability %,
while player 2 is always dealt a Queen. Player 1 is allowed
to make a big bet of $10 (b) or a small bet of $1 (s), and
player 2 is allowed to call or fold. If player 2 folds, then
player 1 wins the $2 pot (for a profit of $1); if player 1 bets
and player 2 calls then the player with the higher card wins
the $2 pot plus the size of the bet.

1 -1

Figure 1: Chance deals player 1 king or jack with probability
% at the green node. Then player 1 selects big or small bet at
ared node. Then player 2 chooses call or fold at a blue node.

If we observe player 1’s card after each hand, then we
can apply the approach described above, where we maintain
a counter for player 1 choosing each action with each card
that is incremented for the selected action. However, if we do
not observe player 1’s card after the hand (e.g., if we fold),
then we would not know whether to increment the counter
for the king or the jack. To simplify analysis, we will as-
sume that we never observe the opponent’s private card after
the hand (which is not realistic since we would observe his
card if he bets and we call); we can assume that we do not
observe our payoff either until all game iterations are com-
plete, since that could allow us to draw inferences about the
opponent’s card. There are no known algorithms even for
the simplified case of fully unobservable opponent’s private
information. We suspect that an algorithm for the case when
the opponent’s private information is sometimes observed
can be constructed based on our algorithm, and we plan to
study this problem in future work.

From analysis in the accompanying tech report (Ganzfried
and Sun 2016), we are able to compute a closed-form ex-
pression for the expectation of the posterior probability that
the opponent takes action b with a Jack given that we have
just observed him take action b (the other quantities can be
computed analogously), which is denoted by P(|0, J).

B(agpy +1,axs)B(agy +1,a5s) + Blaky, axs)B(agy + 2, a5s)
4

€Y}
where the denominator Z is equal to

B(aky +1,axs)B(agp +1,a5s) + B(aks, axs)Blag, +2,a5)

+B(aky+1,axs)B(asy, ays+1)+B(aky, axs)Blap+1,a5s+1).

Note that the algorithm we have presented applies for the
case where we play one more game iteration and collect
one additional observation. However, it is problematic for
the general case we are interested in where we play many
game iterations, since the posterior distribution is not Dirich-
let, and therefore we cannot just apply the same procedure
in the next iteration using the computed posterior as the new
prior. We will need to derive a new expression for P(b|O, .J)
for this setting. Suppose that we have observed the opponent
play action b for 6, times and s 65 times (in addition to the
number of fictitious observations reflected in the prior «),
though we do not observe his card. Then P(b|O, J) equals

Zfio ?io B(agy +i,axs +j)Blaj, +0p —i+ 1, a5 + 05 — j)
zZ

()
The normalization term is

Z =" "[Blaxe+i,axs+§)Bloss+0—i+1, oss+0s—5)
i g

+B(aks + i, arxs + §)Bloy + 0 — i, 0056 + 65 — 5+ 1)].

Details of the derivation are in the tech report.

Thus the algorithm for responding to the opponent is the
following. We start with the prior counters on each private
information-action combination, a gy, x5, etc. We keep
separate counters 0,605 for the number of times we have
observed each action during play. Then we combine these
counters according to Equation 2 in order to compute the
strategy for the opponent that is the mean of the posterior
given the prior and observations, and we best respond to this
strategy, which gives us the same payoff as best respond-
ing to the full posterior distribution according to Theorem 1.
There are only O(n?) terms in the expression in Equation 2,
so this algorithm is efficient.

4.2 Example

Suppose the prior is that the opponent played b with K 10
times, played s with K 3 times, played b with J 4 times, and
played s with J 9 times. Thus axp = 10, axs = 3, a5, =
4,55 = 9. Now suppose we observe him play b at the next
iteration. Applying our algorithm using Equation 1 gives

B(11,3)B(5,9) + B(10,3)(6,9) _ 2.65209525¢"

p(b|O, J) =

z z
B(11,3)B(4, 10) + B(10,3)(5,10)  5.5888056e "
p(s|0,J) = ~ = ~
2.65209525¢ 7
— p(blO, J) = ° = 0.3218210361.

