

What ARE FRACTIONS OF P ???

Fractions of "Phosphorus"

OF Course Everything is ABOUT Phosphorus These Days

What are the Fractions P?

- What are Fractions of P Sometimes called P "species"?
- Total Phosphorus is just that ightarrow
- The total OF the DIFFERENT Phosphorus FRACTIONS or SPECIES
- There are numerous DIFFERENT type of Phosphorus which all together make up TOTAL PHOSPHORUS

Four Ways to Characterize P

- Reactive Phosphorus
- Non-Reactive Phosphorus
- Soluble Phosphorus
- Particulate Phosphorus
- 5th Acid Hydrolysable (dissolve in acid) part of more complex fractions

Simpler Fractions of P

- Total Phosphorus can be fractionalized into 4 basic parts,
 - —2 of the fractions come directly from analysis sTP & sRP
 - -The other two, pTP & sNRP, are calculated using the results of 3 different analyses, sTP, sRP and TP

Simpler Fractions of P

- Total Phosphorus (TP)
- Total Soluble Phosphorus (**sTP**)
- Filtered TP
- Soluble Reactive Phosphorus (sRP)
- -Filtered ortho-P
- Soluble Non-Reactive Phosphorus (sNRP) – sTP minus sRP
- Particulate Total Phosphorus (**pTP**)
 TP minus sTP

How do get the Simpler FRACTIONS OF P ???

Total Particulate Phosphorus TP minus sTP

Soluble Non-Reactive Phosphorus sTP minus sRP

Additional Fractionation Gets a More Complete Picture Helps to Understand Treatability

Advanced – More Fractions of P

- Total Phosphorus can be divided into a total of 17 fractions or species
 - -5 of the fractions are **directly** from analyses tRP, tAHP, sTP, sAHP & sRP
 - -The other 12 are calculated using the results of 6 different analyses

List of Fractions of P

Fraction of P	Abbrev.	Source
Total Phosphorus	TP 🔅	Analyze
Total Reactive Phosphorus	tRP 🔅	Analyze
Total Acid Hydrolysable Phosphorus	tAHP 🔅	Analyze
Total Non Reactive Phosphorus	tNRP	TP - tRP
Total Polymerized Phosphorus	tPoly	tAHP - tRP
Total Organic Phosphorus	tOP	TP - tAHP
Total Particulate Phosphorus	рТР	TP - sTP
Particulate Reactive Phosphorus	pRP	tRP - sRP
Particulate Organic Phosphorus	рОР 📝	tOP - sOP
Particulate Non Reactive Phosphorus	pNRP 📩	tNRP - sNRP
Particulate Polymerized Phosphorus	pPoly 🔶	tPoly - sPoly
Particulate Acid Hydrolysable Phosphorus	рАНР	tAHP - sAHP
Total Soluble Phosphorus	sTP 🔅	Analyze after 0.45 um filter
Soluble Acid Hydrolysable Phosphorus	sAHP 🛛 🗱	Analyze after 0.45 um filter
Soluble Reactive Phosphorus	sRP 🔅	Analyze after 0.45 um filter
Soluble Organic Phosphorus	sOP	sTP - sAHP
Soluble Non Reactive Phosphorus	sNRP	sTP - sRP
Soluble Polymerized Phosphorus	sPoly	sAHP - sRP

Beware III Two different pathways ----

- As part of analyzing for fractions of P:
- There are two totally different procedures/pathways to arrive at the various analyzed fractions of P
 - Pathway (1) TP Persulfate digestion followed by colorimetry
 - Pathway (2) Acid hydrolyzable Acid hydrolysis followed by digestion and then colorimetry.

TWO DIFFERENT PATHWAYS -----

- These two different procedures may result in an issue where all of the analyzed and calculated fractions of P do not add up EXACTLY the TOTAL PHOSPHORUS value.
- See following 2 slides

From Hach Method for ACID HYDROLYZABLE PHOSPHORUS (AHP)

"The procedure uses acid and heat to hydrolyze the sample. Organic phosphates are not converted to orthophosphate by this process, **but a very small fraction may be unavoidably included in the result**."

