

## "Cybersecurity Big Data and Analytics Sharing"

- Big Data → Big Data Breach in Cybersecurity!
- Hsinchun Chen, UA, Conference/Workshop Chair, time keeper
- 2 sessions, 10-12 mins for each speaker; Q/A/contribution from audience after session (part of an NSF report)
- Session I: Bhavani Thuraisingham, UT Dallas, malware analysis; Latifur Khan, UTD, stream data analytics; Victor Benjamin, Arizona State U, blockchains for cybersecurity
- Session II: Resha Shenandoah, UA, Data Infrastructure Building Block (DIBBs) for security data; Sagar Samtani, UA, DIBBs tools, Hacker Assets Portal; Weifeng Li, UA, hacker underground economy (UA/Eller/MIS AI Lab)

Acknowledgement: National Science Foundation under Grant Number ACI-1443019 (DIBBs) & DGS-1719477 (SFS/SaTc)



### **Session Break Questions to Consider**

- Questions and comments relating to <u>session talks</u>: What data or tools do you consider to be most useful for you and why? Other comments?
- Questions and comments relating to <u>workshop in general</u>: What additional data or tools do you wish to have and why? Other comments?
- Speaker slides/content and audience responses will be summarized in an NSF Workshop Report for distribution. (Please contact <u>rshenandoah@email.Arizona.edu</u>.)

Acknowledgement: National Science Foundation under Grant Number ACI-1443019 (DIBBs) & DGS-1719477 (SFS/SaTc)

## Malware Data Collection & Analysis Using Big Data Tools

Cyber Security Research & Education Institute The University of Texas at Dallas Ramkumar Paranthaman Dr. Bhavani Thuraisingham

## Agenda

- Introduction
- Malware Data Collection
  - Malware Data Types
  - Malware Dataset Classification
  - Malware Collection Statistics
- Malware Analysis
  - Feature Extraction
  - Feature Selection
  - Train ML models
  - Results

### Introduction

- This NSF-funded Data Infrastructure Building Blocks (DIBBs) project is intended to address a large gap in the availability of open source research data for researchers in ISI.
- The University of Arizona Artificial Intelligence Lab and its partners, the University of Virginia, The University of Texas at Dallas, Drexel University, and the University of Utah were to collect a significant archive of data and analysis tools to serve the ISI community.

http://www.azsecure-data.org/

### Data Collection - Repositories

### Classified datasets

- Academic research projects
- Security research corporations

### Unclassified datasets

- Public malware datasets
- Non-corporate research group malware datasets

### Malware collections

- Independent collections of malware data
- Malware sharing through forums

### Malware Collection - Statistics

- Number of Classified Datasets 25 (circa 230 GB)
- Number of Unclassified Datasets
- Independent Datasets Gathered
- Total Size of Malware Datasets

- 16 (circa 26 GB)
- 3 (circa 2 GB)
- circa 250 GB

### Malware Detection Framework

### Objective

Develop a malware detection framework using static analysis approach by employing Big Data tools and machine learning techniques

### Implementation Steps

- Feature Extraction
- Feature Selection
- Training
- Classification ( detection )

### System Workflow



### Feature Extraction - Map-Reduce Workflow



### Feature Extraction - Map-Reduce Workflow



## Feature Selection & Training

### SELECTION

- Compute information gain for each feature
- > Select features whose information gain is above a threshold value

### TRAINING - LEARNER MODELS

- Support Vector Machine (radial basis kernel)
- Random Forest (J48 tree)

### Inference

Input Dataset

- Size 200 GB
- > Type Executables, DLLs, Hexcode dumps
- Observation
  - Process time 29.37 mins
  - Hadoop though highly scalable, lacks performance due to high I/O usage (especially for large volume datasets)

### Mitigation

Use Apache Spark, distributed in-memory computing framework to improve performance

## RESULTS

Feature Extraction

| Feature Type       | Frequency    |
|--------------------|--------------|
| Byte 4-grams       | 95, 608, 217 |
| Assembly 4-grams   | 419,888      |
| DLL imports        | 26, 785      |
| Opcode frequencies | 82           |

### Feature Selection

| Feature Type       | Frequency  |
|--------------------|------------|
| Byte 4-grams       | 46, 317    |
| Assembly 4-grams   | 4, 309     |
| DLL imports        | 65         |
| Opcode frequencies | Not pruned |

### Classification

| Model                  | Accuracy |
|------------------------|----------|
| Random Forest          | 96.31%   |
| Support Vector machine | 95.05%   |

