Explicit Instruction in Mathematics

Sarahpowellphd.com
 Evidence-based mathematics resources for educators

 Home About Resources Presentations Videos Contact

srpowell@austin.utexas.edu

@sarahpowellphd

Broad math in preK predicted K broad math

Broad math in preK predicted grade 10 broad math

Counting in K predicted grade 1 broad math

Broad math in K predicted grade 8 broad math

K math accurately predicted math performance below $10^{\text {th }}$ percentile in grades 2 and 3 with 84% correct classification

Broad math in grade 8 predicted completion of 4-year college degree

Students who took algebra in grades 8 took more advanced math courses and enrolled in 4-year colleges more often than students who took algebra in grade 9

Numeracy measured in adolescence impacted hourly earnings 7 to 15 years later

Mathematics in high school predicts later outcomes

Mathematics in preschool predicts later mathematics

Mathematics in kindergarten predicts later mathematics

Mathematics in

 elementary school predicts later mathematicsMathematics in middle school predicts later mathematics

Mathematics in high school predicts later outcomes

Intensive Intervention in Mathematics
Sarah R. Powell
University of Texas at Austin
Lynn S. Fuchs
Vanderbilt University

Abstract

tics difficulties and whose performance is - mantrate persistent matics difficulties ive intervention is an individuStudents who demonstrate persire intensive interveniond concentrated than Tier 2 intervention severely below grade level require is more demanding and concenteachers should consider when alized approach efforts. We present the elem, and monitoring intensive inent. We also bighlight stater which planning for, implementing, evidence from validated intervenesive intervention, one or whed by these elemens ins instruction. We provide worm and the other which is completely for intensifying or intenssfom a Tier 2 intervention platorn and intensive intervention in mathernatic. a teacher. We conclude

INTERVENTION IN MATHEMATICS

INTENSIVE.
The mathematics performance of at-risk intervention provided proved with a secondaryt i.e., support (e.g., Bryant, Bryant, within a multitiered syst Chavez, 2008a; Fuchs, Fuchs, Cred Gersten, Scam 2008). Some students, however, reqstrate pet dock, et al., iervention. For students who tudents whos than a fier 2 mematics difficuity (MD), that is, who whe not sistent mathe is severely below grade levise intervention is performance tier 2 intervention, is is introduce readers responded to purpose of this article is to itudents with MD. necessary. Our model of intensive interven of student (Fuchs, Fuchs, instruction based on the need Wanzek, 2014; Wehby \& Kem. \& Vaughn, 2014; Vaughn \& Win, occurs at Tier 3 within 2014). This individualization of support (Stecker, Fuchs, \& the typical thr
Fuchs, 2008).
. Tier 3 interventonagogy are substantially different fromse ics content and pedagogy and 2 . This is necessary because that delivered at Tiers 1 and intensive intervention when ina student only enters Tier 3 at previous tiers have provens structional models meeting the student's needs. frequent progress unsuccessful in mee intensive intervention, frequent progering alized approach to intial. Teachers' use progress-monout the monitoring is individualized, data-based decisionsly differen data to mis instructional program. Ter 3 is a standard (nonin students 2 intervention, which involves a single approach that is from her 2 d) program, repre packaged in a manual.
packaged Requests for reprints stould be sentit to sianal of Texas at Austin
dla austinutexas.edu
id) intervention should be buil The intensive (individualized) starting with a validated Tier upon existing structures, 2 program when avallaber 2 program is used as a platorm Gersten, 2014). The Thich the teacher modies progressa starting point from whion, in response to ongoing progressdated, standard to to formatively develop ind 2 program monitoring data, It is important that the ficits for the inintensive ind and adress key mathematics det there is positive be validated adent. By validated, we mean well-conducted randividuar se, collected during at least one wimproves the matheevidenized control trial, that the program in Tier 2 intervention. donics outcomes of students widherer to a Tier 2 program to To be clear, in this article, we program is implemented denote its use at Tier 2, where the progres under which it was with fidelity according to the procedares intervention, we use the validated. For its use in a validated Tier 2 program that is erm platform to den a student's individual needs (am is modified in Ther 3 to mich the individualization program is the platform from
built).
When selecting a Tier 2 intervention program intervention, latform (i.e., starting point) for Tier 3 intensive interven proit is important to consider whether the validated program pro 3 evidence of efficacy for students with very seve Acavides evidenD (Fuchs, Fuchs, \& Malone, Zational Center on persister Invention Tools Chart from the Nervention.org) prodemic intervervention (www.intensive of mathematics interIntensive Intertions of efficacy studies of mathematics Intervention vention programs, with summaries ortunity to report disagvevelopers are provided with the oppory low mathematics perdeveloper results for students with very gregated re from the larger sample of ai-fisk stath demonstrated included in the study. Selecting a progreases the likelihood of success for very low performers history of poor response.

