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SUMMARY

NOX1 and DUOX2 are the first inactivating missense variants
to be associated with very early onset inflammatory bowel
disease (VEOIBD). Defective reactive oxygen species pro-
duction from intestinal epithelial cells constitutes a risk
factor for VEOIBD development.

BACKGROUND & AIMS: Defects in intestinal innate defense
systems predispose patients to inflammatory bowel disease
(IBD). Reactive oxygen species (ROS) generated by
nicotinamide-adenine dinucleotide phosphate (NADPH) oxi-
dases in the mucosal barrier maintain gut homeostasis and
defend against pathogenic attack. We hypothesized that mo-
lecular genetic defects in intestinal NADPH oxidases might be
present in children with IBD.

METHODS: After targeted exome sequencing of epithelial NADPH
oxidases NOX1 and DUOX2 on 209 children with very early onset
inflammatory bowel disease (VEOIBD), the identified mutations
were validated using Sanger Sequencing. A structural analysis of
NOX1 and DUOX2 variants was performed by homology in silico
modeling. The functional characterization included ROS genera-
tion in model cell lines and in in vivo transduced murine crypts,
protein expression, intracellular localization, and cell-based
infection studies with the enteric pathogens Campylobacter
jejuni and enteropathogenic Escherichia coli.

RESULTS: We identified missense mutations in NOX1
(c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn) and DUOX2
(c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys) in 5 of
209 VEOIBD patients. The NOX1 p.Asp360Asn variant was
FLA 5.2.0 DTD � JCMGH51 proof � 1
replicated in a male Ashkenazi Jewish ulcerative colitis cohort.
All NOX1 and DUOX2 variants showed reduced ROS production
compared with wild-type enzymes. Despite appropriate cellular
localization and comparable pathogen-stimulated translocation
of altered oxidases, cells harboring NOX1 or DUOX2 variants
had defective host resistance to infection with C. jejuni.

CONCLUSIONS: This study identifies the first inactivating
missense variants in NOX1 and DUOX2 associated with VEOIBD.
Defective ROS production from intestinal epithelial cells
constitutes a risk factor for developing VEOIBD. (Cell Mol Gas-
troenterol Hepatol 2015;-:-–-; http://dx.doi.org/10.1016/
j.jcmgh.2015.06.005)

Keywords: Inflammatory Bowel Disease; NADPH Oxidase; NOX1;
DUOX2; Reactive Oxygen Species; VEOIBD.
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Iassociated with genetic predisposition and environ-
mental factors, is characterized by recurrent intestinal
inflammation and microbial dysbiosis. Genomewide associ-
ation studies link adult IBD to alterations in genes involved
in host-microbe interactions.1,2 Nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase-generated reac-
tive oxygen species (ROS) are intrinsic to the antimicrobial
host defense system of professional phagocytes. Defective
ROS production in patients with chronic granulomatous
disease (CGD), a rare genetic disorder caused by inactivating
alterations of genes required for formation of the penulti-
mate phagocyte oxidase complex (CYBB, CYBA, NCF1, NCF2,
NCF4), confers susceptibility to life-threatening bacterial
and fungal infections.3 Up to 40% of CGD patients develop
inflammatory colitis that mimics Crohn’s disease.4 Genetic
variants in NCF4 and NCF2 that lead to partial attenuation in
phagocyte oxidase (NADPH oxidase 2, NOX2) function
without causing CGD have been associated with adult and
very early onset IBD (VEOIBD).5,6 We have recently shown
that single-nucleotide polymorphisms (SNPs) and rare
hypomorphic variants in all components of the NOX2
NADPH oxidase complex are associated with VEOIBD.7

A role for ROS production by intestinal epithelial cells in
mucosal barrier function and intestinal homeostasis is just
emerging.8 The predominant source of ROS in the lining of
the gastrointestinal tract is the NADPH oxidases NOX1
(NADPH oxidase 1) and DUOX2 (dual oxidase 2), with NOX1
expression restricted mainly to colon, caecum, and ileum,
whereas DUOX2 can be found in all segments of the gut.9

NOX1 and DUOX2 are the catalytic subunits of multimeric,
membrane-bound enzymes that generate upon stimulation
superoxide and hydrogen peroxide by transfer of electrons
from NADPH to molecular oxygen. We10 and others11–13

have reported NOX1/DUOX2-mediated ROS production in
the intestine and its effect on bacterial pathogenicity and
barrier integrity. Here, we describe the identification and
characterization of missense mutations in NOX1
(NM_007052.4, location Xq22) and in DUOX2 (NG_016992,
location 15q15.3) in patients diagnosed with VEOIBD.