2.65209525e¢~7 + 5.5888056e 7



So we think that with a jack he is playing a strategy that
bets big with probability 0.322 and small with probability
0.678. Notice that previously we thought his probability of
betting big with a jack was % = 0.308, and had we been in
the setting where we always observe his card after gameplay
and observed that he had a jack, the posterior probability
would be 2 = 0.357.

An alternative “naive” (and incorrect) approach would be
to increment o jj, by %, the ratio of the prior probabil-
ity that he bets big given J to the total prior probability that
he bets big. This gives a posterior probability of him betting

big with J of 4';41% = 0.308, which differs significantly from
the correct value. It turns out that this approach is actually

equivalent to just using the prior:

Thoy zty  alety)te @
r+y+1l z4+y (r+y+l(z+y) z+y

4.3 Algorithm for general setting

We now consider the general setting where the opponent can
have n different states of private information according to an
arbitrary distribution 7 and can take m different actions. As-
sume he is given private information z; with probability m;,
fori = 1,...,n, and can take action k;, fort = 1,...,m.
Assume the prior is Dirichlet with parameters a;; for the
number of times action 7 was played with private informa-
tion ¢ (so the mean of the prior has the player selecting action
k; at state x; with probability ﬁ) Assume that action

k;- was observed in a new time step, while the opponent’s
private information was not observed. We now compute the
expectation for the posterior probability that the opponent
plays k;- with private information ;.

n m n aip—1
f [qk;\z; Zizl [Wiqkj*‘fi Hh:l Hj:l qk,’i’ﬁzj H
p(O) [Ti=, Bleva, - .., cim)

Zi [7'(1‘ Hj B(’Ylj,-../}’nj)]
A )

where v;; = ay; +2ifi =7 and j = j*, ;5 = a5 + 1
if j = 7" and ¢ # ¢*, and v;; = «;; otherwise. If we denote
the numerator by 7; ;- then Z = >_,. 7;+;+. Notice that the
product is over n terms, and therefore the total number of
terms will be exponential in n (it is O(m - 2™)).

For the case of multiple observed actions, the posterior is
not Dirichlet and cannot be used directly as the prior for the
next iteration. Suppose we have observed action k; ¢; times
(in addition to the number of fictitious times indicated by the
prior counts «;;). We compute P(¢|O) analogously as

ajp—1+p;
Z?:l i Z{pab} HZL:l H;;l qk;j\hzj "
p(0) H?:l B(ait, .-, im) ’

where the > {(pas} is over all values 0 < pgp < 6, with

P(q|0) =

Y Pab =0 foreachb, forl <a <n,1 <b<m:

0 Ov—p1o  Oo—1Ziprb  Ob—3 1Ty pro

2= > X 2

{pav}  P1=0 p2,=0 Pn—16=0 =0, —S""2p,

The expression for the full posterior distribution is

520 [ S sy T Bl@wn + prns s+ pan)]

Z

() \™
n!T!

ponential in the number of private information states and ac-

tions, but polynomial in the number of iterations.

The following theorem shows an approach for computing
products of the beta function that leads to an exponential im-
provement in the running time of the algorithm for one ob-
servation, and reduces the dependence on m for the multiple
observation setting from exponential to linear, though the
complexity still remains exponential in n and 7" for the lat-
ter. See tech report for full details (Ganzfried and Sun 2016).

Theorem 2. Define v; = >_""_, ~vi; and the empirical probability
distribution P;(i) = <24— = %

= —. Define the Gamma function
D(z) = [ 2* e ™ du, for integer z, T'(z) = (x — 1)\. Now

P(ql0) =

The total number of terms is O ) , Which is ex-

i1
0

define the entropy of P; as E(P;) = — > P;(i)In P;(i). Then
we have [0, B(71j, ..., Vnj) equals

exp (Z (—wE(F’j) - %(n = Dn(yy) + > (P (0) + d)) :
i=1

j=1 i=

Here d is a constant such that $In(2m)n —1 < d < n —
1 In(27), where In(27) ~ 0.92.