Let's think about designing the instructional platform...

Fluency

Fluently add and subtract
within 5.

\(\left.$$
\begin{array}{c|c|c} & \text { Add and } \\
\text { Fluently add } \\
\text { and subtract } \\
\text { within 5. }\end{array}
$$ \begin{array}{c}within 20,

demonstratin

gfluency for

addition and

subtraction

and subtract

within 100

using\end{array}\right\}\)| strategies |
| :---: |
| based on |
| place value, |
| properties of |
| operations, |
| and/or |

Sarahpowellphd.com

Fluently add			
and subtract			
within 5.	Add and subtract within 20, demonstratin g fluency for addition and subtraction within 10.	Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or relationships.	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division...

Sarahpowellphd.com

Fluently add and subtract within 5.	Add and subtract within 20, demonstratin g fluency for addition and subtraction within 10.	Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or relationships.	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division...	Fluently add and subtract multi-digit whole numbers using the standard algorithm.	Fluently multiply multi-digit whole numbers using the standard algorithm.	Fluently add, subtract, multiply, and divide multidigit decimals using the standard algorithm.

Place Value

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.

Use place value understanding to round whole numbers to the nearest 10 or 100 .

Sarahpowellphd.com

Problem Solving

Solve realworld and mathematical problems leading to two linear equations in two variables.
fractions...

Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations...

Solve word

 problems that call for addition of three whole numbers whose sum is less than or| multiplication | equal to $20 \ldots$ |
| :--- | :--- |
| and division | |
| within 100 to | |
| solve word | |
| problems... | |
| | |
| | |

Sarahpowellphd.com

Sarahpowellphd.com

Let's think about designing the instructional platform...

An intervention (i.e., packaged program) that has shown consistent and positive results

Instruction
 Lesson 5: Crossing Decades

Skill	Objective(s)
Ordering and Comparing Numbers	- Students will identify 1- and 2- digit numbers. •Students will identify the missing number in 3-number sequences.

Vocabulary

- Count up: A strategy to find a number missing from the middle or end of a 3 -number sequence. Students count forward from the least number.
- Count down: A strategy to find a number missing from the beginning of a 3 -number sequence. Students count backward from the greatest number

Materials

- Wipe board (T \& S)
- Hundreds chart (T\&S)
- Dry-erase marker (T \& S)
- Teacher \& Student Master,
pp. 9-10

Week 1: The Big Parade

Day: 1, 2, 3, 4
Common Core Domains and Clusters Addressed:
Counting and Cardinality

- Know Number Names and the Count Sequence
- Count to tell the Number of Objects

- Compare numbers

Numbers and Operations in Base Ten

- Extend the Counting Sequence
- Understand Place Value

The new apprentice arrives in NumberShire and everyone is excited! The villagers decide to throw a parade, but they need help organizing it. Example lessons include comparing groups of floats in the parade and helping Minstrel Max bundle stacks of coins into a ten so that he can help fund the parade.

evidence-based strategy

$\begin{array}{r}9 \\ \times \quad 6 \\ \hline 54\end{array}$	$\begin{array}{r}8 \\ \times \quad 6 \\ \hline 48\end{array}$
$\begin{array}{r} 7 \\ \times 8 \\ \hline 56 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times \quad 5 \\ \hline 30\end{array}$
$\begin{array}{r} 9 \\ \times \quad 9 \\ \hline 81 \end{array}$	$\begin{array}{r}7 \\ \times \quad 9 \\ \hline 63\end{array}$
$\begin{array}{r} 6 \\ \times 7 \\ 42 \end{array}$	8 $\times \quad 5$ 40
$\begin{array}{r}8 \\ \times 8 \\ \hline 64\end{array}$	$\begin{array}{r}7 \\ \times \quad 7 \\ \hline 49\end{array}$

evidence-based strategy

Assessment data to show results

Improvement from before intervention

Improvement compared to no treatment students

Replication
Multiple researchers

Multiple students
Multiple times

Setting and students similar to your own

Modeling

Clear
Explanation
Planned
Examples

Practice

Guided
Practice
Independent
Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Goal and importance

Modeling

Clear

Explanation
Planned Examples
"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."
"Let's continue working with our three-dimensional shapes and volume. Understanding volume and calculating volume helps with measuring capacity."

