
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 597 | P a g e

Performance Analysis on Spark and Map Reduce
Anup N1, Dr. Udaya Rani2

1School of C & IT, REVA University, Bangalore, India
2Associate Professor, School of C & IT, REVA University, Bangalore, India

Abstract- Dynamic information stream handling utilizing

constant programming model for processing large data sets with

a parallel, distributed algorithm on a cluster is at present a high

worry as the measure of information being created is expanding

step by step with the development of Internet of Things, Big Data

and Cloud. Big data are portrayed by immense volume that can

land with a high speed and in various organizations from

numerous sources. Accordingly, continuous programming
model strategies ought to be fit for preparing the information to

separate an incentive out of it by tending to the issues identified

with these qualities that are related with information streams. In

this work, we asses and break down the ability of existing Map-

Reduce and Spark procedures to deal with dynamic information

streams and we introduce whether the current systems are

important in the current circumstance.

Keywords – Big data, Spark; Map-Reduce; data streams

I. INTRODUCTION

Big data is a blanket term for the non-traditional strategies and

technologies needed to gather, organize, process, and gather
insights from large datasets. While the problem of working with

data that exceeds the computing power or storage of a single

computer is not new, the pervasiveness, scale, and value of this

type of computing has greatly expanded in recent years. The

essential necessities for working with huge information are the

same as the prerequisites for working with datasets of any size.

Nonetheless, the monstrous scale, the speed of ingesting and

handling, and the qualities of the information that must be

managed at each phase of the procedure introduce huge new

difficulties when outlining arrangements. The objective of most

huge information frameworks is to surface bits of knowledge

and associations from huge volumes of heterogeneous
information that would not be conceivable utilizing traditional

techniques.

In 2001, Gartner's Doug Lane first presented what became

known as the "three Vs of big data" to describe some of the
characteristics that make big data different from other data

processing:

Volume: The sheer size of the data handled characterizes
enormous information frameworks. These datasets can be

requests of extent bigger than customary datasets, which

requests more idea at each phase of the preparing and capacity

life cycle.

Velocity: Another manner by which enormous information

contrasts fundamentally from other information frameworks is

the speed that data travels through the framework. Information

is every now and again streaming into the framework from

various sources and is frequently anticipated that would be

handled progressively to pick up experiences and refresh the

present comprehension of the framework. This emphasis on

close moment input has pushed numerous enormous

information specialists from a bunch situated approach and

more like a constant gushing framework. Information is always

being included, rubbed, handled, and investigated so as to stay

aware of the flood of new data and to surface significant data

early when it is generally pertinent.

Variety: Data can be ingested from internal systems like

application and server logs, from social media feeds and other

external APIs, from physical device sensors, and from other
providers. Big data seeks to handle potentially useful data

regardless of where it's coming from by consolidating all

information into a single system. The arrangements and sorts of

media can differ fundamentally too. Rich media like pictures,

video documents, and sound chronicles are ingested close by

content records, organized logs, and so on.

Because of the qualities of big data, individual computers are

often inadequate for handling the data at most stages. To better

address the high storage and computational needs of big data,

computer clusters are a better fit. Big data clustering software

combines the resources of many smaller machines, seeking to

provide several benefits:

Resource Pooling: Combining the available storage space to

hold data is a clear benefit, but CPU and memory pooling is also

extremely important. Processing large datasets requires large

amounts of all three of these resources.

High Availability: Clusters can provide varying levels of fault

tolerance and availability guarantees to prevent hardware or

software failures from affecting access to data and processing.

This becomes increasingly important as we continue to

emphasize the importance of real-time analytics.

Easy Scalability: Clusters make it easy to scale horizontally by

adding additional machines to the group. This means the system

can react to changes in resource requirements without

expanding the physical resources on a machine.

Using clusters requires a solution for managing cluster

membership, coordinating resource sharing, and scheduling

actual work on individual nodes. Cluster membership and

resource allocation can be handled by software like Hadoop's

YARN (which stands for Yet Another Resource Negotiator)

or Apache Mesos.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 598 | P a g e

Sentiment analysis (SA), also known as opinion mining, has

attracted an increasing interest. It is a hard challenge for

language technologies, and achieving good results is much

more difficult than some people think. The task of

automatically classifying a text written in a natural language

into a positive or negative feeling, opinion or subjectivity [1],
is sometimes so complicated that even different human

annotators disagree on the classification to be assigned to a

given text. Personal interpretation by an individual is different

from others, and this is also affected by cultural factors and each

person’s experience. And the shorter the text, and the worse

written, the more difficult the task becomes, as in the case of

messages on social networks like Twitter or Facebook.

The rest of the paper is organized as follows: Sesction 2

presents related work. Section 3 discuss the available

methodologies and their drawbacks. Section 4 analyses current

capabilities of current Map Reduce to handle huge amount of

data. Section 5 focues on conclusion and related works.

II. RELATED WORK

A. Extracting realtime social media data from data streams

using FLUME.

