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Abstract
Subspace clustering is the process of assign-
ing subspace memberships to a set of un-
labeled data points assumed to have been
drawn from the union of an unknown number
of low-dimensional subspaces, possibly inter-
laced with outliers or other data corruptions.
By exploiting the fact that each inlier point has
a sparse representation with respect to a dic-
tionary formed by all the other points, an `1
regularized sparse subspace clustering (SSC)
method has recently shown state-of-the-art ro-
bustness and practical extensibility in a vari-
ety of applications. But there remain impor-
tant lingering weaknesses. In particular, the
`1 norm solution is highly sensitive, often in a
detrimental direction, to the very types of data
structures that motivate interest in subspace
clustering to begin with, sometimes leading to
poor segmentation accuracy. However, as an
alternative source of sparsity, we argue that
a certain data-dependent, non-convex penalty
function can compensate for dictionary struc-
ture in a way that is especially germane to sub-
space clustering problems. For example, we
demonstrate that this proposal displays a form
of invariance to feature-space transformations
and affine translations that commonly disrupt
existing methods, and moreover, in important
settings we reveal that its performance quality
is lower bounded by the `1 solution. Finally,
we provide empirical comparisons on popu-
lar benchmarks that corroborate our theoreti-
cal findings and demonstrate superior perfor-
mance when compared to recent state-of-the-
art models.

1 INTRODUCTION
Subspace clustering is the process of segmenting a set
of unlabeled data points that were drawn from the union

of an unknown number of low-dimensional subspaces,
possibly corrupted with outliers. As a generalization of
traditional PCA, and a fundamental tool for data anal-
ysis in high dimensional settings, subspace clustering
is relevant to numerous practical applications, including
image representation and compression, motion segmen-
tation, and face clustering (Elhamifar and Vidal, 2009;
Soltanolkotabi and Candes, 2012; Elhamifar and Vidal,
2013; Liu et al., 2010; Rao et al., 2010; Lu et al., 2012;
Liu et al., 2013; Feng et al., 2014; Lu et al., 2013;
Soltanolkotabi et al., 2014). We define this problem more
formally as follows.

Definition 1 Let {Sk}mk=1 denote a set of m linear (or
possibly affine) subspaces in Rd, where dim[Sk] = dk <
d ∀k = 1, . . . ,m. Moreover, suppose we have
drawn nk points from each subspace forming data ma-
trices Xk ∈ Rd×nk . We then concatenate the points
from each subspace and combine them with a matrix
X0 ∈ Rd×n0 whose columns represent outlying points
with no subspace membership. Finally, the full arrange-
ment of n = n0 +

∑m
k=1 nk points is scrambled with

an unknown permutation matrix P ∈ Rn×n. The entire
ensemble can then be expressed as

X , [x1, . . . ,xn] = [X0,X1, . . . ,XK ]P ∈ Rd×n.
(1)

Subspace clustering is defined as the process of estimat-
ing the subspace membership of each point xi while dis-
carding the outliers, without any a prior knowledge of
the dimensionality or cardinality of the underlying union
of subspaces.

Given some means of first isolating and removing out-
liers, spectral clustering represents one of the most ro-
bust approaches to obtaining accurate data segmenta-
tions. This process involves forming an affinity matrix
A, where the ij-th element aij quantifies the strength
of the relationship between points xi and xj . In tradi-
tional clustering, this affinity is typically computed using
a Gaussian kernel exp[−α‖xi − xj‖22] with α > 0, but



this ignores the subspace structure we want to reflect.

To this end, we instead formA to honor the desired sub-
space arrangement by exploiting a self-expressiveness
property of X (Elhamifar and Vidal, 2013), namely that
any xi can be represented as a linear combination of
other data points in X within the same subspace. This
of course assumes a suitable sampling of points in X ,
i.e., each nk is sufficiently large with points in general
position. Overall, with n > d there will exist an infinite
number of such self-expressive representations; however,
in constructing a viable affinity matrix it is paramount
that we find representations that heavily favor only using
points from the same subspace.

For the moment, assume that no outliers are present (i.e.,
n0 = 0). At a motivational level, sparse subspace clus-
tering (SSC) (Elhamifar and Vidal, 2013) attempts to
learn subspace-aware representations by solving

min
Z
‖Z‖0 s.t.X =XZ, diag[Z] = 0, (2)

where ‖Z‖0 is the matrix `0 norm, or a count of the
number of nonzero elements in Z, a penalty function
that heavily favors zero-valued elements or a sparse Z.
The diagonal constraint is included to prevent each point
from using itself in the representation (e.g., the degener-
ate solution Z∗ = I), ideally deferring to others in the
same subspace. Provided that each individual subspace
satisfies dk < d for all k, and sampled points are suf-
ficiently dense in general position, then up to a permu-
tation matrix P , the solution to (2) will be block diago-
nal and aligned with the true clusters revealing subspace
memberships. Note that if noise or other modeling er-
rors are present the equality constraint X = XZ can
be relaxed with the inclusion of an additional trade-off
parameter, e.g., ‖X −XZ‖F ≤ ε.
From a practical standpoint, theoretical analysis from
(Elhamifar and Vidal, 2013; Soltanolkotabi and Candes,
2012) suggests that in certain cases as long as the an-
gles between subspaces are not too small and points
within are suitably arranged, then we can replace the in-
tractable, NP-hard matrix `0-norm minimization in (2)
with ‖Z‖1 and still compute the same desirable block-
diagonal structure. We will henceforth refer to this algo-
rithm as `1-SSC. If the data X ideally follow the union
of subspace model and the `1-SSC solution matches the
solution of (2), then it is possible to extract subspace
memberships directly from Z∗. However, in practical
situations with noise and model mismatch, it is highly
beneficial to first form a symmetric affinity matrix as
A = |Z∗| + |Z∗|> and then apply traditional spectral
clustering (Luxburg, 2007) to the normalized Laplacian
of A to obtain a more robust segmentation (Elhamifar
and Vidal, 2013).

