Message from
Mayor Lori E. Lightfoot

Dear Resident:

As this report outlines, Chicago’s tap water meets or exceeds the standards set by the U.S. Environmental Protection Agency for safe, clean drinking water.

Every year, we issue this report so that you know what is in Chicago’s drinking water. This report details information on what the Illinois Environmental Protection Agency has detected in our water through testing. A complete definition of terms is included in the report so that you understand what the findings mean.

Chicago continues to deliver almost one billion gallons daily of clean drinking water to residents of Chicago and the surrounding suburbs, and we recognize concerns exist.

Before it gets to your tap, the Chicago Department of Water Management (DWM) takes a proactive approach to mitigating contaminants – including lead – in our water system. DWM keeps our water clean by:

• Performing over 600,000 analyses per year of tap water at every step in the treatment process and adjusting treatment protocols as necessary;
• Using corrosion control in our water mains to minimize the risk of contaminants and replacing 100 miles of water mains in 2018 to increase reliability and efficiency;
• Providing residents and businesses with complete instructions for flushing water through their plumbing whenever there is any water infrastructure work being done in the vicinity; and
• Offering residential water testing by a certified laboratory free of charge.

Regardless, we know we cannot rest on our laurels. Chicago is fortunate to have an unparalleled water source in Lake Michigan. We will fight hard to defend it by holding polluters accountable and supporting efforts to protect it from invasive species. An efficient water system, the protection of Lake Michigan and safe, clean drinking water for every resident is critical to Chicago’s future.

As your Mayor, I am committed to strengthening Chicago’s water supply to ensure safety and quality for generations of Chicagoans to come.

Mayor Lori E. Lightfoot

[Signature]
CITY OF CHICAGO, DEPARTMENT OF WATER MANAGEMENT (DWM) SOURCE WATER ASSESSMENT SUMMARY FOR THE 2018 CONSUMER CONFIDENCE REPORT (CCR)

This year, as in years past, your tap water met all USEPA and state drinking water health standards. Our system vigilantly safeguards its source water supply. This report summarizes the quality of water that we provided last year, including details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with this information because informed customers are our best allies.

SOURCE WATER ASSESSMENT SUMMARY

The Illinois EPA implemented a Source Water Assessment Program (SWAP) to assist with watershed protection of public drinking water supplies. The SWAP inventories potential sources of contamination and determined the susceptibility of the source water to contamination. The Illinois EPA has completed the Source Water Assessment Program for our supply.

SOURCE WATER LOCATION

The City of Chicago utilizes Lake Michigan as its source water via two water treatment plants. The Jardine Water Purification Plant serves the northern areas of the City and suburbs, while the Sawyer Water Purification Plant serves the southern areas of the City and suburbs. Lake Michigan is the only Great Lake that is entirely contained within the United States. It borders Illinois, Indiana, Michigan, and Wisconsin, and is the second largest Great Lake by volume with 1,180 cubic miles of water and third largest by area.

SUSCEPTIBILITY TO CONTAMINATION

The Illinois EPA considers all surface water sources of community water supply to be susceptible to potential pollution problems. The very nature of surface water allows contaminants to migrate into the intake with no protection, only dilution. This is the reason for mandatory treatment of all surface water supplies in Illinois. Chicago's offshore intakes are located at a distance, that shoreline impacts are not usually considered a factor on water quality. At certain times of the year, however, the potential for contamination exists due to wet-weather flows and river reversals. In addition, the placement of the crib structures may serve to attract waterfowl, gulls and terns that frequent the Great Lakes area, thereby concentrating fecal deposits at the intake and thus compromising the source water quality. Conversely, the shore intakes are highly susceptible to storm water runoff, marinas and shoreline point sources due to the influx of groundwater to the lake.