5 Algorithm for uniform prior distribution

Another prior that has been studied previously is the uniform
distribution over a polyhedron. This can model the situa-
tion when we think the opponent is playing uniformly within
some region of a fixed strategy, such as a specific Nash equi-
librium or a “population mean” strategy based on historical
data. Prior work has used this model to generate a class of
opponents who are more sophisticated than opponents who
play uniformly at random over the entire space (Ganzfried
and Sandholm 2015)). For example, in rock-paper-scissors,
we may think the opponent is playing a strategy uniformly
out of strategies that play each action with probability within
[0.31,0.35], as opposed to completely random over [0,1].

Let v; ; denote the jth vertex for player 4, where vertices
correspond to mixed strategies. Let p® denote the prior distri-
bution over vertices, where p? ; 1s the probability that player
i plays the strategy corresponding to vertex v; ;. Let V; de-
note the number of vertices for player i. Algorithm 2 com-
putes the Bayesian best response in this setting. Correctness
follows straightforwardly by applying Corollary 1 with the
formula for the mean of the uniform distribution.

6 Experiments

We ran experiments on the game described in Section 4.1.
For the beta function computations we used the Colt Java



Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron

Inputs: Prior distribution over vertices p°, response functions 7
for0<t<T
My < strategy profile assuming opponent ¢ plays each vertex
vi,j with probability p? ; = 3+
Ro + To(Mo)
Play according to Ry
fort =1toT do
fori =1to N do
a; <— action taken by player ¢ at time step ¢
for j =1toV; do
Pl < it vig(a)
Normalize the p ;’s so they sum to 1

M, < strategy profile assuming opponent ¢ plays each ver-
tex v;,; with probability p} ;

Ry + T't(Mt)

Play according to R;

math library. For our first set of experiments we tested our
basic algorithm which assumes that we observe a single op-
ponent action (Equation 1). We varied the Dirichlet prior pa-
rameters to be uniform in {1,n} to explore the runtime as a
function of the size of the prior (since computing larger val-
ues of the Beta function can be challenging). The results (Ta-
ble 1) show that the computation is very fast even for large n,
with running time under 8 microseconds for n = 500. How-
ever, we also observe frequent numerical instability for large
n. The second row shows the percentage of the trials for
which the algorithm produced a result of “NaN” (which typ-
ically results from dividing zero by zero). This jumps from
0% for n = 50 to 8.8% for n = 100 to 86.9% for n = 200.
This is due to instability of algorithms for computing the
beta function. We used the best publicly available beta func-
tion solver, but perhaps there could be a different solver that
leads to better performance in our setting (e.g., it trades off
runtime for additional precision). Despite the cases of insta-
bility, the results indicate that the algorithm runs extremely
fast for hundreds of prior observations, and since it is exact,
it is the best algorithm for the settings in which it produces
a valid output. Note that n = 100 corresponds to 400 prior
observations on average since there are four parameters, and
that the experiments in previous work used a horizon of 200
hands per match against an opponent (Southey et al. 2005).

n 10 20 50 100 200 500
Time | 0.0005 | 0.0008 | 0.0018 | 0.0025 | 0.0034 | 0.0076
NaN 0 0 0 0.0883 | 0.8694 | 0.9966

Table 1: Results of modifying Dirichlet parameters to be U{1,n}
over one million samples. First row is average runtime in millisec-
onds. Second row is percentage of the trials that output “NaN.”

We tested our generalized algorithm for different num-
bers of observations, using a fixed Dirichlet prior with all
parameters equal to as has been done in prior work (Southey
et al. 2005). We observe (Table 2) that the algorithm runs
quickly for large numbers of observations, though again it

runs into numerical instability for large values. As one ex-
ample, it takes 19 milliseconds for 8, = 101, 85 = 100.

n 10 20 50 100 200 500 1000
Time | 0.015 | 0.03 | 0.36 | 2.101 | 10.306 | 128.165 | 728.383
NaN 0 0 0 0 0.290 0.880 0.971

Table 2: Results using Dirichlet prior with all parameters equal to
2 and 6y, 0, in U{1,n} averaged over 1,000 samples. First row is
average runtime (ms), second row is % of trials producing “NaN.”