Troubles with Analysis

- STEP 1 AHP analysis uses ACID & HEAT to convert condensed (polymerized) Phosphorus to orthophosphate
- NOTE --- Organic P does convert to orthophosphate in STEP 1
- STEP 2 Once condensed P is converted to ortho-P a simple color based orthophosphate test is used to measure P levels
- BUT small amount of ORGANIC P may in fact bleed through and be converted to orthophosphate in STEP 1
- May shows up as part of the tAHP & sAHP results

Be Aware

- Filter samples right away after collecting so any P within solids don't end up dissolving into the liquid phase
- Run Soluble & Total Reactive Phosphorus analyses right away

How do get the More Complex FRACTIONS OF P ???

QPMYZ.

Fractions of TOTAL(t) P

Total Reactive Phosphorus (tRP) Direct Analysis

Total Acid Hydrolysable Phosphorus (tAHP) Direct Analysis

OP/MYZ.

Total Non-Reactive Phosphorus (tNRP) TP - tRP

Total Polymerized Phosphorus (tPoly) tAHP - tRP

Total Organic Phosphorus (tOP) TP - tAHP

POMYZ.

Fractions of PARTICULATE (p) P

Total Particulate Phosphorus (pTP) TP - sTP

Particulate Reactive Phosphorus (pRP) tRP - sRP

Particulate Organic Phosphorus (pOP)

Particulate Polymerized Phosphorus (pPoly) tPoly - sPoly

tAHP & sAHP are direct analysis **pAHP** tAHP - sAHP

Fractions of SOLUBLE (S) P

Total Soluble Phosphorus (sTP) Direct Analysis

Soluble Acid Hydrolysable Phosphorus (sAHP) Direct Analysis

Soluble Reactive Phosphorus (sRP) Direct Analysis

Soluble Organic Phosphorus (sOP) sTP - sAHP

Why Bother with the FRACTIONS OF P ???

Why Fractionalize P ?

 We want to understand how to approach phosphorus treatment Best way is to understand each fraction and its make up Once known, treatment options become more clear

WHAT CAUSED THE JUMP IN EFF. TP?

- Analyze \rightarrow basic fractions then;
 - –You ••• what makes up TP
 - Adjust appropriate treatment to reduce species
 - Reduce source
 - Work better with engineers to design a fitting and efficient processes for P removal

■ pTP, mg/l □ sRP, mg/l 🛛 sNRP, mg/l

3 Main Basic Fractions of P and Their General Treatment Pathway

- Soluble Reactive Phosphorus (sRP)
 –CHemical & BPR
- Soluble Non-Reactive Phosphorus (sNRP) which does not react well

-Most difficult to remove

- Total Particulate (pTP) which is the phosphorus in the solids
 - -ENHANCed Settling & Filtration

Example of Reactive vs. Non-Reactive & Soluble NRP vs. Particulate NRP

Removing the Fractions

Fraction	Removal Mechanism	Ease	
sRP	React with something to make a particle, or react with a particle	1	
sNRP	Adsorption to a particle (Sticks to the particle surface without a chemical reaction)	4	
pRP	Reaction with other particles, adsorption, coagulation, flocculation	2	
pNRP	Adsorption, coagulation, flocculation 3		
sphorus Removal	with the Actiflo [®] Process		

Chemical Phosphorus Removal with the Actiflo[®] Process 2015 ORWEF Short School, Clackamas Community College Chris Maher, Operations Analyst Rock Creek AWTF

Fractions of P Odds & Ends

Various Ways to Fractionize P

- Inorganic vs. organic
 - Requires two difference digestion methods
 - Chemical Treatment has real problems removing certain fractions of organic P
- Soluble vs. Insoluble (Particulate)
 - Filtered & unfiltered results
- Reactive vs. Non-Reactive
- Soluble NRP vs. Particulate NRP
 - All calculated values
- BIOAVAILABLE P

Soluble vs. Insoluble (Particulate) Filtered & unfiltered results

Phosphorus Speciation by Autumn Fisher, Fond du Lac, WI

Soluble vs. Particulate (Reactive & Non-Reactive)

Chemical Phosphorus Removal with the Actiflo[®] Process 2015 ORWEF Short School, Clackamas Community College Chris Maher, Operations Analyst Rock Creek AWTF

BioAvailable P – What is It?