Materials and Methods
Study Design

All results are presented according to the STrengthening
the REporting of Genetic Association Studies (STREGA)
guidelines.14 Fifty-nine IBD patients diagnosed under the
age of 6 years were sequenced for NOX1 and DUOX2 by
targeted exome sequencing using Agilent SureSelect
target enrichment and sequencing (Agilent Technologies,
Santa Clara, CA) on the Illumina HiSeq 2000/2500 (Illumina,
San Diego, CA) with exon primer and sequencing pro-
tocols designed by the Beckman Coulter Genomics
(beckmangenomics.com; Beckman Coulter, Brea, CA) as
described previously elsewhere.15 Sanger sequencing was
used to verify all genetic defects identified using targeted
sequencing of the NOX1 and DUOX2 genes at the Centre for
Applied Genomics (TCAG; http://www.tcag.ca; Hospital for
Sick Children, Toronto, ON, Canada).
FLA 5.2.0 DTD � JCMGH51 proof � 1
Single-nucleotide and insertion/deletion (indel) variants
identified by targeted exome sequencing and validated by
Sanger sequencing were automatically scanned and manu-
ally verified. Furthermore, all variants were also validated
using Taqman performed by the Centre for Applied Geno-
mics, Hospital for Sick Children.15,16 Function and minor
allele frequency (MAF) were searched for using the National
Heart, Lung, and Blood Institute Exome Sequencing Project
(ESP) Exome Variant Server (http://evs.gs.washington.edu/
EVS/), the National Center for Biotechnology Information
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), the
National Institute of Environmental Health Sciences FuncPred
(http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm), Polyphen2
(http://genetics.bwh.harvard.edu/pph2/),17 SIFT (http://
sift.jcvi.org/),18 FastSNP (http://fastsnp.ibms.sinica.edu.tw/),19

Human Splicing Finder (http://www.umd.be/HSF/),20 and
pfSNP (http://pfs.nus.edu.sg/).21

Setting
Patients included in the study were recruited from the

Inflammatory Bowel Disease Clinic at the Hospital from Sick
Children, University of Toronto. They were diagnosed with
VEOIBD between the years 1994 and 2012 and had a
confirmed diagnosis of IBD before the age of 6 years.
Although there is no consensus on the definition of VEOIBD,
we have used the stricter definition based on our recent
modification (diagnosis <6 years of age)5,22,23 of the Paris
classification (<10 years of age excluding <2 year old).24

Our definition, which is more stringent and includes more
severe cases that are more likely to cause monogenic forms
of the disease, has been used to identify risk variants in this
age group. There were no exclusion criteria for patients
diagnosed with VEOIBD; however, patients with a known
immunodeficiency or a clinical diagnosis of CGD were
excluded because these patients were not defined as
VEOIBD. The five identified patients were screened and
were found negative for pathogenic mutations in IL10RA,
L10RB, IL10, XIAP, TTC7A, as well as genes involved in CGD
(RAC1/2, NCF1/2/4, and CYBB)23,25 and NOD2 and ATG16L1
variants associated with IBD.

Participants
This was a cohort study that examined the genetics of

VEOIBD patients. Fifty-five VEOIBD patients were recruited
from the Hospital for Sick Children, Toronto, Canada. A
second cohort of VEOIBD patients was recruited through
NEOPICS (www.NEOPICS.org). The replication cohort
comprised 1477 Crohn’s disease cases, 559 ulcerative colitis
cases, and 2614 healthy controls, all with genetically veri-
fied Ashkenazi Jewish ancestry by principal components
analysis.

Standard quality control procedures were applied, and
we performed association testing using Fisher’s exact
method, stratified by gender in 297 male ulcerative colitis
(UC) cases, 262 female UC cases, 1708 male controls, and
906 female controls. Phenotypic information and DNA
samples were obtained from the study participants with
approval of the institutional review ethics board for IBD
0 July 2015 � 11:36 pm � ce VJW
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genetic studies at the Hospital for Sick Children and Mount
Sinai Hospital Toronto.

Later onset UC cases were recruited through the
National Institute of Diabetes and Digestive and Kidney
Diseases Inflammatory Bowel Disease Genetics Consortium,
the Cedars-Sinai Medical Center IBD Center in California and
Mount Sinai Hospital in New York. Replication cohorts had
ethics board approval for genetic and phenotypic studies at
the individual institutions. Written informed consent was
obtained from all participants/parents.

H&E and Periodic Acid–Schiff Staining in Patient
Biopsy Samples

Colonic biopsy samples were fixed in 10% formaldehyde
without methanol and afterward embedded in paraffin. For
H&E staining, embedded paraffin tissues on slides were
deparaffinized with xylene and afterward rehydrated with
different percentages of ethanol. The slides were stained for
5 minutes with Meyer’s hematoxylin (Fisher Scientific, Fair
Lawn, NJ) for nuclei and counterstained with eosin-Y (Fisher
Scientific) for cytoplasm. Slides were mounted in Entellan
(EMD Millipore, Billerica, MA). Photographs were taken
using an epifluorescence light microscope (Leica Micro-
systems, Buffalo Grove, IL) and adjusted for brightness,
contrast, and pixel size in Adobe Photoshop CS5 version
12.0 (Adobe System, San Jose, CA).

Modeling and Docking Procedure
Three-dimensional (3D) models of C-terminal domains

of NOX1 and DUOX2 were generated using the homology
modeling program Modeller 9v11 (http://www.salilab.org/
modeller/).26 Blast of PDB was performed with the NOX1
FAD-binding domain, and a combination of several homol-
ogous structures served together with the 3D X-ray struc-
ture the NOX2 NADPH binding domain (PDB ID: 3A1F) as
initial template. The modeling was performed with default
parameters using the “allHmodel” protocol to include
hydrogen atoms and the “HETATM” protocol to include FAD
and NADPH. To compare the FAD and NADPH binding
interaction between wild-type (WT) and sequence altered
oxidases, the docking runs were performed with
HADDOCK.27,28 Docking was performed with most of the
parameters set to default using the Web server version of
HADDOCK with a Guru interface. To gain the Van der Waals,
electrostatic, and desolvation energy for each enzyme - FAD
or -NADPH model, HADDOCK automatically performed the
molecular dynamics before and after each docking trial by
including water into the calculation (detailed modeling
procedure, publication in preparation).