Regardless, the more the self-expressive representation
obtained by `1-SSC reflects the subspace alignments and
sizes, the more effective the final spectral clustering step
will be. But is the `1 norm the optimal objective? Cer-
tainly a variety of surrogates for producing a block di-
agonal Z have been proposed in the literature such as
the nuclear norm or other rank penalties (Babacan et al.,
2012; Liu et al., 2013), the Frobenius norm (Lu et al.,
2012), and the Trace Lasso (Lu et al., 2013). Likewise,
a multi-task learning approach from (Wang et al., 2015)
introduces an additional penalty and tuning paramter to
encourage subspace-aware group-sparse representations.
But from a theoretical standpoint, of the existing meth-
ods `1-SSC enjoys some of the strongest recovery guar-
antees (Soltanolkotabi and Candes, 2012), requires min-
imal tuning or a priori knowledge across broad operating
conditions, and moreover, it is perhaps one of the most
straightforward to adapt for handling practical situations
where outliers or other data corruptions are present (El-
hamifar and Vidal, 2013).

And yet there remains critical lingering issues with `1-
SSC (issues that also affect many other algorithms in the
literature). The equivalence between the `0 and `1 so-
lutions will be quite sensitive to correlation structure in
X as well as the particular feature representation used
for each xi and its interrelationship with the correspond-
ing column norms. In brief, while the `1 norm regu-
larizer is an order-wise optimal substitution for the `0
norm with iid Gaussian or similar designs (see (Can-
des et al., 2006) and the vast literature on compressive
sensing), this relationship completely breaks down with
the types of highly-structured data required by subspace
clustering problems. And of course the reality is, if such
confounding structures were not present, there would be
little value in attempting subspace clustering to begin
with.1

Fortunately though, unlike the `1 norm or other typical
penalty functions, there exist data-dependent regulariza-
tion techniques that can directly compensate for corre-
lated data in finding maximally sparse or minimal `0-
norm representations (Wipf, 2011), suggesting a seem-
ingly natural surrogate for sparse subspace segmentation.
In Section 2 we will introduce one specific, so-called
data-dependent penalty for sparse subspace clustering
(DD-SSC) procedure, as well as principled modifications
to handle outliers and affine subspaces.

Note that nearly all recent subspace clustering work be-

1Technically speaking, it is sometimes possible to achieve a
correct clustering even when `0-`1 norm equivalency does not
hold (You and Vidal, 2015). However, it is still well-known that
the `0 norm will provably produce a correct subspace cluster-
ing under much broader conditions than the `1 norm (e.g., see
(Yang et al., 2016)).



gins with some existing algorithm or penalty function
over Z that is then optimized to produce a viable affin-
ity matrix. The novelty then lies in the attendant tech-
nical arguments for why a particular approach is likely
to produce the desired, subspace-aligned block-diagonal
structure, and ultimately the correct segmentation. In
most cases (e.g.,(Liu et al., 2013; Lu et al., 2012, 2013)),
theoretical recovery guarantees are restricted to the sim-
plified setting where the subspaces are independent, in
which case virtually any regularizer forZ is provably ad-
equate. In contrast, much stronger guarantees have been
shown for convex `1-SSC using rigorous geometric con-
siderations (Elhamifar and Vidal, 2013; Soltanolkotabi
and Candes, 2012; You and Vidal, 2015). Building upon
these results, Section 3 presents our two primary analyt-
ical contributions, which can be summarized as follows:

• We demonstrate broad, challenging conditions un-
der which DD-SSC will provably perform as well
or better than `1-SSC in a sense that no existing al-
gorithm can match.

• Several important factors can conspire to signifi-
cantly disrupt the performance of current state-of-
the-art subspace clustering algorithms, often in sub-
tle underappreciated ways. These include the aggre-
gate effects of feature space transformations (mean-
ing invertible, potentially ill-conditioned transfor-
mations of the columns of X), affine subspace
translations, and the effects of disparate column
norms ‖xi‖2. We precisely characterize the nature
of these confounds and demonstrate that DD-SSC is
largely invariant to all three factors, unlike existing
approaches.

Finally, Section 4 provides complementary empirical re-
sults using both simulated and real-world data that con-
firm our main theoretical insights. Additionally, after
preparing an initial version of our paper, we noticed
an interesting recent work that also emphasizes the im-
portance of minimizing the `0 norm as opposed to de-
faulting to the convex `1 relaxation (Yang et al., 2016).
However, the proposed algorithmic strategy for actually
accomplishing this, which amounts to regular `1 norm
minimization followed by non-convex iterative hard-
thresholding (IHT) iterations (Blumensath and Davies,
2008) to approximate the `0 norm, is radically different
from ours. Importantly, it does not actually address any
of the issues we raise above. In fact, this approach will
be highly sensitive to feature space transformations and
affine subspace translations since both algorithmic com-
ponents, meaning the `1 and IHT steps, are heavily influ-
enced by correlations and scaling factors in the data X ,
and provably do not possess the desirable invariances of
DD-SSC. Moreover, empirically we find that DD-SSC

consistently outperforms the method from (Yang et al.,
2016) on a battery of tests drawn from the latter.