Further information on our community water supply's Source Water Assessment Program is available by calling the City of Chicago, Department of Water Management at 312-742-2406 or by going online at http://dataservices.epa.illinois.gov/swap/factsheet.aspx
DETECTED CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant (unit of measure)</th>
<th>Typical Source of Contaminant</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Level Detected</th>
<th>Range of detections</th>
<th>Violation</th>
<th>Date of Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROBIAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COLIFORM BACTERIA (% positive) Naturally present in the environment</td>
<td>0</td>
<td>5%</td>
<td>0.4%</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>FECAL COLIFORM AND E. COLI (if positive) Human and animal fecal waste.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TURBIDITY (NTU; Lowest Monthly %<0.3 NTU) Soil runoff.</td>
<td>N/A</td>
<td>TT (Limit: 95%<0.3NTU)</td>
<td>100% (Lowest Monthly %)</td>
<td>100% - 100%</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TURBIDITY (NTU; Highest Single Measurement) Soil runoff.</td>
<td>N/A</td>
<td>TT (Limit: 1 NTU max)</td>
<td>0.19</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NORGANIC CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARIUM (ppm) Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
<td>2</td>
<td>2</td>
<td>0.0214</td>
<td>0.0203 - 0.0214</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>COPPER (ppm) **Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives.</td>
<td>1.3</td>
<td>AL = 1.3</td>
<td>0.091 (90th percentile)</td>
<td>0 sites exceeding AL</td>
<td>-</td>
<td>6/1/2018-6/30/2018</td>
<td></td>
</tr>
<tr>
<td>LEAD (ppb) **Corrosion of household plumbing systems; Erosion of natural deposits.</td>
<td>0</td>
<td>AL = 15</td>
<td>9.1 (90th percentile)</td>
<td>0 sites exceeding AL</td>
<td>-</td>
<td>6/1/2018-6/30/2018</td>
<td></td>
</tr>
<tr>
<td>NITRATE (AS NITROGEN) (ppm) Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
<td>10</td>
<td>10</td>
<td>0.42</td>
<td>0.31 - 0.42</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL NITRATE & NITRITE (AS NITROGEN) (ppm) Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
<td>10</td>
<td>10</td>
<td>0.42</td>
<td>0.31 - 0.42</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DISINFECTANT/DISINFECTION BY-PRODUCTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTHMs [TOTAL TRIS HALOGENOMETHANES] (ppb) * By product of drinking water disinfection.</td>
<td>N/A</td>
<td>80</td>
<td>26.2</td>
<td>11.4-36.7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HAAS [HALOACETIC ACIDS] (ppb) * By product of drinking water disinfection.</td>
<td>N/A</td>
<td>60</td>
<td>13.2</td>
<td>5.5-19.7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CHLORINE (as C12) (ppm) Water additive used to control microbes.</td>
<td>4.0</td>
<td>4.0</td>
<td>1</td>
<td>1 - 1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UNREGULATED CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SULFATE (ppm) Erosion of naturally occurring deposits.</td>
<td>N/A</td>
<td>N/A</td>
<td>27.6</td>
<td>26.3-27.6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SODIUM (ppm) Erosion of naturally occurring deposits; Used in water softener regeneration.</td>
<td>N/A</td>
<td>N/A</td>
<td>8.89</td>
<td>8.14-8.89</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>STATE REGULATED CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUORIDE (ppm) Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td>4</td>
<td>4</td>
<td>0.86</td>
<td>0.64-0.86</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RADIOACTIVE CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMBINED RADIUM (ZIRCONIUM) (Bq/L) ** Decay of natural and man-made deposits.</td>
<td>0</td>
<td>5</td>
<td>0.84</td>
<td>0.5-0.84</td>
<td>-</td>
<td>2/11/2014</td>
<td></td>
</tr>
<tr>
<td>CROSS ALPHA (excluding radon and uranium) (pCi/L) ** Erosion of natural deposits.</td>
<td>0</td>
<td>15</td>
<td>6.6</td>
<td>6.1-6.6</td>
<td>-</td>
<td>2/11/2014</td>
<td></td>
</tr>
</tbody>
</table>

*Note: TTHM, HAA5, and Chlorine are for the Chicago Distribution System.

Data expressed as LRAA - Locational Running Annual Average (See Definition of terms for Details)
The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old. Some contaminants are sampled less frequently than once a year; as a result, not all contaminants were sampled for during the CCR calendar year. If any of these contaminants were elected the last time they were sampled for, they are included in the table along with the date that the detection occurred. Compliance monitoring for lead and copper is conducted every 3 years. Radiochemical contaminant monitoring is conducted every 6 years.
EDUCATIONAL STATEMENTS REGARDING COMMONLY FOUND DRINKING WATER CONTAMINANTS

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can dissolve naturally occurring minerals and radioactive materials, and pick up substances resulting from the presence of animals or human activity.

Possible contaminants consist of:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife;
- Inorganic contaminants, such as salts and metals, which may be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff and septic systems; and
- Radioactive contaminants, which may be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

WATER QUALITY DATA TABLE FOOTNOTES

TURBIDITY: Turbidity is a measure of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

UNREGULATED CONTAMINANTS: A maximum contaminant level (MCL) for this contaminant has not been established by either state or federal regulations, nor has mandatory health effects language been set. The purpose of unregulated contaminant monitoring is to assist USEPA in determining the occurrence of unregulated contaminants in drinking water, and whether future regulation is warranted.