Cell Culture and Transfection
Model cell lines were employed as intestinal epithelial

cell lines, and primary colon cells express endogenous NOX1
and DUOX2. Cos7 cells are a suitable model system for
NOX1-based oxidase reconstitution as they lack any func-
tional NADPH oxidases, and NCI-H661 cells serve as a
physiologically relevant model for DUOX oxidases.29 Cos7
cells stably expressing p22phox 30 were maintained in
FLA 5.2.0 DTD � JCMGH51 proof � 1
Dulbecco’s modified Eagle’s medium with 10% fetal bovine
serum; for NCI-H661 cells stably expressing DUOXA2,29

RPMI 1640 medium with 10% fetal bovine serum was
used. Human NOX1 was cloned into pcDNA3.1 with and
without the N-terminal Myc epitope tag including a linker
sequence. Human influenza hemagglutinin (HA)-tagged hu-
man DUOX2 in pcDNA3.1 was prepared by cloning the HA
tag between amino acids D27 and A28. Mutations were
introduced using site-directed mutagenesis and were veri-
fied by sequencing. NOX1 WT and missense variants were
transiently transfected with NOXA1 and Myc-NOXO1 into
Cos-p22phox cells (24 hours). HA-tagged DUOX2 WT and
missense variants were transiently transfected into H661-
DUOXA2 cells or together with DUOXA2 into Cos7 cells
using X-tremeGENE (Roche Applied Science, Indianapolis,
IN) (48 hours). For analysis of DUOX2 localization upon
bacterial challenge, HT29 colon epithelial cells expressing
endogenous NOX1 and NOD2 were stably transduced with
lentivirus encoding for HA-tagged DUOX2 WT, DUOX2
R1211C, and DUOX2 R1492C in combination with WT
DUOXA2.

Protein Isolation and Western Blotting
Cells were lysed in radioimmunoprecipitation assay

buffer and after gel electrophoresis and blotting, mem-
branes were probed with a-HA (Covance Laboratories,
Princeton, NJ), a-DUOX2,31 a-Myc (9E10), a-NOXA1,31

a-NOX1,32 a-p22phox FL-195 (Santa Cruz Biotechnology,
Dallas, TX), a-calnexin (BD Biosciences, San Jose, CA), and
horseradish peroxidase-conjugated anti-rabbit or anti-
mouse antibody (SouthernBiotech, Birmingham, AL).
Proteins were visualized using electrochemiluminescence
reagent (Pierce Biotechnology, Rockford, IL). Immunoblot-
ting of p22phox or calnexin served as control.

ROS Assays
Superoxide production (NOX1) was measured using

luminol enhanced chemiluminescence and stimulation with
1 mg/mL phorbol 12-myristate 13-acetate (PMA) for 30
minutes.33 Luminescence was measured on a Berthold
Centro 960 LB in white 96-well plates. The chem-
iluminescence (relative light units, DRLU) readings were
standardized against cellular protein (BCA assay).

H2O2 production (DUOX2) was measured using the
homovanillic acid assay and addition of 1 mM thapsigargin.34

H2O2 production was standardized to H2O2 standard curves
and cell lysate protein concentration. empty vector trans-
fection served as the control. For crypt ROS assays, Nox1�/�

mice (Jackson Laboratory, Bar Harbor, ME) were transduced
with lentivirus encoding empty vector, NOX1, NOX1 D330N,
and NOX1 P360S. Briefly, the lentiviral titer was determined
relative to p24 particles (QuickTiter Lentivirus Titer Kit; Cell
Biolabs, San Diego, CA), and equal amounts of each lenti-
virus were intrarectally administered to Nox1�/� mice.
Crypts were isolated from the intestine of euthanized mice
24 hours after lentiviral administration.

PMA-stimulated superoxide production was mea-
sured using L-012 enhanced chemiluminescence, and
0 July 2015 � 11:36 pm � ce VJW
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Table 1.List of Variants Found in NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel Disease Patients

Gene Variant rs #
MAF/Minor
Allele Count*

CADD Rank
Score

Age at
Diagnosis (y) Gender Diagnosis

Patient
Summary

NOX1 c.988G>A
p.P330S

Novel Novel—no data
available

0.40694 1.8 Male IBD-U Severe pancolitis
Granuloma

NOX1 c.967G>A
p.D360N

rs34688635 T ¼ 0.010/16 0.5415 5.3 Female UC Pancolitis
4.7 Male IBD-U Pancolitis

DUOX2 c.4474G>A
p.R1211C

Novel Novel—no data
available

0.90955 4.7 Male IBD-U Severe pancolitis
Colectomy,

perforation
Recurrence of

disease

DUOX2 c.3631C>Tpp.R1492C rs374410986,
Novel

Novel—no data
available

0.9002 4.3 Male UC Pancolitis

Note: CADD, Combined Annotation Dependent Depletion; DUOX2, dual oxidase 2; IBD-U, inflammatory bowel disease
unclassified; MAF, minor allele frequency; NOX1, NADPH oxidase 1; UC, ulcerative colitis.
*The minor allele frequencies are taken from 1000 Genomes of dbSNP.
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standardization was performed against total crypt protein
concentration, as measured by BCA assay. ROS generation
by transduced crypts was performed in two independent
experiments (n ¼ 2–3). Animal experiments were per-
formed with ethics approval and authorization by the reg-
ulatory authority (HPRA, IE).