2 DATA-DEPENDENT SPARSE
SUBSPACE CLUSTERING (DD-SSC)

Model Development: The original sparse subspace
clustering problem from (2) decouples into n individual
NP-hard sparse estimation tasks of the form

min
zi

‖zi‖0 s.t. xi =X īzi, (3)

where X ī denotes the full data matrix X with the i-th
column removed.2 Instead of the tractable convex sub-
stitution ‖zi‖1 adopted by `1-SSC, we advocate an alter-
native, data-dependent penalty that ultimately emerges
from manipulations of a seemingly-unrelated Bayesian
model from (Tipping, 2001) applied to eachxi. For com-
pleteness, we briefly introduce the high-level derivations
as follows.

For the i-th data point we first define the Gaussian likeli-
hood

p(xi|zi;X ī, α) ∝ exp
[
− 1

2α ‖X īzi − xi‖22
]
. (4)

We also note that in the limit as α → 0, this like-
lihood will enforce the same constraint set as in (3)
with probability one. For other values of α we may
of course account for measurement noise or model mis-
match errors as appropriate. Next we assume parame-
terized zero-mean Gaussian distributions as priors over
each zi. Specifically, we have

p(zi;γi) ∝ exp
[
− 1

2z
>
i Γ−1

i zi
]
, Γi , diag[γi], (5)

where γi denotes a vector of unknown variance hyper-
paramters. Given that both likelihood and prior are Gaus-
sian, the posterior p(zi|xi;X ī,γi, α) is also Gaussian,
with mean ẑi given by

ẑi = ΓiX
>
ī Σ−1
xi
xi, with (6)

Σxi
, X īΓiX

>
ī + αI. (7)

From the above expressions it is clear that if γi is a sparse
vector with mostly zero-valued entries, then by virtue of
its diagonal positioning and lefthand-side multiplication
in (6), the estimator ẑi will have a matching sparsity pro-
file or support. Of course for this framework to be a
successful entry point for producing sparsity, we require
some way of determining a viable estimate for γi.

2Note that per this definition, the dimension of zi will tech-
nically be reduced by one relative to the original columns of Z
since we have removed the zero-valued elements enforced by
the constraint; however, we retain this admittedly inconsistent
notation for convenience.



If we temporarily treat the unknown zi as a nuisance
variable and γi as the parameter of interest, a typical
empirical Bayesian estimation strategy is to marginalize
over zi and then maximize the resulting type-II likeli-
hood function with respect to γi (MacKay, 1992). For-
tunately, the resulting convolution of Gaussians integral
is available in closed-form (Tipping, 2001) such that we
can equivalently minimize the negative log-likelihood

L(γi) = − log

∫
p(xi|zi;X ī, α)p(zi;γi)dzi

≡ x>i Σ−1
xi
xi + log |Σxi |. (8)

Once we have an estimate of γi for all data points, we
can compute a final estimator Ẑ by concatenating the
respective posterior means computed via (6).

Thus far we have essentially just deferred a direct search
for a sparse estimator of zi to the search for a (hope-
fully) sparse γi. However, if we apply (Wipf et al., 2011,
Theorem 2), we can convert the estimation problem of
minimizing L(γi) in γi-space to an equivalent problem
in zi-space, facilitating direct analysis and comparison
with more traditional sparse estimators. In particular, it
can be shown that minimizing (8) and then computing ẑi
using (6) is equivalent to minimizing

L(zi) , 1
α ‖xi −X īzi‖22 + f(zi;X ī, α), where (9)

f(zi;X ī, α) , inf
γi<0

∑

j

z2
ij

γij
+ log |X īΓiX

>
ī + αI|

(10)
is a data-dependent penalty function, parameterized by
X ī and α, that is only expressible in variational form.3

Of course once we view this Bayesian model in terms of
(9), we need no longer enforce that the α embedded in f
equal the α scale factor found in the `2-norm error term.
This emergent flexibility facilitates later analysis of f re-
stricted to the feasible region but with arbitrary α, and
contributes to a broader class of viable algorithms. Fi-
nally, although there is generally no closed-form solution
for f , it nonetheless can be shown to be a strictly con-
cave, non-decreasing function of each coefficient magni-
tude |zij | for all α ≥ 0, and hence it naturally favors ex-
actly sparse solutions (Wipf et al., 2011), meaning many
zij = 0. Therefore we propose to attack (2) by replac-
ing the `0 norm with f for each point, rather than the
standard convex `1 norm alternative.

Once we have some Ẑ obtained by optimizing this re-
vised penalty across all i, we may then form an affinity

3If some zij = 0, then we allow by definition the cor-
responding variational parameter γij to exactly equal zero as
well; given that the log-det term is a concave, non-decreasing
function of each γij , zero will in fact be the minimizing value
in such a case.

matrix A just as with previous methods to facilitate the
subsequent spectral clustering step. We will henceforth
refer to this procedure as DD-SSC, for data-dependent
sparse subspace clustering. Like the original `1-SSC,
DD-SSC naturally handles extensions to account for both
outlier removal and affine subspaces.