FLUORIDE: Fluoride is added to the water supply to help promote strong teeth. The IL Department of Public Health has recommended an optimal fluoride level of 0.7 mg/L, with a range of 0.6 mg/L to 0.8 mg/L.

SODIUM: There is not a state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials who are concerned about sodium intake due to dietary precau-

Unit of Measurement

ppm: Parts per million, or milligrams per liter (mg/L)

ppb: Parts per billion, or micrograms per liter (µg/L)

NTU: Nephelometric Turbidity Unit, used to measure cloudiness in drinking water

%< 0.3 NTU: Percent samples less than or equal to 0.3 NTU

pCi/L: Picocuries per liter, used to measure radioactivity
DEFINITION OF TERMS

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level (MRDL): The highest level of a drinking water disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Highest Level Detected: This column represents the highest single sample reading of a contaminant of all the samples collected in this calendar year.

Range of Detections: This column represents a range of individual sample results, from lowest to highest that were collected during the CCR calendar year.

Date of Sample: If a date appears in this column, the Illinois EPA requires monitoring for this contaminant less than once per year because the concentrations do not frequently change. If no date appears in the column, monitoring for this contaminant was conducted during the Consumer Confidence Report calendar year.

Action Level (AL): The concentration of a contaminant that triggers treatment or other required actions by the water supply.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

ND: Not detectable at testing limits. N/A: Not applicable.

Locational Running Annual Average (LRAA): The average of 4 consecutive quarterly results at each monitored sample location. The LRAA should not exceed 80μg/L for TTHM and 60 μg/L for HAA5.

2018 VOLUNTARY MONITORING

The City of Chicago has continued monitoring for Cryptosporidium, Giardia and E. coli in its source water as part of its water quality program. To date, Cryptosporidium has not been detected in these samples, but Giardia was detected in 2010 in one raw lake water sample collected in September 2010. Treatment processes have been optimized to provide effective barriers for removal of Cryptosporidium oocysts and Giardia cysts in the source water, effectively removing these organisms in the treatment process. By maintaining low turbidity through the removal of particles from the water, the possibility of Cryptosporidium and Giardia organisms getting into the drinking water system is greatly reduced.

In 2018, DWM has also continued monitoring for hexavalent chromium, also known as chromium-6. USEPA has not yet established a standard for chromium-6, a contaminant of concern which has both natural and industrial sources. Please address any questions or concerns to DWM’s Water Quality Division at 312-742-2406. Data reports on the monitoring program for chromium-6 are posted on the City’s website which can be accessed at the address below:

2018 VIOLATION SUMMARY TABLE

We are pleased to announce that no monitoring, reporting, treatment technique, maximum residual disinfectant level, or maximum contaminant level violations were recorded during 2018.
CROSS-CONNECTION CONTROL SURVEY

The City of Chicago Department of Water Management is required by the Illinois Environmental Protection Agency (IEPA) to survey all water services connected to our public drinking water supply. This survey will help us prevent accidental contamination of our drinking water system by determining whether a cross-connection may exist at your home or business. A cross-connection is an unprotected or improper connection to the public drinking water system that may cause contamination or pollution to enter the system.

Please fill out the survey online at www.chicagocc.org. Your answers are for the Department of Water Management's use only! Please be assured this survey is not an indication of any problems, but is required by the IEPA. Thank you for your cooperation.

What Can I Do?

There are simple steps that residents can take to promote water quality and to conserve this precious resource:

FLUSHING
Run your water for a minimum of five minutes every time it has been stagnant for six hours or more. This helps remove any contaminants – including lead – that may have settled in your pipes.

WATER TESTING
If you have any concerns about the water quality in your home, the Department of Water Management offers residential water testing by a certified laboratory free of charge. Call 3-1-1 or visit www.ChicagoWaterQuality.org to request a kit.

WATER METERS
Through the Department of Water Management's MeterSave program, single family and two-flat owners can receive a free water meter to monitor their water usage and earn substantial savings on their bills. Visit www.MeterSave.org to register.

FOR MORE INFORMATION, PLEASE CONTACT
Andrea Putz, Deputy Commissioner for the Bureau of Water Supply
At 312-742-2406

Chicago Department of Water Management
Bureau of Water Supply
1000 East Ohio Street • Chicago, IL 60611
Attn: Andrea Putz

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.