Flow Cytometry
H661-DUOXA2 cells expressing DUOX2 WT or variants

were incubated with a-HA antibody (Covance Laboratories)
in fluorescence-activated cell sorting buffer on ice for 30
minutes without cell permeabilization. After incubation with
anti-mouse Alexa Fluor 647, the cells were fixed in 1.5%
paraformaldehyde and analyzed on an Accuri C6 flow cy-
tometer (BD Biosciences).

Immunofluorescence
Cells expressing Myc-NOX1 WT or variants were treated

with TAMRA-labeled Campylobacter jejuni for 15 minutes to
visualize localization of NOX1 as described elsewhere10

while DUOX2-DUOXA2-expressing cells were not stimu-
lated. Cells were fixed in 3% paraformaldehyde, per-
meabilized in 0.5% Triton X-100, and stained with a-DUOX2
or a-Myc antibody, followed by goat anti-rabbit or anti-
mouse Alexa Fluor 488 (Invitrogen/Life Technologies,
Carlsbad, CA). HT29 cells expressing DUOX2 WT or
missense variants were seeded on glass coverslips and
treated with 300 mL of a clinical isolate of enteropathogenic
Escherichia coli (EPEC) at optical density OD600 ¼ 1 for 5
hours. Slides were washed, fixed, and permeabilized with
0.1% Triton X-100 and probed with antibodies against HA
tag (Covance) and NOD2 (sc-30199, kind gift by P. Moynagh,
National University of Ireland Maynooth), and 40,6-
diamidino-2-phenylindole (DAPI, blue). Images were ac-
quired using a Zeiss LSM 700 microscope (Carl Zeiss,
Thornwood, NY) and magnification 63� (oil) objective.

Colonic biopsies from control, disease control, and pa-
tients were fixed in 10% formaldehyde without methanol,
FLA 5.2.0 DTD � JCMGH51 proof � 1
embedded in paraffin, and processed for staining. Antigen
retrieval was performed using high pressure-cooking with 1
mM EDTA at a pH 9.0 containing 0.05% Tween 20. After-
ward, slides were blocked for 1 hour at room temperature
with 5% bovine serum albumin in 1x phosphate-buffered
saline (PBS) without calcium and magnesium containing
15% goat serum. Primary antibody incubation was per-
formed overnight at 4�C. On the following day, the stained
slides were washed three times for 10 minutes with 1x PBS
without calcium and magnesium.

Secondary antibody incubation was performed at room
temperature and in darkness for 1 hour. Slides were washed
afterward three times for 10 minutes in darkness. Next,
nuclear counterstaining with Hoechst 33342 Fluorescence
Stain (Thermo Fisher Scientific, Waltham, MA) was per-
formed at a dilution of 1:15,000. Finally, sections were
mounted overnight with Vectorshield fluorescence
mounting medium (Vector Laboratories, Burlingame, CA).
Antibodies a-beta catenin (BD Transduction Laboratories,
BD Biosciences), a-lysozyme (Abcam, Cambridge, MA),
a-CD24 (Abcam), and a-EpCAM (Sigma-Aldrich, St. Louis,
MO) were used at 1:100 dilution. Secondary antibodies
were Alexa fluor 568 goat anti-rabbit and Alexa fluor 488
goat-anti mouse (both Invitrogen/Life Technologies). Im-
ages were acquired with an Olympus IX81 inverted fluo-
rescence microscope (Olympus America, Center Valley, PA)
equipped with a Hamamatsu C9100-13 back-thinned EM-
CCD camera (Hamamatsu Photonics KK, Hamamatsu City,
Japan) and Yokogawa CSU X1 spinning disk confocal scan
head (Yokogawa Electric Corporation, Tokyo, Japan). Images
were adjusted for contrast and brightness using the Volocity
version 6.1.1 software (PerkinElmer Life and Analytical
Sciences, Waltham, MA).
Virulence Assay
Adherence and invasion of C. jejuni 81-176 were

assessed in NOX1 complex or DUOX2-DUOXA2 expressing
Cos7 cells using the gentamicin protection assay.35 Plate
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Gene Variant Chromosome Position rs#
Chromosomal

position

Minor Allele
Frequency
(dbSNP)

Minor Allele
Frequency
(1000G)

Minor Allele
Frequency

(NHLBI exome
variant

frequencies)
ExAC

v0.3 MAF SIFT
SIFT

Prediction

NOX1
(Choice 1)

P330S X 100105285 Novel c.988G>A No MAF data No MAF data No MAF data No MAF data 0.051 Tolerated

NOX1 D360N X 100105195 rs34688635 c.967G>A T¼0.010/16 (1%) T¼0.00529801 0.019881 0.018 0.042 Tolerated

DUOX2 R1211C 15 45389874 rs374410986 c.3631C>T No MAF data No MAF data A¼7.7e-05 A¼0.00004118 0 Damaging

DUOX2 R1492C 15 45386811 Novel c.4474G>A No MAF data No MAF data No MAF data A¼0.00004118 0 Damaging

Gene PolyPhen2
PolyPhen2
Prediction

Mutation
Taster

Mutation
Taster

Prediction
Mutation
Assessor

Mutation
Assessor
Prediction FATHMM

FATHMM
Prediction

LRT
Score

LRT
Prediction GERPþþ PhyloP

CADD
Rank
Score

NOX1
(Choice 1)