Outlier Removal: In many applications it is quite
common to have outlying data points, meaning that some
columns of X do not adhere to the union of subspaces
model. If such outliers are not properly accounted for,
virtually all clustering algorithms, sparsity-based or not,
will fail. Fortunately, the SSC framework provides a
natural mechanism for removing such divisive points
(Soltanolkotabi and Candes, 2012), and DD-SSC can
seamlessly piggyback this agency. DD-SSC can also
handle element-wise corruptions in a principled fashion,
but we postpone this analysis to the supplementary file.

The basic idea proceeds as follows. First we run DD-
SSC on each point xi and compute the corresponding
ẑi, which we expect to be sparse. However, because
the outliers do not lie in one of the low-dimensional sub-
spaces, we envisage that the support set will be consid-
erably larger (less sparse) than for inlier points. Hence
we declare xi to be an outlier if and only if the num-
ber of nonzero entries of ẑi surpasses a certain thresh-
old, i.e., ‖ẑi‖0 ≥ τ . Moreover, it is our hope that, pre-
suming the DD-SSC penalty f is able to produce even
greater sparsity for inlier points, the gap between normal
and outlying points will be more pronounced. In Section
4, we will empirically show that this is indeed the case.
Finally, once outliers have been identified, the affinity
matrix is constructed using the remaining inliers for sub-
sequent spectral clustering.

Affine Subspaces: Real-World data often lie in a
union of affine subspaces, a more general model which
includes linear subspaces as a special case.4 For exam-
ple, motion segmentation problems require the clustering
of data that lie in the union of 3-dimensional affine sub-
spaces (Tomasi and Kanade, 1992). To enforce an affine
subspace model, it is sufficient in principle to include the
additional constraint

∑
j zij = 1, which leads to transla-

tion invariance of SSC algorithms (Rao et al., 2010; El-
hamifar and Vidal, 2013), at least assuming columns of
X are not normalized (more on this in Section 3). This
constraint can be incorporated into DD-SSC by updat-
ing the likelihood model (4) and then performing the as-
sociated marginalization. The net result is that we only
need to replace X ī and I in the objective with X+ and
I+ respectively, where X+ , [X;1>(n)] (i.e., a length

4An affine subspace is merely defined as a standard linear
subspace that has been translated away from the origin via an
arbitrary offset.



n row of ones is appended to the bottom of X), and
I+ ,

[
[I,0(n−1)];0

>
(n)

]
.

3 ANALYSIS OF DD-SSC
Motivating data-dependent terms for SSC: When we
apply sparse regularization such as the `1 norm penalty
(or essentially any other sparsity penalty in the litera-
ture), results are highly sensitive to correlation structure
in the data matrix X , meaning strong off-diagonal el-
ements in X>X (see (Candes et al., 2006)). In tack-
ling this problem, we observed that it makes sense to in-
clude a data-dependent penalty that effectively compen-
sates for this correlation structure. To see this, a simple
analogy is in order. Suppose we would like to solve a
regularized regression problem of the form

min
z
‖y −Xz‖2 +∑ig(zi), (11)

where g is some regularizer that favors small magnitudes.
Generally speaking, the solution will be highly depen-
dent on the column norms ofX , meaning that if the norm
of some column xi is very small, then the corresponding
coefficient zi needs to be made large to compensate, and
this will be more heavily penalized by g. Of course in
this case there is a trivial solution: If we replace g(zi)
with g(‖xi‖zi), then elements of z associated with small
column norms will be penalized proportionally less, and
the aggregate behavior will be exactly as though the de-
sign matrixX had normalized columns.

In this example, we have effectively used a column-
norm-dependent penalty

∑
ig(‖xi‖zi) to counterbalance

potentially disparate scale factors. Drawing from this
experience though, if our concern is also strong off-
diagonal factors in X>X , and not just disparate scales
along the diagonal as represented by ‖xi‖, it makes sense
to consider some new penalty f(z;X>X) that explic-
itly depends on this correlation structure. The subspace
clustering penalty we proposed does exactly this. In par-
ticular, given the general determinant identity

log
∣∣∣XDX> + αI

∣∣∣ = log
∣∣∣ 1
αX

>X +D−1
∣∣∣+ C

(12)

where C=log |D|+log |αI| and D is a non-negative
diagonal matrix, when we optimize (10), the resulting
penalty will explicitly depend on X>X through the ac-
tion of this volumetric log-det measure that is highly
sensitive to correlations. Moreover, although there is
no closed-form solution for the actual penalty, we can
nonetheless analyze its behavior in the specific context of
SSC, revealing both theoretically and empirically in the
coming sections, that it directly solves many previously-
unaddressed limitations (and the computational com-
plexity is proportional to the original `1-SSC).

Improvement over `1-SSC: For purposes of the sim-
plest practical deployment in a few lines of code, DD-
SSC can be implemented using a form of the EM algo-
rithm treating each latent zi as hidden data (Dempster
et al., 1981). However, an alternative implementation
can be designed using iterative reweighted `1-norm up-
dates (Wipf et al., 2011) more amenable to analysis and
the elucidation of an explicit advantage of the DD-SSC
penalty function over the convex `1-SSC standard, espe-
cially when correlated subspaces confound the latter.