Flume is composed of the following components. Flume

Event: It is the main unit of the data that is transported inside

the Flume (Typically a single log entry). It contains a payload
of the byte array that is to be transported from the source path

to the destination path which could be accompanied by optional

headers. Flume Agent: Is an independent Java virtual machine

daemon process which receives the data (events) from clients

and transports to the subsequent destination (sink or

agent). Source: Is the component of Flume agent which receives

data from the data generators say, twitter, Facebook, weblogs

from different sites and transfers this data to one or more

channels in the form of Flume event. The external source sends

data to Flume in a format that is recognized by the target Flume

source. Example, an Avro Flume source can be used to receive

Avro data from Avro clients or other Flume agents in the flow
that send data from an Avro sink, or the Thrift Flume source

will receive data from a Thrift sink, or a Flume Thrift RPC

client or Thrift Clients are written in any language generated

from the Flume thrift protocol. Channel: Once, the Flume

source receives an Event, it stores this data into one or more

channel and buffers them till they are consumed by sinks. It acts

as a bridge between the source and sinks. These channels are

implemented to handle any number of sources and sinks.

Sink: It stores the data into the centralized stores like HDFS and

HBase.

Fig.1: FLUME Architecture

B. Sentiment Analysis for social media data

Semantic approaches are characterized using dictionaries of

words (lexicons) with semantic orientation of polarity or

opinion. Systems typically preprocess the text and divide it

into words, with proper removal of stop words and a linguistic

normalization with stemming or lemmatization, and then

check the presence or absence of each term of the lexicon,

using the sum of the polarity values of the terms for assigning

the global polarity value of the text. Typically, systems also

include;

 An advanced treatment of modifier terms (such

as very, too, little) that increase or decrease the

polarity of the accompanying terms

 Inversion terms or negations (such as no, never),

which reverse the polarity of the terms to which they

affect.

III. ANALYSIS BETWEEN MAP REDUCE AND

SPARK

Authors of [2], consider major challenges of MapReduce on

Data Storage, Analytics, Online Processing, Privacy and

Security. Customary information preparing, and capacity

approaches are confronting numerous difficulties in meeting

the consistently expanding figuring requests of Big Data. This

work concentrated on MapReduce, one of the key empowering

approaches for taking care of Big Data requests by methods

for very parallel handling on countless hubs. Schema free

challenges the data storage of the Map Reduce which is
addressed by No-SQL stores – MR with various indexing

approaches. Analytics is one the challenges of MR which is

caused by Statistical challenges of learning along with

interactive analytics and scaling complex linear algebra. But,

Data preprocessing could be the solution for the Statistical

Learning whereas, Map interactive query processing addresses

the challenges of Inter active analysis.

Authors of [3], performs a comparison study of MapReduce

and Spark with respect to processing of batch jobs and iterative

jobs. The methodology performs the comparison by evaluating

the architecture components in the MapReduce and Spark

frameworks and concludes that spark is much faster with

respect to different analytical workloads then MapReduce

because of hash based aggregation component for combiner

and RDD based caching.

https://www.meaningcloud.com/products/sentiment-analysis/

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 599 | P a g e

In this paper [4], authors compare the performance of

MapReduce and Spark frameworks by using standard K-

Means machine learning algorithms. They mention that

though K-Means has random nature of computing, machine

learning library of Spark did the learning much better than the

Map Reduce in terms of processing time. Their results show

that Spark executes 3 time faster than the MapReduce.

Authors of this paper [5], uses Health Care streaming data for

analyzing the performance of Map Reduce framework. A new

task-level adaptive Map Reduce frameworks has been
introduced. They have used smoothing and Kalman filter to

estimate the workload characteristics.

Here [6], author shows the Hadoop, Map Reduce and HDFS

in the view of developer. The aim was to build a framework to
sustain the load of scalability and fault tolerant Hadoop

MapReduce programming worldview and HDFS are

progressively being utilized for handling expansive and

unstructured informational indexes. Hadoop empowers

communicating with the MapReduce programming model

while concealing the multifaceted nature of conveying,

designing and running the product parts in general society or

private cloud. Hadoop empowers clients to make group of

ware servers. MapReduce has been displayed as an

autonomous stage asa-benefit layer appropriate for various

necessity by cloud suppliers. It likewise empowers clients to

comprehend the information preparing and investigating.

In this paper [7], give an investigation of the entanglements of

current theoretical execution techniques in MapReduce. They

exhibit scenarios which affect the performance of the
strategies: data skew, errands that begin non-concurrently,

uncalled for configuration of stage rate and sudden asset

rivalries. In view of the examination, they have built up

another theoretical execution procedure called MCP to deal

with these situations. MCP considers the cost execution of

group processing assets, going for diminishing the activity

execution time as well as enhancing the bunch throughput.

Their analyses demonstrate that: MCP can accomplish up to

39% upgrades over Hadoop MCP fits well in both

heterogeneous and homogeneous situations; MCP can deal

with the information skew case well; MCP is very versatile,

which performs exceptionally well in both little bunches and
substantial groups; MCP has less overhead than Hadoop-

LATE and can be effortlessly executed into new forms of

Hadoop.