We compared our algorithm against the three heuristics
described in previous work (Southey et al. 2005). The first
heuristic Bayesian Best Response (BBR) approximates the
opponent’s strategy by sampling strategies according to the
prior and computing the mean of the posterior over these
samples, then best-responding to this mean strategy; Max
A Posteriori Response heuristic (MAP) samples strategies
from the prior, computes the posterior value for these strate-
gies, and plays a best response to the one with highest pos-
terior value; Thompson’s Response samples strategies from
the prior, computes the posterior values, then samples one
strategy for the opponent from these posteriors and plays
a best response to it. For all approaches we used a Dirich-
let prior with the standard values of 2 for all parameters.
For all the sampling approaches we sampled 1,000 strate-
gies from the prior for each opponent and used these strate-
gies for all hands against that opponent (as was done in
prior work (Southey et al. 2005)). Note that one can draw
samples x; from a Dirichlet distribution by first drawing in-
dependent samples y; from Gamma distributions each with

a;—1 -y, .
density Gamma(a;, 1) = #-~— and then setting z; =

Eyiyv .We also tested a best response strategy that knows the
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actual mixed strategy of the opponent, not just a distribution
over his strategies, as well as the Nash equilibrium strategy.”
Note that the game has a value to us of -0.75, so negative
values are not necessarily indicative of “losing.”

Table 3 shows that our exact Bayesian best response al-
gorithm (EBBR) outperforms the heuristic approaches, as
expected since it is optimal when the opponent’s strategy
is drawn from the prior. BBR performed best out of the
sampling approaches, which is not surprising because it is
trying to approximate the optimal approach while the oth-
ers are optimizing a different objective. All of the sampling
approaches outperformed just following the Nash equilib-
rium, and as expected all exploitation approaches performed
worse than playing a best response to the opponent’s ac-
tual strategy. Note that, against an opponent drawn from a
Dirichlet distribution with all parameters equal to 2 and no
further observations of his play, our best response would be
to always call, which gives us expected payoff of zero. Thus
for the initial column the actual value for EBBR when aver-
aged over all opponents would be zero. Against this distri-
bution the Nash equilibrium has expected payoff —0.375.

Note that the Nash equilibrium for player 2 is to call a big bet
with probability i and a small bet with probability 1 (the equilib-
rium for player 1 is to always bet big with K and to bet big with
probability 2 with J).



Algorithm Initial 10 25
EBBR 0.0003 £ 0.0009 | -0.0024 | 0.0012
BBR 0.0002 £ 0.0009 | -0.0522 | -0.138
MAP —0.2701 £ 0.0008 | -0.2848 | -0.2984
Thompson | —0.2593 £ 0.0007 | -0.2760 | -0.3020
FullBR 0.4976 £+ 0.0006 0.4956 | 0.4963
Nash —0.3750 £ 0.0001 | -0.3751 | -0.3745

Table 3: Comparison with algorithms from prior work, full best
response, and Nash equilibrium using Dirichlet prior with param-
eters equal to 2. For initial column we sampled ten million oppo-
nents from the prior, for 10 rounds we sampled one million, and for
25 rounds 100,000. Results are average winrate per hand over all
opponents. Initial column reports 95% confidence interval.

It is interesting that the exploitation approaches (particu-
larly EBBR and BBR) are able to exploit opponents and per-
form significantly better than the Nash equilibrium strategy
just from knowing the prior distribution for the opponents
(and without any observations). Previous experiments had
also shown that when the sampling approaches are played
against opponents drawn from the prior distribution, the
winning rates converge, typically very quickly (Southey et
al. 2005). For these experiments the performances of all
the approaches converged very quickly, and collecting ad-
ditional observations of the opponent’s public action did not
seem to lead to an additional improvement. This observation
agrees with the findings of the prior results in this setting.

We also tested the effect of using only 10 samples of
the opponent’s strategy for the sampling approaches. The
approaches would then have a noisier estimate of the op-
ponent’s strategy, and should achieve lower performance
against the actual strategy of the opponent.