In the present context, iterative reweighted `1 mini-
mization, which is a specific variant of a majorization-
minimization algorithm (Hunter and Lange, 2004), pro-
ceeds by forming a convex, first-order Taylor-series ap-
proximation to the non-convex penalty function f in
(10). More concretely, for the i-th data point, we begin
from an initial weight vectorw(0) = 1 and then proceed
to the (t+ 1)-th iteration by computing

z
(t+1)
i ← argmin

zi

∑

j

w
(t)
j |zij | s.t. xi =X īzi,

w(t+1) ← ∂f(zi;X ī, α)

∂|z|

∣∣∣∣
z=z(t+1)

i

, (13)

where the | · | operator is understood to apply element-
wise. Furthermore, in certain cases the required gradi-
ent is available in closed-form even though the original
penalty f is not. For example, let

ηj(zi;α, q) ,
[
x>j

(
αI +X ī

∣∣∣Z(t+1)
i

∣∣∣
2

X>ī

)−1

xj

]q
,

(14)
where

∣∣∣Z(t+1)
i

∣∣∣ denotes a diagonal matrix with j-th diag-

onal entry given by |z(t+1)
ij |. Then when α → 0, w(t+1)

can be updated using w(t+1)
j = ηj(zi; 0, 1/2), ∀j. Us-

ing straightforward application of results from (Sripe-
rumbudur and Lanckriet, 2012), the resulting iterations
are guaranteed to converge to the set of local minima
(or possibly saddle points) of f in the feasible region
xi =X īzi. Additionally, for other values of α and q we
obtain a valid, generalized weighting function, although
it need not directly correspond with the original Bayesian
model from which DD-SSC was derived.

Proceeding further, it is thus far unclear what intrin-
sic advantage this overall class of estimators has over
the canonical `1-SSC, nor if the required ηj(zi; 0, 1/2)
terms are even a suitable choice of weighting factor.
However, we will now demonstrate that the above gener-
alized, iterative reweighted `1 form of DD-SSC is guar-
anteed to do as well or better than `1-SSC in certain cir-
cumstances.

For this purpose, we first say that a candidate solution ẑi



is subspace optimal if its nonzero elements occur only at
locations associated with data points from the subspace
to which xi belongs. Note that if an aggregate solution Ẑ
is subspace optimal for all i, it is a trivial matter to design
a clustering wrapper (spectral or otherwise), such that the
correct final clustering is obtained. So clearly if we can
guarantee subspace optimal sparse representations, the
brunt of our work is complete.

Theorem 1 The DD-SSC updates produced by (13) sat-
isfy the following:

1. If at any iteration we compute a subspace opti-
mal solution z(t)

i , then all subsequent iterations are
guaranteed to be subspace optimal for any α ∈
(0, α′], provided α′ is sufficiently small.

2. For any identifiable configuration of subspaces,
some q ≥ 1/2, α ∈ (0, α′], and α′ sufficiently
small, there will always exist configurations of
points within each subspace such that the iterations
are guaranteed to produce a subspace optimal so-
lution for all i.

Given that we initialize DD-SSC using w(0) = 1, the
first iteration is nothing more than `1-SSC. Combined
with the first property from Theorem 1, this ensures that
we automatically inherit whatever desirable theoretical
properties of the `1 solution that exist (Soltanolkotabi
and Candes, 2012), and we need not worry about subse-
quent iterations diverging from a subspace correct solu-
tion found by `1-SSC. Extra iterations can only improve
our chances, they can never make things worse.5

Moreover, the second property from above guarantees
that no matter how entwined the various subspaces are,
for at least some constellations of the points additional
iterations will indeed improve the situation. While the
proof construction contains further details (see supple-
mentary), in brief, sufficiently clustered point clouds (ly-
ing within a region of non-zero Lebesgue measure inside
each subspace), will ensure optimal recovery. In con-
trast, no other algorithm we are aware of satisfies a sim-
ilar result. We also emphasize that the `1 norm solution
itself can be quite difficult to improve upon, largely be-
cause in failure cases it is frequently positioned (often
provably so) in a poor basin of attraction with respect to
more complex, non-convex regularizers, especially when
correlated data X is involved. Therefore further itera-
tions cannot escape, unlike the DD-SSC updates.

5Note that prior conditions have been established based on
the distribution of nonzero elements in a sparse representation
such that guaranteed improvement is possible using iterative
reweighted `1 minimization (Wipf and Nagarajan, 2010). How-
ever, these results are inapplicable in the present subspace clus-
tering context and Theorem 1 above relies on an entirely differ-
ent proof construction (see supplementary file).

When combined together then, we believe that these
components of Theorem 1 suggest that there is mini-
mal risk in deploying DD-SSC, but potentially much to
gain, especially in challenging recovery conditions with
dense, correlated subspaces that can cause existing al-
gorithms to fail. While perhaps not immediately obvi-
ous, all of this is possible because the DD-SSC penalty
function f depends on the design matrix X ī in such a
way that compensation for subspace structure is possi-
ble. In contrast, virtually all existing subspace cluster-
ing algorithms rely on data-independent penalties, e.g.,
the `1, `2, or nuclear norm, or the hybrid method from
(Yang et al., 2016). However, one noteworthy exception
is the correlation adaptive subspace segmentation algo-
rithm (CASS) (Lu et al., 2013), which adopts the Trace
Lasso penalty function g(zi;X ī) = ‖X ī |Zi|‖∗ (Grave
et al., 2011). Although this selection does compensate
to some extent for correlation structure to increase the
number of nonzeros in the correct subspace, it is not a
concave function of the coefficients |zij | (unlike both `1-
SSC and DD-SSC), and therefore subspace optimal so-
lutions are essentially impossible to guarantee, except in
the trivial case where the subspaces are independent and
virtually any algorithm is subspace optimal. Addition-
ally, CASS and other state-of-the-art algorithms do not
benefit from the invariance properties discussed next.