Goal and importance

Modeling

Clear

Explanation
Planned
Examples

Model steps

"To solve 26 plus 79, I first decide about the operation. Do I add, subtract, multiply or divide?"
"The plus sign tells me to add. So, I'll add 26 plus 79. I'll use the partial sums strategy. First, I add 20 plus 70. What's 20 plus 70?"
" 20 plus 70 is 90 . I write 90 right here under the equal line. Where do I write 90?"
"Then I add 6 plus 9. What's 6 plus 9?"
" 6 plus 9 is 15 . So, I write 15 here."
"Finally, we add the partial sums: 90 and 15.90 plus 15 is 105 . So, 26 plus 79 equals 105."

Goal and importance

Modeling

Clear
Explanation
Planned
Examples

Model steps

With examples

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."
$24 / 6$
$28 \div 7$
$3 5 \longdiv { 5 }$

Goal and importance

Modeling

Clear
Explanation
Planned
Examples

Model steps

With examples

With non-examples

"Today, we are learning about division. This is important because sometimes you have to share objects or things with your friends."

$$
32 \div 8 \quad 42 \div 7 \quad 25-5
$$

Modeling

Clear
Explanation
Planned
Examples

Goal and importance

Model steps

With examples

With non-examples

Design modeling
$18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3$

Modeling

Clear
Explanation
Planned
Examples

Practice

Guided
Practice
Independent
Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Practice

Guided
Practice
Independent Practice

Practice

Teacher and student practice together

Independent Practice

Practice

Guided
Practice
Independent
Practice

Student practices with teacher support

Practice

Guided
Practice
Independent
Practice

Design practice

$$
18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3
$$

Modeling

Clear
Explanation
Planned
Examples

Practice

Guided
Practice
Independent
Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Low-level and high-level

"What is 7 times 9?"
"Which shape has 6 sides?"
"What do you do when you see a word problem?"
"Why do you have to regroup?"
"How would you solve this problem?"
"Why do you have to use zero pairs?"

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Low-level and high-level

Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

"Turn and discuss the formula for perimeter with your partner."
"Write the multiplication problem on your whiteboard."

Supports

- Asking the right questions

Eliciting frequent responses

- Providing immediate specific feedback
- Maintaining a brisk pace

Low-level and high-level

Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

Affirmative and corrective

Supports

- Asking the right questions
- Eliciting frequent responses

Providing immediate specific feedback

- Maintaining a brisk pace
"Good work using your word-problem attack strategy."
"Let's look at that again. Tell me how you added in the hundreds column."

Low-level and high-level

> Classwide, individual, partner, write on paper, write on whiteboard, thumbs up, etc.

Affirmative and corrective

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback Maintaining a brisk pace

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Design supports

$$
18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3
$$

Modeling

Clear
Explanation
Planned
Examples

Practice

Guided
Practice
Independent
Practice

Supports

- Asking the right questions
- Eliciting frequent responses
- Providing immediate specific feedback
- Maintaining a brisk pace

Modeling Practice

Supports

Introduction of material

Review of material
Modeling Practice

Supports

How do you use explicit instruction?

Model steps using concise language
\square Provide guided practice opportunities
\square Provide independent practice opportunities
Use supporting practices during modeling and practice
\square Ask the right questions
\square Elicit frequent responses
\square Provide feedback
\square Be planned and organized

Validated Intervention
Program (e.g. Tier2,
Standard Protocol,

Instructional Platform

INSTRUCTIONAL DELIVERY

Precise language

INSTRUCTIONAL STRATEGIES

Use formal math language

Use terms precisely

1. Some math terms are shared with English but have different meanings

Sarahpowellphd.com

1. Some math terms are shared with English but have different meanings
difference

Sarahpowellphd.com

1. Some math terms are shared with English but have different meanings
2. Some math terms are shared with English with similar meanings (but a more precise math meaning)
3. Some math terms are only used in math
4. Some math terms are shared with English but have different meanings
5. Some math terms are shared with English with similar meanings (but a more precise math meaning)
6. Some math terms are only used in math
7. Some math terms have more than one meaning

8. Some math terms are shared with English but have different meanings
9. Some math terms are shared with English with similar meanings (but a more precise math meaning)
10. Some math terms are only used in math
11. Some math terms have more than one meaning
12. Some math terms are similar to other content-area terms with different meanings
divide vs. Continental Divide
variable vs. variably cloudy
13. Some math terms are shared with English but have different meanings
14. Some math terms are shared with English with similar meanings (but a more precise math meaning)
15. Some math terms are only used in math
16. Some math terms have more than one meaning
17. Some math terms are similar to other content-area terms with different meanings
18. Some math terms are homographs

sum vs. some
base vs. bass
19. Some math terms are shared with English but have different meanings
20. Some math terms are shared with English with similar meanings (but a more precise math meaning)
21. Some math terms are only used in math
22. Some math terms have more than one meaning
23. Some math terms are similar to other content-area terms with different meanings
24. Some math terms are homographs
25. Some math terms are related but have distinct meanings