1 Probably
Damaging

1 Disease
Causing

3.185 Predicted
Functional
(Medium)

2.44 Tolerated 0 Deleterious 3.87 1.767 0.40694

NOX1 0.085 Possibly
Damaging

0 Polymorphism
Automatic

2.225 Predicted
Functional
(Medium)

-3.09 Damaging 0.000445 Deleterious 3.87 1.767 0.54147

DUOX2 1 Probably
Damaging

1 Disease
Causing

3.37 Predicted
Functional
(Medium)

0 Deleterious 5.69 2.679 0.90955

DUOX2 1 Probably
Damaging

1 Disease
Causing

3.97 Predicted
Functional
(High)

0 Deleterious 5.68 2.838 0.9002
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grown C. jejuni 81-176 was washed and resuspended in
tissue culture medium at OD600¼ 0.4 and added at mul-
tiplicity of infection 1000 to cells, followed by centrifu-
gation at 250g for 5 minutes. After incubation for 3 hours
at 37�C, the nonadherent and cell-associated bacteria were
collected. For invasion, the infected and washed mono-
layers were incubated further with and without genta-
micin (400 mg/mL) and incubated for an additional 2
hours at 37�C. The cells were lysed by the addition of
0.1% Triton X-100 in PBS for 10 minutes at 37�C. Bacterial
counts for each assay were enumerated by serial dilution
plating. All parameters were calculated as the average of
the total number of colony-forming units/total initial
inoculum.

Statistical Analysis
All functional experiments were conducted in triplicate

with three repeats (n ¼ 3), followed by an unpaired Stu-
dent’s t test.

Results
Identification of NOX1 and DUOX2 Variants
in VEOIBD

NOX1 and DUOX2 missense mutations were identified in
five of 59 VEOIBD patients (age �6 years). All five patients
presented with pancolitis without small bowel or perianal
disease at diagnosis. None of the patients had systemic
disease including thyroid disease or chronic infections,
suggesting that defects were confined to the intestinal
epithelium. SNPs and insertion/deletion variants were
confirmed using Sanger sequencing and analyzed for po-
tential function. Exon sequencing (Table 1–2) identified a
novel NOX1 variant (c.988G>A; p.P330S) in one male pa-
tient. Another rare variant (c.967G>A; rs34688635;
p.D360N) was found in one male and one female patient.
The missense variant NOX1 p.P330S is potentially damaging
(Polyphen2 score: 0.995) and unique according to the
Washington Exome Variant Server, while NOX1 p.D360N
was predicted to be “probably damaging” by PolyPhen2 and
was given a maximum evolutionary conservation score of 1
by the PhastCons program using 46 mammalian species.
Variants in DUOX2 were also identified in VEOIBD patients
(Table 1–2). One of the patients was heterozygous for
DUOX2 p.R1211C (c.4474G>A) and developed severe dis-
ease that necessitated colonic resection. The disease sub-
sequently recurred at the resection site, a finding consistent
with Crohn’s disease. The second variant was detected in a
very early onset UC patient heterozygous for DUOX2
Figure 1. (See previous page). Characterization of selected
colonic biopsy samples from an inflammatory bowel disease (IB
D360N variant, and a patient with the DUOX2 R1211C varia
inflammation, increased cellularity of inflammatory cells adjacen
shows severe colitis with architectural distortion (crypt damag
Paneth cell markers lysozyme and CD24 in colonic biopsy samp
and nuclei (blue). Lysozyme was expressed in the crypts of th
control. CD24 is expressed in colonic crypts in the IBD control
the healthy control nor the patient with the NOX1 variant. Scale
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p.R1492C (c.3631C>T; rs374410986), who presented with
pancolitis.

In an independent replication cohort of 150 VEOIBD pa-
tients, none of the NOX1 and DUOX2 missense variants were
identified. Similarly, in the publicly available International
IBD Genetics Consortium (http://www.ibdgenetics.org)
database none of the NOX1 and DUOX2 missense mutations
were identified as this data set does not examine rare vari-
ants, only common polymorphisms, and the p.Asp360Asn
variant is not analyzed by the immunochip.

Therefore, we took an alternate approach employing an
array-based genotyping using the Illumina HumanExome
v1.0 platform of 1477 Crohn’s disease (CD) cases, 559 UC
cases, and 2614 healthy controls, all with genetically veri-
fied Ashkenazi Jewish (AJ) ancestry by principal compo-
nents analysis. Using this approach we detected association
with UC in males at p.D360N in NOX1 (MAFcase ¼ 3.37%,
MAFcontrol ¼ 0.82%; odds ratio 4.22; P ¼ 1.25 � 10�3). The
association was not detected in either of the female AJ UC
cases (MAFcase ¼ 1.53%, MAFcontrol ¼ 0.99%; odds ratio
1.55; P ¼ .343), although the trend was in the same direc-
tion as observed in the AJ males cases. However, this trend
was not observed in Crohn’s disease cases (MAFCD ¼
0.97%). The finding in an adult UC cohort suggests that
pathways/processes involved in VEOIBD will have implica-
tions for adult IBD patients.