Algorithm Initial 10 25 100
EBBR 0.000002 + 0.0009 | 0.0019 | 0.0080 | 0.0160
BBR —0.1409 4 0.0008 -0.1415 | -0.1396 | -0.2254
MAP —0.2705 4 0.0007 -0.2704 | -0.2660 | -0.3001
Thompson —0.2666 4 0.0007 -0.2660 | -0.2638 | -0.3182
FullBR 0.4979 4+ 0.0006 0.4980 | 0.5035 | 0.5143
Nash —0.3749 4+ 0.0001 -0.3751 | -0.3739 | -0.3754

Table 4: Comparison of our algorithm with algorithms from
prior work (BBR, MAP, Thompson), full best response,
and Nash equilibrium using Dirichlet prior with parameters
equal to 2. The sampling algorithms each use 10 samples
from the opponent’s strategy (as opposed to 1000 samples
from our earlier analysis). For the initial column we sam-
pled ten million opponents from the prior, for 10 rounds we
sampled one million, for 25 rounds 100,000, and for 100
rounds 1,000. Results are average winrate per hand over all
opponents. Initial column reports 95% confidence interval.

Thompson and MAP performed very similarly using 10
vs. 1000 samples (these approaches essentially end up se-
lecting a single strategy from the set of samples to be used as
the model, and the results indicate that they are relatively in-
sensitive to the number of samples used), but BBR performs
significantly worse, achieving payoff around -0.14 with 10
samples vs. payoff close to 0 with 1000 samples. EBBR out-

performs BBR much more significantly in this case where
BBR uses fewer samples to construct the opponent model.
It appears that the sampling approaches actually hurt perfor-
mance over time when fewer samples are used. BBR, MAP,
and Thompson perform clearly worse after 100 game itera-
tions than with fewer iterations, while EBBR performs better
as more iterations are used, indicating that it is actually able
to perform successful learning in this setting. For the others,
the noise from the samples outweighs the gains of learning
from additional observations.

7 Conclusion

One of the most fundamental problems in game theory is
learning to play optimally against opponents who may make
mistakes. We presented the first exact algorithm for per-
forming exploitation in imperfect-information games in the
Bayesian setting using the most well-studied prior distribu-
tion for this problem, the Dirichlet distribution. Previously
an exact algorithm had only been presented for normal-form
games, and the best previous algorithm was a heuristic with
no guarantees. We demonstrated experimentally that our al-
gorithm can be practical and that it outperforms the best
prior approaches, though it can run into numerical stability
issues for large numbers of observations.

We presented a general meta-algorithm and new theoret-
ical framework for studying opponent exploitation. Future
work can extend our analysis to many important settings.
For example, we would like to study the setting when the
opponent’s private information is only sometimes observed
(we expect our approach can be extended easily to this set-
ting) and general sequential games where the agents can take
multiple actions (which we expect to be hard, as indicated
by the analysis in the tech report). We would also like to
extend analysis for any number of agents. Our algorithm is
not specialized for two-player zero-sum games (it applies to
general-sum games); if we are able to compute the mean of
the posterior strategy against multiple opponent agents, then
best responding to this strategy profile is just a single agent
optimization and can be done in time linear in the size of
the game regardless of the number of opponents. While the
Dirichlet is the most natural prior for this problem, we would
also like to study other important distributions. We presented
an algorithm for the uniform prior distribution over a poly-
hedron, which could model the situation where we think the
opponent is playing a strategy from a uniform distribution in
aregion around a particular strategy, such as a specific equi-
librium or a “population mean” based on historical data.

Opponent exploitation is a fundamental problem, and our
algorithm and extensions could be applicable to many do-
mains that are modeled as an imperfect-information games.
For example, many security game models have imperfect in-
formation, e.g., (Letchford and Conitzer 2010; Kiekintveld,
Tambe, and Marecki 2010), and opponent exploitation in se-
curity games has been a very active area of study, e.g., (Pita
et al. 2010; Nguyen et al. 2013). It has also been proposed
recently that opponent exploitation can be important in med-
ical treatment (Sandholm 2015).
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