26. Some math terms are shared with English but have different meanings
27. Some math terms are shared with English with similar meanings (but a more precise math meaning)
28. Some math terms are only used in math
29. Some math terms have more than one meaning
30. Some math terms are similar to other content-area terms with different meanings
31. Some math terms are homographs
32. Some math terms are related but have distinct meanings
33. An English math term may translate into another language with different meanings
34. Some math terms are shared with English but have different meanings
35. Some math terms are shared with English with similar meanings (but a more precise math meaning)
36. Some math terms are only used in math
37. Some math terms have more than one meaning
38. Some math terms are similar to other content-area terms with different meanings
39. Some math terms are homographs
40. Some math terms are related but have distinct meanings
41. An English math term may translate into another language with different meanings
42. English spelling and usage may have irregularities
43. Some math terms are shared with English but have different meanings
44. Some math terms are shared with English with similar meanings (but a more precise math meaning)
45. Some math terms are only used in math
46. Some math terms have more than one meaning
47. Some math terms are similar to other content-area terms with different meanings
48. Some math terms are homographs
49. Some math terms are related but have distinct meanings
50. An English math term may translate into another language with different meanings
51. English spelling and usage may have irregularities
52. Some math concepts are verbalized in more than one way
53. Some math terms are shared with English but have different meanings
54. Some math terms are shared with English with similar meanings (but a more precise math meaning)
55. Some math terms are only used in math
56. Some math terms have more than one meaning
57. Some math terms are similar to other content-area terms with different meanings
58. Some math terms are homographs
59. Some math terms are related but have distinct meanings
60. An English math term may translate into another language with different meanings
61. English spelling and usage may have irregularities
62. Some math concepts are verbalized in more than one way
63. Informal terms may be used for formal math terms
rhombus vs. diamond
vertex vs.
corner
64. Some math terms are shared with English but have different meanings
65. Some math terms are shared with English with similar meanings (but a more precise math meaning)
66. Some math terms are only used in math
67. Some math terms have more than one meaning
68. Some math terms are similar to other content-area terms with different meanings
69. Some math terms are homographs
70. Some math terms are related but have distinct meanings
71. An English math term may translate into another language with different meanings
72. English spelling and usage may have irregularities
73. Some math concepts are verbalized in more than one way
74. Informal terms may be used for formal math terms

Use formal math language

Use terms precisely

Design language

$$
18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3
$$

How do you attend to mathematical language?

\square Understand formal mathematical language
\square Plan for mathematical language to be precise
\square Plan for mathematical definitions to be concise

Three-dimensional objects

Two-dimensional images

Modeling Fractions with Cuisenaire Rods

Numerals, symbols, and words

Concrete
 Pictorial

$$
2+8=10
$$

$34=3$ tens and 4 ones

$$
x-6=8
$$

$$
4,179
$$

$$
\begin{array}{r}
569 \\
\hline
\end{array}
$$

Design multiple representations

$$
18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3
$$

How do you use multiple representations?

\square Use three-dimensional concrete materials
\square Use two-dimensional representations
\square Ensure students understand mathematics with numbers and symbols (i.e., the abstract)

Addition

100 addition basic facts

- Single-digit addends sum to a single- or double-digit number

5	(addend)
$+\quad 4$	$($ addend)
9	$($ sum $)$

Addition: Part-Part-Whole (Total)

Count one set, count another set, put sets together, count sum

$2+3=5$

Addition: Join (Change Increase)

Start with a set, add the other set, count sum

$$
2+3=5
$$

Total

Parts put together into a total

- Angie saw 4 cardinals and 5 blue jays. How many birds did Angie see?

$$
4+5=?
$$

Change

An amount that increases or decreases

- Pam had \$4. Then she earned \$3 for cleaning her room. How much money does Pam have now?

$$
4+3=\text { ? }
$$

Subtraction

100 subtraction basic facts

- Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

16
$-\quad 8$
8

(minuend)
(subtrahend)
(difference)

Subtraction: Separate (Change Decrease)

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Subtraction: Compare (Difference)

Compare two sets, count difference

$5-3=2$

Change

An amount that increases or decreases

- Amanda had 9 cookies. Then she ate 2 of the cookies. How many cookies does Amanda have now?