Desirable Invariances: The original `1-SSC algo-
rithm was motivated, at least initially, by its theoretical
ability to recover maximally sparse solutions in the con-
text of compressive sensing (CS) (Candes et al., 2006).
But there remain several crucial differences between CS
and SSC applications. Most importantly, CS typically
relies on randomized dictionaries with suitable concen-
tration properties in high dimensions such that different
columns are roughly orthogonal with equivalent column
`2 norms. But in SSC we are not free to choose the dic-
tionariesX ī, rather, they are determined by the subspace
structure of the data and may display both high degrees
of correlation and columns with vastly different norms,
both of which can severely bias `1 regularization dramat-
ically. With regard to the latter, we could of course con-
sider first normalizing each point xi of the full data X
by dividing with ‖xi‖2, but unlike in the CS domain,
this may actually hurt performance more than it helps
depending on how the data are structured.

For example, consider data generated asX = ΦS+βL,
where Φ reflects some arbitrary subspace structure in-
volving embedded points with unit `2 norm, S is a diag-
onal scaling matrix, L is a low-rank additive component,
and β is a positive scalar. Now suppose we try to re-
cover xi usingX ī as the dictionary using `1-SSC. With-
out column normalization, the scaling via S can com-
pletely disrupt the effectiveness of the `1 norm solution



by favoring points in the wrong subspace that happen to
have large magnitudes. However, if we do apply nor-
malization and β is large, then the resulting `2 column
norms will be overshadowed by the low-rank term con-
tributing to arbitrarily bad solutions as well. Moreover,
this is not some contrived situation. In the case of affine
subspaces, such an additive low-rank term will always be
present to enforce each subspaces’ translation away from
zero, namely, L = [b11

>
n1
, b21

>
n2
, . . .], where each bk is

a bias vector and rank[L] = m, the number of subspaces.

Further compounding the problem is that there is am-
biguity in the constraint set from (2) in that WX =
WXZ represents an equivalent feasible region when-
ever W is an invertible feature transformation. While
such a W has no effect on the constraint per se, it will
have a major impact on the column sizes should we
choose to normalize. Hence even beyond the intrinsic
subspace structure and correlation discussed above, is-
sues of feature representations, affine translations, and
column scaling can act as a major disruptive force to
`1-SSC, as well as virtually all other existing subspace
clustering algorithms we are aware of. For example, the
CASS algorithm will be particularly sensitive to these ef-
fects since the data-dependent Trace Lasso penalty func-
tion is highly dependent on both transformations via W
or translations via L. Likewise for algorithms built upon
IHT (Yang et al., 2016).

It is here that DD-SSC maintains another considerable
advantage over existing methods as follows:

Theorem 2 Let X̃ ,WXS denote a transformed and
rescaled version of X , where W is an arbitrary matrix
and S is a diagonal matrix. Then the support set (and
therefore subspace optimality) of any local or global
minimizer of

min
zi

f(zi; X̃ ī, 0) s.t. x̃i = X̃ īzi (15)

is invariant to W and S provided that both are invert-
ible.

This result follows by extending (Wipf, 2011, Lemma
1); details are omitted here. The consequences of the in-
variance afforded by Theorem 2 in the context of SSC
are profound. First, we need not worry about feature
transformations/representations and their effect on col-
umn norm scalings given that DD-SSC is jointly invariant
to either. And secondly, assuming L is sufficiently low
rank, then the projection operator onto null[L>], which
is the orthogonal complement of range[L], will be nearly
invertible. Therefore if we assign W to be an invert-
ible approximation to this operator, we can transform
X = ΦS + βL via

WX =WΦS + βWL ≈WΦS, (16)

and so DD-SSC should be nearly invariant to affine trans-
formations as well. Experimental results will confirm
this conclusion revealing the sensitivity of `1-SSC.

4 EXPERIMENTS
Challenging Subspace Detection: In (Soltanolkotabi
and Candes, 2012) a series of synthetic experiments were
designed to challenge the performance of `1-SSC. We
embed DD-SSC into publicly available code6 and con-
duct the same experiments. We begin by testing the abil-
ity to cluster subspaces with intersection. Specifically,
two subspaces of dimension d1 = d2 = 10 are embed-
ded in R20 with an intersection of dimension t ≤ d1, all
generated uniformly at random. Then, n1 = n2 = 20d1

points are selected from each subspace also uniformly at
random. All data are normalized to have unit `2 norm.
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Figure 1: Feature detection error as a function of the sub-
space intersection dimension. Any algorithm will not have er-
ror below 0.5 on average once t = 10 where the two subspaces
merged to one.

