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Abstract- Dynamic information stream handling utilizing 

constant programming model for processing large data sets with 

a parallel, distributed algorithm on a cluster is at present a high 

worry as the measure of information being created is expanding 

step by step with the development of Internet of Things, Big Data 

and Cloud. Big data are portrayed by immense volume that can 

land with a high speed and in various organizations from 

numerous sources. Accordingly, continuous programming 
model strategies ought to be fit for preparing the information to 

separate an incentive out of it by tending to the issues identified 

with these qualities that are related with information streams. In 

this work, we asses and break down the ability of existing Map-

Reduce and Spark procedures to deal with dynamic information 

streams and we introduce whether the current systems are 

important in the current circumstance. 
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I. INTRODUCTION 

Big data is a blanket term for the non-traditional strategies and 

technologies needed to gather, organize, process, and gather 
insights from large datasets. While the problem of working with 

data that exceeds the computing power or storage of a single 

computer is not new, the pervasiveness, scale, and value of this 

type of computing has greatly expanded in recent years. The 

essential necessities for working with huge information are the 

same as the prerequisites for working with datasets of any size. 

Nonetheless, the monstrous scale, the speed of ingesting and 

handling, and the qualities of the information that must be 

managed at each phase of the procedure introduce huge new 

difficulties when outlining arrangements. The objective of most 

huge information frameworks is to surface bits of knowledge 

and associations from huge volumes of heterogeneous 
information that would not be conceivable utilizing traditional 

techniques.  

In 2001, Gartner's Doug Lane  first presented what became 

known as the "three Vs of big data" to describe some of the 
characteristics that make big data different from other data 

processing:  

Volume: The sheer size of the data handled characterizes 
enormous information frameworks. These datasets can be 

requests of extent bigger than customary datasets, which 

requests more idea at each phase of the preparing and capacity 

life cycle.  

Velocity: Another manner by which enormous information 

contrasts fundamentally from other information frameworks is 

the speed that data travels through the framework. Information 

is every now and again streaming into the framework from 

various sources and is frequently anticipated that would be 

handled progressively to pick up experiences and refresh the 

present comprehension of the framework. This emphasis on 

close moment input has pushed numerous enormous 

information specialists from a bunch situated approach and 

more like a constant gushing framework. Information is always 

being included, rubbed, handled, and investigated so as to stay 

aware of the flood of new data and to surface significant data 

early when it is generally pertinent. 

Variety: Data can be ingested from internal systems like 

application and server logs, from social media feeds and other 

external APIs, from physical device sensors, and from other 
providers. Big data seeks to handle potentially useful data 

regardless of where it's coming from by consolidating all 

information into a single system. The arrangements and sorts of 

media can differ fundamentally too. Rich media like pictures, 

video documents, and sound chronicles are ingested close by 

content records, organized logs, and so on.  

Because of the qualities of big data, individual computers are 

often inadequate for handling the data at most stages. To better 

address the high storage and computational needs of big data, 

computer clusters are a better fit. Big data clustering software 

combines the resources of many smaller machines, seeking to 

provide several benefits: 

Resource Pooling: Combining the available storage space to 

hold data is a clear benefit, but CPU and memory pooling is also 

extremely important. Processing large datasets requires large 

amounts of all three of these resources. 

High Availability: Clusters can provide varying levels of fault 

tolerance and availability guarantees to prevent hardware or 

software failures from affecting access to data and processing. 

This becomes increasingly important as we continue to 

emphasize the importance of real-time analytics. 

Easy Scalability: Clusters make it easy to scale horizontally by 

adding additional machines to the group. This means the system 

can react to changes in resource requirements without 

expanding the physical resources on a machine. 

Using clusters requires a solution for managing cluster 

membership, coordinating resource sharing, and scheduling 

actual work on individual nodes. Cluster membership and 

resource allocation can be handled by software like Hadoop's 

YARN (which stands for Yet Another Resource Negotiator) 

or Apache Mesos. 
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Sentiment analysis (SA), also known as opinion mining, has 

attracted an increasing interest. It is a hard challenge for 

language technologies, and achieving good results is much 

more difficult than some people think. The task of 

automatically classifying a text written in a natural language 

into a positive or negative feeling, opinion or subjectivity [1], 
is sometimes so complicated that even different human 

annotators disagree on the classification to be assigned to a 

given text. Personal interpretation by an individual is different 

from others, and this is also affected by cultural factors and each 

person’s experience. And the shorter the text, and the worse 

written, the more difficult the task becomes, as in the case of 

messages on social networks like Twitter or Facebook. 