- Algal available or BIOAVAILABLE phosphorus is P that is <u>estimated</u> to be available to organisms like algae that are present in a lake or river.
- This is usually estimated by a chemical test which is designed to measure the soluble P & the particulate P that are EASILY AVAILABLE.
- Measure of the P → immediate concern to water quality.

http://www.extension.umn.edu/agriculture/nutrient-management/phosphorus/thenature-of-phosphorus/

Example Material Where Bioavailable P is being Evaluated

Study found Bioavailable P is LESS than Total Reactive Phosphorus

BAP is less than TRP

So Many DiFFerent Names III

Fraction of P	Abbrev.	Other names
Total Phosphorus	ТР	
Total Reactive Phosphorus	tRP	Total Ortho-P, Total Orthophosphate as P, Total PO ₄ -P
Total Acid Hydrolysable Phosphorus	tAHP	
Total Non Reactive Phosphorus	tNRP	
Total Polymerized Phosphorus	tPoly	
Total Organic Phosphorus	tOP	
Total Particulate Phosphorus	рТР	
Particulate Reactive Phosphorus	pRP	Particulate Orthophosphorus, Particulate Orthophosphate as P
Particulate Organic Phosphorus	рОР	
Particulate Non Reactive Phosphorus	pNRP	
Particulate Polymerized Phosphorus	pPoly	
Particulate Acid Hydrolysable Phosphorus	рАНР	
Total Soluble Phosphorus	sTP	Total Dissolved Phosphorus
Soluble Acid Hydrolysable Phosphorus	sAHP	
Soluble Reactive Phosphorus	sRP	Soluble Orthophosphorus, Soluble Orthophosphate as P, Dissolved
		Reactive Phosphorus, Dissolved Orthophosphate as P, Dissolved
		Orthophosphorus, Dissolved PO_4 -P, Soluble PO_4 -P
Soluble Organic Phosphorus	sOP	Dissolved Organic Phosphorus, DOP
Soluble Non Reactive Phosphorus	sNRP	Disssolve Non-Reactive Phosphorus
Soluble Polymerized Phosphorus	sPoly	

Phosphorus Speciation

Same as Dividing Phosphorus into Different Fractions of P

Same as Fractions of P

EXAMPLES OF VARIOUS WWTP EXPERieNces Results

Fond du Lac Experience

- Collected Data says.....
- Future WQBEL TP limit 0.04 mg/l.
- Discovered Eff. sNRP fraction is 0.108 mg/l which is 0.068 mg/l over the limit
- sNRP is NOT EASILY REMOVED by chemical and/or EBPR
- Now studying smaller particles/solids are referred to as colloidal solids

USing Fort Atkinson EFF. P Data What Happens IF?

Aug thru Oct 2011 - Average based on actual data

Estimated TP, mg/l - 0.382

Fort Atkinson - Most Reactive P Removed by BNR and Effluent TSS Filtration

Estimated TP, mg/l - 0.224

Inf. sNRP Survey

Eff - Soluble Non-Reactive P (sNRP) Survey

Soluble Non-Reactive P, mg/l

Menomonie WWTP Inf./Eff. - Fractions of P

OP/MY

Medford WWTP Influent - Fractions of P

Medford WWTP Effluent - Fractions of P

■ pTP, mg/l □ sRP, mg/l 🖾 sNRP, mg/l

Eleva-Strum WWTP Effluent - Fractions of P

Antioch Eff. Fractions of P

□ pTP - Total Particulate P, mg/l □ sRP - Dissolved Reactive P, mg/l □ sNRP - Dissolved Non-Reactive P, mg/l

La Crosse WWTP - Effluent Fractions of P

Sources of Info

- WEFTEC 2010: Comparison of Phosphorus Fractionation in Effluents from Different Wastewater Treatment Processes
- Water Science & Technology 2011: Treatability and fate of various phosphorus fractions in different wastewater treatment process
- WEFTEC 2008: Not so fat! The impact of recalcitrant phosphorus on the ability to meet low phosphorus limits
- 2010 EPA Technology Transfer Seminar
- 2015 ORWEF Short School, Clackamas Community College, Chris Maher
- Phosphorus Speciation by Autumn Fischer, Fond du Lac, WI
- From Hach Method for ACID HYDROLYZABLE PHOSPHORUS
- Data from Medford, Fort Atkinson, La Crosse, Eleva-Strum, Fond du Lac, Menomonie & Antioch (IL) WWTPs

Greg Paul Op2Myz, LLC

greg@op2myz.com

608-738-5748