Histologic Analysis of NOX1/DUOX2 Variants
Histopathology analysis using HE and PAS staining

(Figure 1A) was performed in biopsies from patients with
the identified DUOX2 p.R1211C variant as well as a patient
with the NOX1 p.D360N variant and compared with the
healthy control and an IBD control biopsy. The disease
control showed features of chronic and regenerative IBD,
demonstrated by metaplastic Paneth cells within colonic
crypts. The patient with the NOX1 p.D360N variant showed
focal inflammation, increased cellularity of inflammatory
cells adjacent to normal areas of unaffected colonic mucosa.
The patient with the DUOX2 p.R1211C variant demon-
strated more severe morphologic changes, with severe
inflammation and crypt damage in the colonic mucosa when
compared with the NOX1 variant.

Immunofluorescence staining was performed on
colonic biopsy samples to determine whether Paneth cell
metaplasia, a feature of chronic and regenerative change
as a consequence of continuous inflammation within the
colon, has occurred. Both markers, lysozyme and CD24,
were highly positive in metaplastic Paneth cells of colonic
crypt enterocytes in the disease control (see Figure 1B).
patient biopsies. (A) HE and periodic acid–Schiff staining of
D) control (Paneth cell metaplasia), a patient with the NOX1
nt. The patient with the NOX1 D360N variant shows focal
t to normal area. The patient with the DUOX2 R1211C variant
e). Scale bar: 20 mm. (B) Immunofluorescence analysis with
les: lysozyme and EpCAM (red), b-catenin and CD24 (green),
e patients as well as the IBD control, but not in the healthy
and the patient with the DUOX R1211C variant, but neither in
bar: 10 mm.
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Topologic Models of NOX1/DUOX2 Variants
The NOX1 NADPH oxidase is formed by hetero-

dimerization of NOX1 with p22phox, followed by assembly
with the regulatory proteins NOXO1, NOXA1, and Rac1-
GTP.8 The cytosolic carboxyl terminus of NADPH oxidases
harbors NADPH and FAD-binding regions, which are
required for electron transport across the membrane via
hemes where molecular oxygen is reduced to form super-
oxide. The identified NOX1 variants are located either just in
front of FAD1 (p.P330S) or inside FAD2 (p.D360N)
(Figure 2A). Pro330 and Asp360 are conserved in NOX1–4
proteins identified in vertebrates and lower organisms.
CYBB missense variants (X-CGD) leading to loss or dimin-
ished ROS generation in neutrophils are located in close
vicinity to the identified NOX1 variants (http://bioinf.uta.fi/
CYBBbase).36 Modeling of NOX1 WT, NOX1 (p.P330S), or
NOX1 (p.D360N) dehydrogenase domains was performed
by combining the crystal structures of FAD-binding domains
homologous to the NOX FAD with the partial structure of the
dehydrogenase domain of NOX2 in the correct orientation
(see Figure 2B).

FAD and NADPH were docked to each NOX/DUOX model
by using HADDOCK. FAD binds to NOX1 WT mainly with
electrostatic interaction to His339 in the FAD1 domain and
Asp360 in the FAD2 domain. Based on the model, Pro330 will
be important for stabilization of the antiparallel b-structure
that creates the FAD1 domain. Although Pro330 is not
directly involved in FAD binding, the change Pro330Ser in
NOX1 alters the position of His339 in the FAD1 domain,
which decreases binding affinity of this variant for FAD.

The second NOX1 residue altered in VEOIBD, Asp360, is
directly involved in FAD binding, and therefore a change to
asparagine (D360N) weakens the interaction between FAD
and NOX1. FAD binds to NOX1 with binding affinity in mM
range; therefore, we predict that small structural changes in
both FAD domains will compromise catalytic activity of the
NOX1 enzyme. Debeurme et al37 reported disrupted FAD
binding and diminished catalytic activity of NOX2 in
selected CYBB variants.
Figure 2. (See previous page). Modeling and functional chara
NOX1 very early onset inflammatory bowel disease (VEOIBD) v
conserved residues (blue). (B) Three-dimensional model of NOX
(pink) dehydrogenase domains. NADPH, FAD, residue H339, an
WT and variants. (D) Protein expression of NOX1 and variants, M
production in murine Nox1�/� crypts transduced with NOX1 W
lation was at 200 seconds. (F) Localization of Myc-NOX1 WT or
bar: 10 mm; arrow indicates membrane localization. (G) Adhes
NOX1 WT, P330S, or D360N. Error bars ± standard deviation n ¼
variants.
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Functional Characterization of NOX1 Variants
As structural analysis predicts that the catalytic activity

of NOX1 variants will be compromised, we reconstituted WT
and altered NOX1 complexes in an epithelial model cell
system (Cos7) deficient in all NOX/DUOX isoforms. Both
NOX1 p.P330S and NOX1 p.D360N variants displayed
diminished catalytic activity (see Figure 2C). Basal and
phorbol ester-stimulated ROS generation was significantly
reduced for NOX1 missense variants (50%–60%), and the
overall protein expression was comparable to WT NOX1
(see Figure 2D).

As patients could not be recalled for colon tissue eval-
uation, catalytic activity of NOX1 variants was also
measured in a murine in vivo expression setting. Nox1
knockout mice were transduced with lentivirus encoding
NOX1 WT and variants intrarectally, and ROS generation of
isolated crypts was recorded 24 hours later. Similar to the
results obtained in cell lines, ROS production in the crypts
was reduced in the NOX1 variants when compared with
NOX1 WT (see Figure 2E).