Although this experiment introduces some confounding
structure by virtue of the subspace intersections, the re-
maining conditions of this experiment are rather ideal
for `1-SSC since all points are effectively sampled uni-
formly on the unit `2 norm ball. To investigate further
disruption of such idyllic conditions, we first remove
the original column normalization from above and then
shift each subspace away from the origin to form affine
subspaces. Ultimately this means that the data matrix
X = [X1,X2] is modified to XS + [b11

>
n1
b21
>
n2
],

where S is a diagonal matrix of column scalings (which
range roughly between 3 and 6 with high probability)
and bi , bi1d with bi sampled from a normal distribu-
tion with standard deviation 10.

In Figure 1, we show results under both the original
(ideal) setting and this more challenging affine setting.
Following (Soltanolkotabi and Candes, 2012), we de-
fine the feature detection error as 1

n

∑n
i=1 1−

‖ziki
‖1

‖zi‖1 ,

6http://www-bcf.usc.edu/∼soltanol/code.html



where ziki is the portion of zi corresponding to points
from the i-th subspace and use it for evaluation. This
metric goes to zero when each data point is reconstructed
using only points from its own subspace, while it tends to
one when each point is reconstructed using points from
the other subspaces. Figure 1 displays the feature detec-
tion error averaged across 20 randomized trials.

As in (Soltanolkotabi and Candes, 2012), under the orig-
inal ideal setting, we observed failure (error 6= 0) of `1-
SSC at t = 4. Meanwhile DD-SSC only starts to fail
at t = 6 and consistently maintains a lower error up to
the non-identifiable limit when t = 10 and the two sub-
spaces merge to one. (Note that, any possible algorithm
will not have error below 0.5 on average once t = 10.)
Moreover, the affine transformation significantly biases
the estimation results of `1-SSC. `1-SSC begins to fail
even with an intersection dimension of only t = 1, and
the error continues to grow much more sharply than be-
fore (and column-normalization cannot fix the problem
because of the affine component). Meanwhile DD-SSC
results are essentially unchanged as predicted by our in-
variance theory.7

Outlier Detection with Synthetic Data: We now com-
pare the performance of DD-SSC with `1-SSC in detect-
ing outliers, noting that other algorithms producing dif-
fuse representations such as CASS or LSR do not nat-
urally facilitate this added flexibility, and existing the-
ory is limited to sparsity-based approaches. We first
consider the most demanding problem in (Soltanolkotabi
and Candes, 2012), where m = 20 subspaces of di-
mension dk = 5,∀k are generated in R50 uniformly at
random. From each subspace, 25 points are drawn uni-
formly at random so that the total number of data points
is 500. Data points are not normalized such that modest
differences remain in the corresponding column norms.
We then shift points away from the origin as above.

Next n0 = 500 outliers, equal to the number of inlier
points, are chosen uniformly at random and appended
to the inliers X . We then run `1-SSC and DD-SSC
and compare the degree of sparsity in each recovered ẑi,
with the hope that inlier samples with have a lower value
than the outliers as described in Section 2. For DD-SSC
we simply measure sparsity via ‖ẑi‖0, but we observed
empirically that `1-SSC works poorly with this metric.
So instead, consistent with (Soltanolkotabi and Candes,
2012) we report ‖ẑi‖1 values for `1-SSC.

Figure 2 displays the results. All plots were rescaled for
visualization purposes. Clearly DD-SSC’s invariance to

7As a side note, IHT iterations applied to an `1-SSC initial-
ization, such as proposed in (Yang et al., 2016), cannot appre-
ciably improve results over `1-SSC alone in these experiments
(not shown).

scalings and translations is also a significant advantage
when it comes to locating outliers, with a clear distinc-
tion between inliers (points on the left half of each sub-
plot) and outliers (points on the right half), and a sim-
ple threshold around 0.3 would nearly resolve every in-
stance. In contrast, `1-SSC almost completely fails for
any threshold.
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Figure 2: Outlier detection in affine subspaces via sparsity
measurements.

Clustering Accuracy with Real Data: Following the
literature, we test DD-SSC on two challenging bench-
marks, the Extended Yale B (Wright et al., 2009) and the
MNIST,8 using the same testing protocol from (Lu et al.,
2013). The Yale B consists of 2,432 frontal face images
of 38 subjects under various lighting, poses and illumi-
nation conditions. Here we use the first 10 subjects’ face
images for subspace clustering (which have been previ-
ously shown to be most difficult), after first projecting
onto a 60-dimensional subspace using PCA. The MNIST
benchmark includes the handwritten digits 0-9 from 10
subjects. Following (Lu et al., 2013), we select a subset
consisting of the first 50 samples from each subject.

Table 1: Final clustering accuracies (%) on the Extended
Yale B and the MNIST data sets.

kNN LRR LSR CASS `1-
SSC

DD-
SSC

YaleB 50.94 65.00 73.59 81.88 78.44 84.84
MNIST 61.00 66.80 68.00 73.80 71.60 75.40

In Table 1, we report clustering accuracies of DD-SSC,
after a final spectral clustering step for both benchmarks.
Reported performances from (Lu et al., 2013) for other
algorithms under equivalent conditions are included for
comparison purposes. These include low rank represen-
tation (LRR) (Liu et al., 2013), least-squares representa-
tion (LSR) (Lu et al., 2012), and CASS (Lu et al., 2013),
and a k-Nearest Neighbor (kNN) baseline. Because out-
liers are absent, non-adversarial feature representations
are used, and the final clustering accuracies are largely
influenced by external factors and post-processing, these
data sets do not fully showcase the ability of DD-SSC.
Regardless, our method displays the best performance.