$$
9-2=\text { ? }
$$

Difference

Greater and less amounts compared for a

- Scott has 9 apples. Cathy has 4 apples. How many more apples does Scott have? (How many fewer does Cathy have?)
- $9-4=$

Multiplication

100 multiplication basic facts

- Multiplication of single-digit factors results in a single- or doubledigit product

2	(factor)
$\times \quad 3$	(factor)
6	(product)

Multiplication: Equal Groups

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Multiplication: Array/Area

Make the array, count product

$3 \times 2=6$

Multiplication: Comparison

Show a set, then multiply the set

$3 \times 2=6$

Equal Groups

Groups multiplied by number in each group for a product

- Carlos has 2 bags of apples. There are 6 apples in each bag. How many apples does Carlos have altogether?
- $2 \times 6=$?

Comparison

Set multiplied by a number of times for a product

- Beth picked 6 apples. Amy picked 2 times as many apples as Beth. How many apples did Amy pick?
- $6 \times 2=$?

Division

90 division basic facts

- Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

8	\div	4
(dividend)	2	
(divisor)		

Division: Equal Groups (Partitive Division)

Show the dividend, divide equally among divisor, count quotient

Division: Equal Groups (Measurement Division)

Show the dividend, make groups of the divisor, count groups

$$
6 \div 3=2
$$

Equal Groups

Groups multiplied by number in each group for a product

- Carlos has 12 apples. He wants to share them equally among his 2 friends. How many apples will each friend receive?
- $2 \times$? $=12$
- Carlos has 12 apples. He put them into bags containing 6 apples each. How many bags did Carlos use?
- ? $\times 6=12$

File Folder

$1+7=$	9
$6+4=$	8
$7+3=$	10
$2+7=$	10
$5+6=$	9
$4+7=$	11
$7+8=$	11
$6+7=$	15
$7+9=$	13
$7+6=$	16
$8+7=$	13
$7+0=$	15
$9+6=$	7
$6+0=$	15
$6+8=$	6
	14

$\begin{array}{r} 6 \\ \times \quad 5 \\ \hline \end{array}$	$\begin{array}{r}8 \\ \times 6 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r} 6 \\ \times \quad 8 \\ \hline \end{array}$
$\begin{array}{r}9 \\ \times \quad 8 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 5 \\ \hline\end{array}$	$\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r} 6 \\ \times \quad 6 \\ \hline \end{array}$
$\begin{array}{r} 7 \\ \times \quad 7 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r} 8 \\ \times \quad 4 \\ \hline \end{array}$
$\begin{array}{r} 9 \\ \times \quad 4 \\ \hline \end{array}$	$\begin{array}{r}6 \\ \times \quad 9 \\ \hline\end{array}$	$\begin{array}{r}9 \\ \times \quad 5 \\ \hline\end{array}$	$\begin{array}{r}8 \\ \times \quad 7 \\ \hline\end{array}$
$\begin{array}{r} 6 \\ \times \quad 7 \\ \hline \end{array}$	$\begin{array}{r}8 \\ \times \quad 8 \\ \hline\end{array}$	$\begin{array}{r}4 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r}5 \\ \times \quad 7 \\ \hline\end{array}$

eat. ATAT $\mathrm{F} \quad 9: 47 \mathrm{PM} \quad 82 \%$ 四

math foct master
∞
©000

$6=$

Addition

Subtraction

Multiplication

Division

Design fluency

$$
18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3
$$

How do you build fact fluency?

\square Teach the concepts of the operations
\square Teach strategies to understand how facts fit together
\square Practice building fluency with a variety of activities and games

Don't tie key words to operations

Do have an attack strategy

SOLVE

Study the problem.
Organize the facts.
Line up the plan.
Verify the plan with computation.
Examine the answer.

SIGNS

Survey questions
Identify key words
Graphically draw problem
Note operations
Solve and check

Schemas

When teaching about word problems, students should learn the schema of the word problem.

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

> | > { Design problem solving } | | |
| :--- | :---: | :---: |
| > $18 \div 3 \quad 1 / 2+3 / 4 \quad 2 x-5=3$ > | | |

How do you incorporate effective problem-solving

 strategies?\square Don't use key words tied to operations
\square Do teach students an attack strategy
\square Do teach students schemas
\square Do explicitly teach problem solving
\square Do provide problem-solving instruction regularly (i.e., several times a week)
\square Do practice schemas that students will encounter regularly

Sarahpowellphd.com
 Evidence-based mathematics resources for educators

 Home About Resources Presentations Videos Contact

srpowell@austin.utexas.edu

@sarahpowellphd