A reduction in epithelial ROS production will attenuate
host protection from intestinal pathogens. Defective pro-
cessing of responses to mucosal bacteria is recognized to
play a central role in the development and perpetuation of
intestinal inflammation in IBD. C. jejuni in particular has
been associated with the initiation of IBD.38 C. jejuni up-
take was used to visualize infection-associated trans-
location of NOX1 to membrane ruffles and to assess the
antibacterial response.10 Stimulated membrane localiza-
tion of NOX1 WT and NOX1 variants (NOX1 p.D360N
shown) were comparable (see Figure 2F), but reduced
ROS generation caused a 10-fold increase in bacterial in-
vasion when cells harbored the NOX1 p.P330S or NOX1
p.D360N variants with reduced catalytic activity (see
Figure 2G).
Functional Characterization of DUOX2 Variants
Inactivating mutations in DUOX2 or DUOXA2 have been

linked to inherited permanent or transient congenital hy-
pothyroidism,39 and to date over 23 DUOX2 mutations have
been described in this context (HGMD, www.hgmd.cf.ac.uk/
ac/gene) (Figure 3A). The two VEOIBD-associated DUOX2
variants are novel; in contrast to most of the reported
DUOX2 variants, they not located in the peroxidase homol-
ogy domain or the EF hand regions. DUOX2 p.R1221C is
placed in a polybasic region within an intracellular loop, and
Arg1492 in DUOX2 is an integral part of the highly
cterization of NOX1 variants. (A) Topologic model depicting
ariants (red), selected X-CGD CYBB (NOX2) variants (green),
1 wild-type (WT) (grey), NOX1 P330S (green), or NOX1 D360N
d variant positions are marked. (C) ROS production by NOX1
yc-NOXO1, NOXA1, and p22phox as loading control. (E) ROS
T or variants. Phorbol 12-myristate 13-acetate (PMA) stimu-
D360N (green) in C. jejuni (red) infected Cos-p22 cells. Scale
ion and invasion of Campylobacter jejuni in cells expressing
3; *P � .05; **P � .01; ****P � .0001; comparing NOX1WT to
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Figure 3. Modeling and func-
tional characterization of
DUOX2 variants. (A) Topologic
model depicting DUOX2 very
early onset inflammatory bowel
disease (VEOIBD) variants
(red), selected DUOX2 hypo-
thyroidism variants (black), and
conserved residues (blue). (B)
Three-dimensional model of
DUOX2 wild-type (WT) (grey)
and DUOX2 R1492C (pink) de-
hydrogenase domain. NADPH,
FAD, and variant position are
marked. (C) H2O2 release by
DUOX2 WT and variants. (D)
Protein expression of HA-
DUOX2 WT and variants;
calnexin served as loading
control. (E) HA-DUOX2 WT and
variant surface expression by
flow cytometry (left) and locali-
zation by immunofluorescence
(right) (green, arrow for mem-
brane). Scale bar: 10 mm. (F)
Adhesion and invasion of
C. jejuni in cells expressing
HA-DUOX2 WT, R1211C, or
R1492C. Error bars ± standard
deviation, n ¼ 3; *P � .05; **P �
.01; ***P � .001; ****P � .0001;
comparing DUOX2 WT with
variants.
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conserved GRP sequence in the NADPH3 domain (see
Figure 3A).

As described for NOX1, the dehydrogenase domains of
DUOX2 WT and DUOX2 p.R1492C were modeled onto the
extended NOX2 structure; by use of HADDOCK, NADPH and
FAD were docked to the structure (see Figure 3B). Struc-
tural analysis revealed that Arg1492 is part of the NADPH-
binding pocket. NADPH binds to DUOX2 WT with strong
electrostatic interactions to the residues Arg1421 and
Arg1492 with a sum of �181.7 ± 76.4 kcal/mol and with
weak Van der Waals interactions to Gly1385, Thr1463,
Pro1520, Gly1521, and Met1520 with a sum of �30.9 ± 7.8
kcal/mol. Replacing Arg1492 with cysteine as in the DUOX2
p.R1492C variant does not change the DUOX2 structure or
the position of other NADPH-interacting residues. However,
the change is predicted to weaken the interaction between
NADPH and DUOX2 by a factor of 2. How replacement of
Arg1221 with cysteine will directly affect DUOX2 catalytic
activity cannot be predicted because suitable structures for
modeling do not exist, but in both NOX2 and NOX4 the
analogous D loop participates in ROS production.40,41

Functional analysis of DUOX2 variants was performed
in the H661 cellular model system that represents a
physiologic context for DUOX-DUOXA expression and is
devoid of NOX1–5 activity.29 Both DUOX2 variants, when
coexpressed with their dimerization partner DUOXA2,
produced significantly less H2O2 than WT DUOX2 (see
Figure 3C), although protein expression and cellular
localization were not altered (see Figure 3D and E). DUOX2
has been functionally associated with NOD2 in transient
overexpression conditions.42 HT29 colonic cells express
endogenously functional NOX1 complex and NOD2, and
thus provide an appropriate context for analysis of puta-
tive DUOX2-NOD2 interactions.

DUOX2 or DUOX2 variants together with DUOXA2 were
stably incorporated into HT29 cells, followed by exposure to
enteropathogenic E. coli. DUOX2 WT or variants, localized
on internal membrane structures before the challenge,
translocated to the plasma membrane and cell-cell junc-
tions. NOD2, on the other hand, remained in the intracellular
compartment, albeit NOD2 protein expression was up-
regulated (Figure 4). Thus, DUOX2 and NOD2 were not
recruited simultaneously upon E. coli challenge.

