1. Using *n* rectangles and the limit process, find the area under the given curve.

$$y = 3x - x^2$$
 on [1,3]

2a. A manufacturer wants to design a box with an **open** top having a square base and an area of 27 sq. inches. What dimensions will produce a box with maximum volume?

2b. A rectangular dog pen is being built against the side of a house using 100 ft of fencing for the remaining 3 sides. What is the maximum area?

3. Find the area bound by the following curves

$$y = x^2$$
 $y = 2 - x$, $x = 0$, $x, y \ge 0$.

4. For the given y = f(x) function and point x = a calculate both dy and Δy .

(i)
$$f(x) = x^2$$
, $x = 2$, $dx = \Delta x = .1$
(ii) $f(x) = x^3 - x + 1$, $x = 1$, $dx = \Delta x = .05$

5. Evaluate the following

(i)
$$\frac{d}{dx} \int_1^x \sin\left(t^2\right) dt$$
 (ii) $\frac{d}{dx} \int_x^{x^2} \sqrt{1+t^3} dt$

6. Evaluate the following indefinite integrals

(i)
$$\int \sec^2 x \tan x \, dx$$
 (ii) $\int \frac{e^{1/x}}{x^2} \, dx$ (iii) $\int \frac{x}{(x+1)^2} \, dx$
(i) $\int_1^5 x \sqrt{x-1} \, dx$ (ii) $\int_0^{\pi/4} \sin x \cos x \, dx$ (iii) $\int_0^3 \frac{x}{\sqrt{x^2+16}} \, dx$