Authors here [8], technique Ant can be stretched out to

different structures, for example, Spark, however some extra

exertion is required. Not quite the same as Hadoop, which

executes singular undertakings in independent JVMs, Spark

utilizes agents to have various assignments on laborer hubs.

To stretch out Ant to Spark, they have to powerfully change

agent sizes without restarting a propelled work. Since running

Spark on another nonexclusive group administration

middleware, for example, YARN, turns out to be progressively

mainstream, it is conceivable to empower flexible agents

utilizing asset compartments. All things considered, Ant can

screen the fruition times of individual undertakings and utilize

such data as input to decide the ideal size of Spark agents

Here [9] in this paper, they mention about the most influential

articles added to the enhancements in MapReduce system for

extensive datasets is likewise investigated in view of the most

influential articles chose from papers cover the period 2006–

2015 and depicted reception and arrangements that expect to

reduce a portion of the issues. For each part, they have present

the general foundation, examine the specialized difficulties,

and audit the most recent advances. Explored a few open
research challenges, including Energy efficiency, Resource

assignment, handling enormous information in distributed

computing, ongoing preparing, stack adjusting, mapping.

Authors of this paper [10], As a greatly parallel handling
structure, MapReduce is very much perceived for its

scalability, flexibility, fault tolerance and several other

attractive features. It encourages parallelization of a class of

uses, usually alluded as embarrassingly parallelizable. Be that

as it may, as has been normally recognized, MapReduce has

not been intended for expansive scale complex information

administration undertakings. For instance, the first system

does not give abnormal state dialect bolster that is natural to

and expected by database clients; thus, clients need to

exclusively develop various processing logics and programs.

It also does not have built-in indexing and question
streamlining bolster required for database inquiries. This has

normally driven to along stream of research that attempt to

address the lack of database functionality. In this study, our

emphasis is on the upgrade and expansion of MapReduce

framework for database applications.

IV. CONCLUSION

Spark has fantastic execution and is very financially savvy

because of in-memory information handling. It's good with

much of Hadoop's information sources and record

organizations, and because of amicable APIs that are

accessible in a few dialects, it likewise has a speedier

expectation to learn and adapt. Start even incorporates chart

handling and machine-learning abilities.

Hadoop MapReduce is a more develop stage and it was

worked for bunch preparing. It can be savvier than Spark for

genuinely Big Data that doesn't fit in memory and furthermore

because of the more prominent accessibility of experienced

staff. Besides, the Hadoop MapReduce biological community

is as of now greater because of numerous supporting ventures,

devices and cloud administrations.

In any case, regardless of whether Spark resembles the

enormous victor, the odds are that you won't utilize it all

alone—despite everything you require HDFS to store the
information and you might need to utilize HBase, Hive, Pig,

Impala or other Hadoop ventures. This implies regardless we

will have to run Hadoop and MapReduce nearby Spark for a

full Big Data bundle.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 600 | P a g e

V. REFERENCES
[1]. Bo Pang and Lillian Lee: “Opinion mining and sentiment

analysis” Foundations and Trends in Information Retrieval Vol.
2, No 1-2 (2008) 1–135.

[2]. Katarina Grolinger, Michael Hayes, Wilson A. Higashino,
Alexandra L 'Heureux, David S. Allison “Challenges for

MapReduce in Big Data”
[3]. Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen

Wang, Berthold Reinwald, and Fatma Ozcan “Clash of the
Titans: MapReduce vs. Spark for Large Scale Data Analytics”

[4]. Satish Gopalani, Rohan Arora, “Comparing Apache Spark and
Map Reduce with Performance Analysis using K-Means”.
International Journal of Computer Applications (0975 – 8887)
Volume 113 – No. 1, March 2015

[5]. Balaji Palanisamy, Aameek Singh, Ling Liu “Cost-effective

Resource Provisioning for MapReduce in a Cloud”
[6]. Qi Chen, Cheng Liu, and Zhen Xiao “Improving MapReduce

Performance Using Smart Speculative Execution Strategy”
[7]. Dazhao Cheng, Jia Rao, Yanfei Guo, Changjun Jiang and

Xiaobo Zhou “Improving Performance of Heterogeneous
MapReduce Clusters with Adaptive Task Tuning”

[8]. Ibrahim Abaker Targio Hashem,Nor Badrul Anuar, Abdullah
Gani,Ibrar Yaqoob,Feng Xia, Samee Ullah Khan “MapReduce:

Review and open challenges”
[9]. FENG LI, BENG CHIN OOI, M. TAMER ÖZSU, SAI WU

“Distributed Data Management Using MapReduce”
[10]. Fan Zhang, Junwei Cao, Samee U.Khan, Kequi Li, Kai Hwang

“ A task level adaptive Map Reduce framework for real time
streaming data in health care application.”