The rest of the paper is organized as follows: Sesction 2 

presents related work. Section 3 discuss the available 

methodologies and their drawbacks. Section 4 analyses current 

capabilities of current Map Reduce to handle huge amount of 

data. Section 5 focues on conclusion and related works. 

II. RELATED WORK 

A. Extracting realtime social media data from data streams 

using FLUME. 

 

Flume is composed of the following components. Flume 

Event: It is the main unit of the data that is transported inside 

the Flume (Typically a single log entry). It contains a payload 
of the byte array that is to be transported from the source path 

to the destination path which could be accompanied by optional 

headers. Flume Agent: Is an independent Java virtual machine 

daemon process which receives the data (events) from clients 

and transports to the subsequent destination (sink or 

agent). Source: Is the component of Flume agent which receives 

data from the data generators say, twitter, Facebook, weblogs 

from different sites and transfers this data to one or more 

channels in the form of Flume event. The external source sends 

data to Flume in a format that is recognized by the target Flume 

source. Example, an Avro Flume source can be used to receive 

Avro data from Avro clients or other Flume agents in the flow 
that send data from an Avro sink, or the Thrift Flume source 

will receive data from a Thrift sink, or a Flume Thrift RPC 

client or Thrift Clients are written in any language generated 

from the Flume thrift protocol. Channel: Once, the Flume 

source receives an Event, it stores this data into one or more 

channel and buffers them till they are consumed by sinks. It acts 

as a bridge between the source and sinks. These channels are 

implemented to handle any number of sources and sinks. 

Sink: It stores the data into the centralized stores like HDFS and 

HBase.  

 

Fig.1: FLUME Architecture 

 

B. Sentiment Analysis for social media data 

Semantic approaches are characterized using dictionaries of 

words (lexicons) with semantic orientation of polarity or 

opinion. Systems typically preprocess the text and divide it 

into words, with proper removal of stop words and a linguistic 

normalization with stemming or lemmatization, and then 

check the presence or absence of each term of the lexicon, 

using the sum of the polarity values of the terms for assigning 

the global polarity value of the text. Typically, systems also 

include; 

 An advanced treatment of modifier terms (such 

as very, too, little) that increase or decrease the 

polarity of the accompanying terms 

 Inversion terms or negations (such as no, never), 

which reverse the polarity of the terms to which they 

affect. 

 

III. ANALYSIS BETWEEN MAP REDUCE AND 

SPARK 

Authors of [2], consider major challenges of MapReduce on 

Data Storage, Analytics, Online Processing, Privacy and 

Security. Customary information preparing, and capacity 

approaches are confronting numerous difficulties in meeting 

the consistently expanding figuring requests of Big Data. This 

work concentrated on MapReduce, one of the key empowering 

approaches for taking care of Big Data requests by methods 

for very parallel handling on countless hubs. Schema free 

challenges the data storage of the Map Reduce which is 
addressed by No-SQL stores – MR with various indexing 

approaches. Analytics is one the challenges of MR which is 

caused by Statistical challenges of learning along with 

interactive analytics and scaling complex linear algebra. But, 

Data preprocessing could be the solution for the Statistical 

Learning whereas, Map interactive query processing addresses 

the challenges of Inter active analysis. 

Authors of [3], performs a comparison study of MapReduce 

and Spark with respect to processing of batch jobs and iterative 

jobs. The methodology performs the comparison by evaluating 

the architecture components in the MapReduce and Spark 

frameworks and concludes that spark is much faster with 

respect to different analytical workloads then MapReduce 

because of hash based aggregation component for combiner 

and RDD based caching. 

https://www.meaningcloud.com/products/sentiment-analysis/
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In this paper [4], authors compare the performance of 

MapReduce and Spark frameworks by using standard K-

Means machine learning algorithms. They mention that 

though K-Means has random nature of computing, machine 

learning library of Spark did the learning much better than the 

Map Reduce in terms of processing time. Their results show 

that Spark executes 3 time faster than the MapReduce. 

Authors of this paper [5], uses Health Care streaming data for 

analyzing the performance of Map Reduce framework. A new 

task-level adaptive Map Reduce frameworks has been 
introduced. They have used smoothing and Kalman filter to 

estimate the workload characteristics.  