8http://yann.lecun.com/exdb/mnist/



Outlier Detection in Motion Segmentation Data: A
principled mechanism for generating outlying trajecto-
ries for the Hopkins 155 data9 has been introduced in
(Rao et al., 2010). Specifically, outliers were produced
by choosing a random initial point in the first frame and
then selecting a random increment between successive
frames. Each increment is generated by taking the differ-
ence between the coordinates of a randomly chosen point
in two randomly chosen consecutive frames. In this way
the outlying trajectories may qualitatively have the same
statistical properties as the other trajectories, but will not
be consistent with any particular motion model. Here we
examine the most difficult sequence “1R2RC” for evalu-
ation with outliers.

In Table 2, we show the performance of `1-SSC and
DD-SSC using the outlier detection strategy described in
Section 2. Given a varying number n0 of outliers have
been added, we sort the learned representations for all
points via the sparsity measures, i.e. `1 norm for `1-
SSC and `0 norm for DD-SSC; the highest n0 are then
declared outliers and compared to ground truth. To eval-
uate the performance, we define a detection accuracy as
# correctly found inliers

# total inliers . When we increase the number
of outliers (measured by its percentage with regard to
the number of inliers), `1-SSC gradually failed to find
all correct inliers. Meanwhile, DD-SSC can achieve al-
most 100% success even when there are twice as many
outliers as the number of inliers. Typical ROC curves can
be found in the supplementary file.

Table 2: Outlier detection on Hopkins 155 motion data.

[%] 0 15 30 50 100 150 200
`1-SSC 1.00 0.91 0.83 0.77 0.61 0.49 0.43

DD-SSC 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Comparisons with (Yang et al., 2016) Using Real
Data: As described in Section 1, the very recent ap-
proach from (Yang et al., 2016) attempts to approxi-
mately solve (2) by first computing an `1 solution and
then later refining it via IHT iterations. Note that IHT
is just a projected gradient method for locally minimiz-
ing the `0 norm, and the particular extrema to which it
converges will be highly sensitive to the types of correla-
tion structure we described in Section 3 (Blumensath and
Davies, 2009). Moreover, in many circumstances it can
be proven that the `1 norm initialization will be at or near
a local minima of the IHT objective, in which case im-
provement is not even feasible. Still (Yang et al., 2016)
nonetheless presents some nice theory for when this pro-
posed approximate `0-SSC pipeline, termed A`0-SSC, is
likely to produce good solutions; however, the required,
idealized conditions on the dataX are similar to those in

9http://www.vision.jhu.edu/data/hopkins155/

the compressive sensing literature and disallow the types
of correlations commonly found in clustering problems.

Table 3: Final clustering accuracies (%) compared with
A`0-SSC on UCI and COIL data sets.

SM
CE

OMP-
SSC

`1-
SSC

A`0-
SSC

DD-
SSC

Ionosphere 68.09 63.53 51.28 76.92 84.90
Heart 59.63 55.19 63.70 64.44 77.41

COIL-20 75.49 33.89 78.54 84.72 90.00
COIL-100 56.39 16.67 52.75 76.83 80.83

We compare the capability of both A`0-SSC and DD-
SSC to improve upon `1-SSC using representative exper-
iments from (Yang et al., 2016) involving real-world UCI
and COIL data sets. Specifically, the UCI Ionosphere
data contains 351 data points from 2 classes of dimen-
sionality 34, while UCI Heart data contains 270 points
from 2 classes of dimensionality 13. The COIL-20 and
COIL-100 databases have respectively 20 and 100 ob-
jects with 72 images of size 32×32 for each object, and
therefore 1440 and 7200 total images overall. The im-
ages were taken 5 degrees apart as an object was rotated
on a turntable.

Our comparisons with A`0-SSC are shown is Table 3,
together with the results of two additional competing al-
gorithms included in (Yang et al., 2016), namely, sparse
manifold clustering and embedding (SMCE) Elhamifar
and Vidal (2011), and orthogonal matching pursuit or
OMP-SSC Dyer et al. (2013), which applies a greedy
sparse estimation strategy. Note that, for COIL-20 and
COIL-100, we provide results using all 20 and 100 clus-
ters respectively, the hardest cases, and along with the
Ionosphere and Heart data, these arguably represent the
most demanding experimental conditions from (Yang
et al., 2016). As shown in Table 3, our model outper-
forms A`0-SSC. Moreover, we observe that in the most
difficult case, the Heart data, A`0-SSC is not able to sig-
nificantly improve upon the `1-SSC solution, unlike DD-
SSC which consistently supplies an advantage.

5 CONCLUSION

Sparsity promoting algorithms such as what we have ad-
vocated are certainly not new. However, deployment of
our particular proposal in the context of subspace clus-
tering is firmly supported by the novel theoretical ar-
guments and strong, state-of-the-art empirical evidence
presented herein. Simply put, the DD-SSC pipeline dis-
plays a remarkable degree of invariance to the very types
of confounding factors, e.g., dictionary structures, dis-
tracting feature transformations, translations, and outly-
ing data points etc., that otherwise derail existing seg-
mentation algorithms.
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