Stimulated H2O2 release in DUOX2 WT or variant-
expressing HT29 cells mirrored the results obtained with
H661 cells (data not shown). DUOX2-mediated H2O2 release
at apical membranes has been linked to antimicrobial host
defense and decreased C. jejuni virulence.10 Comparison of
C. jejuni invasion in DUOX2 WT or DUOX2 variant-
expressing (DUOX2 p.R1211C, DUOX2 epithelial cells
showed increased invasion when ROS generation was
diminished (see Figure 3F).
Figure 4. Bacteria-induced translocation of DUOX2 and
variants does not involve NOD2 in colonic cells. HT29 cells
stably expressing DUOX2 WT, DUOX2 R1211C, and DUOX2
R1492C were exposed to enteropathogenic Escherichia coli
(EPEC) for 5 hours. Immunofluorescence images of DUOX2
(green), NOD2 (red), and nuclei (blue). Scale bar: 15 mm.
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Discussion
We have identified novel inactivating missense variants

in each of the epithelial NADPH oxidases NOX1 (p.P330S,
p.D360N) and DUOX2 (p.R1211C, p.R1492C) in five VEOIBD
patients. Variants in X-linked NOX1 were found in two male
VEOIBD patients, and NOX1 p.D360N was associated with
male UC in an AJ ancestry case-control cohort, likely leading
to increased or sustained disease severity.

The identification of rare functional variants contrib-
uting to the pathogenesis of VEOIBD has been observed with
other genes, including the NOX2 NADPH oxidase complex,7

NOS2,43 IL10R,15 and XIAP.44,45 The variants we identified
in both NOX1 and DUOX2 are rare and not found in a
replication VEOIBD cohort or data sets of common variants.
However, all variants showed both pathologic and func-
tional defects, indicating that these variants may contribute
to disease susceptibility or pathogenesis. Further large-scale
sequencing of pediatric- and adult-onset IBD may indicate a
broader role of both NOX1 and DUOX2 in IBD pathogenesis,
as observed in our AJ population.

Recently, altered DUOX2 expression was identified in
ileum biopsies from pediatric Crohn’s disease patients.46

Further, ROS derived from NADPH oxidases is critical to
control mucin granule accumulation in colonic goblet
cells,12 and NOX1 has been shown to control the balance
between goblet and absorptive cell types in murine colon.47

Interestingly, colonic biopsies from patients carrying either
NOX1 p.D360N or DUOX2 p.R1211C variants showed
abnormal CD24 and lysozyme expression (see Figure 1B),
suggesting a role for these proteins in Paneth cell
metaplasia.

The thyroid function of the two male VEOIBD patients
harboring DUOX2 mutations was normal, although inacti-
vating monoallelic and biallelic DUOX2 and DUOXA2 variants
have been linked to hypothyroidism.48 In contrast to adult
onset IBD, VEOIBD frequently encompasses a unique clinical
presentation, with severe disease limited to the colon and
with poor response to standard therapies.24 VEOIBD vari-
ants (NCF2,49 NOS2,43 IL10RA/B,15 TTC7A50) have usually
been rare, suggesting that these patients may have a unique
genetic susceptibility. Furthermore, we have recently shown
that SNPs and rare variants in all components of the NOX2
NADPH oxidase complex are associated with VEOIBD.7

Similar to our recent observations with NOX2 NADPH oxi-
dase complex variants leading to decreased ROS production
in neutrophils,7 reduced mucosal ROS levels originating
from NOX1 and DUOX2 variants play also a role in suscep-
tibility to VEOIBD and perhaps other severe IBD
phenotypes.

Intestinal NADPH oxidases connect to antibacterial
autophagy and endosomal pathways important for mucus
secretion and may modulate the interplay between
commensal bacteria and pathogens.12,13 Recent microbiome
studies on a large pediatric cohort with new-onset Crohn’s
disease assigned a unique role to changes in the rectal
mucosal microbiota for disease classification.51 Changes in
ROS generation at the mucosal surface will most likely
result in dysbiosis, intestinal inflammation, and pathobiont
FLA 5.2.0 DTD � JCMGH51 proof � 1
development. Our functional studies provide strong support
both for the pathogenic nature of the mutations identified in
these VEOIBD patients and the role of epithelial ROS in
protecting cells from bacterial attack.

Further phenotypic exploration of NOX/DUOX variants
will be aided by studies in humans and improved animal
models, as current IBD animal models seem often not to
reflect human disease triggered by reduced ROS. For
example, murine Cybb (NOX2) deficiency does not lead to
spontaneous Crohn’s disease-like intestinal disease and gut
inflammation, both observed in many CGD patients.
Although Cybb knockout mice exhibit several hallmarks of
CGD upon fungal or bacterial challenge, they were slightly
protected in the dextran sodium sulfate–induced colitis
mouse model.52 Similarly, Nox1 deficiency in the murine
mucosa did not alter dextran sodium sulfate–colitis pa-
thology,53 although combined Nox1 and Il10 deficiency
caused spontaneous colitis in mice.54 Mice harboring an
inactivating Duox2 variant or Duoxa deficiency showed
severe hypothyroidism and increased colonization with
Helicobacter felis.11,55

In conclusion, our findings demonstrate that novel NOX1
and DUOX2 NADPH oxidase variants resulting in attenuated
ROS production and impaired innate defense occur in chil-
dren with VEOIBD. This may influence IBD pathogenesis
beyond childhood.
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