Here [6], author shows the Hadoop, Map Reduce and HDFS 

in the view of developer. The aim was to build a framework to 
sustain the load of scalability and fault tolerant Hadoop 

MapReduce programming worldview and HDFS are 

progressively being utilized for handling expansive and 

unstructured informational indexes. Hadoop empowers 

communicating with the MapReduce programming model 

while concealing the multifaceted nature of conveying, 

designing and running the product parts in general society or 

private cloud. Hadoop empowers clients to make group of 

ware servers. MapReduce has been displayed as an 

autonomous stage asa-benefit layer appropriate for various 

necessity by cloud suppliers. It likewise empowers clients to 

comprehend the information preparing and investigating. 

In this paper [7], give an investigation of the entanglements of 

current theoretical execution techniques in MapReduce. They 

exhibit scenarios which affect the performance of the 
strategies: data skew, errands that begin non-concurrently, 

uncalled for configuration of stage rate and sudden asset 

rivalries. In view of the examination, they have built up 

another theoretical execution procedure called MCP to deal 

with these situations. MCP considers the cost execution of 

group processing assets, going for diminishing the activity 

execution time as well as enhancing the bunch throughput. 

Their analyses demonstrate that: MCP can accomplish up to 

39% upgrades over Hadoop MCP fits well in both 

heterogeneous and homogeneous situations; MCP can deal 

with the information skew case well; MCP is very versatile, 

which performs exceptionally well in both little bunches and 
substantial groups; MCP has less overhead than Hadoop-

LATE and can be effortlessly executed into new forms of 

Hadoop. 

Authors here [8], technique Ant can be stretched out to 

different structures, for example, Spark, however some extra 

exertion is required. Not quite the same as Hadoop, which 

executes singular undertakings in independent JVMs, Spark 

utilizes agents to have various assignments on laborer hubs. 

To stretch out Ant to Spark, they have to powerfully change 

agent sizes without restarting a propelled work. Since running 

Spark on another nonexclusive group administration 

middleware, for example, YARN, turns out to be progressively 

mainstream, it is conceivable to empower flexible agents 

utilizing asset compartments. All things considered, Ant can 

screen the fruition times of individual undertakings and utilize 

such data as input to decide the ideal size of Spark agents 

Here [9] in this paper, they mention about the most influential 

articles added to the enhancements in MapReduce system for 

extensive datasets is likewise investigated in view of the most 

influential articles chose from papers cover the period 2006– 

2015 and depicted reception and arrangements that expect to 

reduce a portion of the issues. For each part, they have present 

the general foundation, examine the specialized difficulties, 

and audit the most recent advances. Explored a few open 
research challenges, including Energy efficiency, Resource 

assignment, handling enormous information in distributed 

computing, ongoing preparing, stack adjusting, mapping. 

Authors of this paper [10], As a greatly parallel handling 
structure, MapReduce is very much perceived for its 

scalability, flexibility, fault tolerance and several other 

attractive features. It encourages parallelization of a class of 

uses, usually alluded as embarrassingly parallelizable. Be that 

as it may, as has been normally recognized, MapReduce has 

not been intended for expansive scale complex information 

administration undertakings. For instance, the first system 

does not give abnormal state dialect bolster that is natural to 

and expected by database clients; thus, clients need to 

exclusively develop various processing logics and programs. 

It also does not have built-in indexing and question 
streamlining bolster required for database inquiries. This has 

normally driven to along stream of research that attempt to 

address the lack of database functionality. In this study, our 

emphasis is on the upgrade and expansion of MapReduce 

framework for database applications. 

IV. CONCLUSION 

Spark has fantastic execution and is very financially savvy 

because of in-memory information handling. It's good with 

much of Hadoop's information sources and record 

organizations, and because of amicable APIs that are 

accessible in a few dialects, it likewise has a speedier 

expectation to learn and adapt. Start even incorporates chart 

handling and machine-learning abilities. 

Hadoop MapReduce is a more develop stage and it was 

worked for bunch preparing. It can be savvier than Spark for 

genuinely Big Data that doesn't fit in memory and furthermore 

because of the more prominent accessibility of experienced 

staff. Besides, the Hadoop MapReduce biological community 

is as of now greater because of numerous supporting ventures, 

devices and cloud administrations.  

In any case, regardless of whether Spark resembles the 

enormous victor, the odds are that you won't utilize it all 

alone—despite everything you require HDFS to store the 
information and you might need to utilize HBase, Hive, Pig, 

Impala or other Hadoop ventures. This implies regardless we 

will have to run Hadoop and MapReduce nearby Spark for a 

full Big Data bundle. 
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