- Processing time 16.42 minutes
- Source code

https://github.com/helloram52/detectmalware

# Trends and Perspectives in Big Data Research and Application

Latifur Khan, PhD

Professor

### **Department of Computer Science**

University of Texas at Dallas, Ikhan@utdallas.edu





# **Big Data: Issues**

- Real Time
  - Data Processing Overhead needs to be minimized
    - Large Volume of Data needs to be consumed
  - Analytics
    - Response needs to be in real time.
    - Example: Real Time Anomaly Detection\*
      - False Alarm may increase
- Scalable Analytics
  - Many Typical Algorithms Suitable for In-Memory processing
  - Demands Distributed Processing

\*Solaimani M., Iftekhar M., Khan L., Thuraisingham B.: Statistical technique for online anomaly detection using Spark over heterogeneous data from multi-source VMware performance data. IEEE BigData Conference 2014: 1086-1094

# **Big Data: Solution**

- Real Time Processing
  - Tool: Apache Spark, Storm, S4, Flink
- Real Time Analytics
  - SAMOA
- Scalable Analytics



- Tool: Spark's Machine Learning Library (MILIIb), Mahout etc.
- Covers Basic Analytics Algorithms
- Advanced Algorithms (Relational Learning) are missing\*
- \*Haque A., Chandra S., Khan L., Aggarwal C.: Distributed Adaptive Importance Sampling on graphical models using MapReduce. BigData Conference 2014: 597-602
- \*Ahsanul Haque, Zhuoyi Wang, Swarup Chandra, Yupeng Gao, Latifur Khan, Charu Aggarwal, Sampling-based distributed Kernel mean matching using spark. BigData 2016: 462-471

# Big Data: Current & Future

- Stream Mining\*
  - Update Learner Continuously
- Analytics



- Supervised Learning (Ground Truth is required)
- Labeling of Data is Problematic
  - Active Learning+



\*Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In Proc. Of Twenty-Ninth AAAI Conference on Artificial Intelligence. (Jan 2015). +Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934



# Solution: Adaptive Chunk Size

**Concept Drifts** Ο Ο Ο Ο Ο  $\bigcirc$ Ο 0 Ο 0 0 0  $\bigcirc$  $\cap$  $\cap$ Ο О  $\bigcirc$ 0 Ο 0 0 Ο 0 0 Ο Ο Ò. 0 Ο 0 Ο 0 0 0 0 0 0 80 8 8 00 0 0 00 Ο 00 Ο 00 Ò Ο 0  $\bigcirc$ Ο Time

Adaptive Chunk Size

| Correct |
|---------|
|         |



# Adaptive Chunk - Sliding Window

Gamma et al. [1], Bifet et al. [2], Harel et al. [3]



### Existing dynamic sliding window techniques

monitor error rate of the classifier.

Update classifier if starts to show bad performance.

fully supervised, which is not feasible in case of real-world data streams.

[1] João Gama, Gladys Castillo: Learning with Local Drift Detection. ADMA 2006: 42-55
 [2] Albert Bifet, Ricard Gavaldà: Learning from Time-Changing Data with Adaptive Windowing. SDM 2007: 443-448
 [3] Maayan Harel, Shie Mannor, Ran El-Yaniv, Koby Crammer: Concept Drift Detection Through Resampling. ICML 2014: 1009-1017

# Adaptive Chunk - Unsupervised



[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data. ICDE 2016: 481-492.

[2] Ahsanul Haque, Latifur Khan, Michael Baron: SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. AAAI 2016: 1652-1658.



\*Parker, B., Khan, L.: Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In Proc. Of Twenty-Ninth AAAI Conference on Artificial Intelligence. (Jan 2015).

## Application: Encrypted Traffic Fingerprinting

Al-Naami et al. [1][2]

- Traffic Fingerprinting (TFP) is a Traffic Analysis (TA) attack that threatens web/app navigation privacy.
- TFP allows attackers to learn information about a website/app accessed by the user, by recognizing patterns in traffic.
- Examples: Website Fingerprinting



[1] K. Al-Naami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan and B. Thuraisingham, "P2V: Effective Website Fingerprinting Using Vector Space Representations," Computational Intelligence, 2015 IEEE Symposium Series on, Cape Town, 2015, pp. 59-66.
[2] K. Al-Naami, S. Chandra, A. Mustafa, L. Khan, Z. Lin, K. Hamlen, and B. Thuraisingham. 2016. Adaptive encrypted traffic fingerprinting with bi-directional dependence. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC '16), Los Angeles, CA.

## Application: Real-time Political Actor **Detection Over Textual Political Stream**



Most probable role for Donald Trump will be USAELI USAGOV RUSELI

RUSELI

RUSGOV



Real-time new political actor recommendation framework.

M. Solaimani, R. Gopalan, L. Khan, P. T. Brandt, and B. Thuraisingham, "Spark-based political event coding. In Big Data Computing Service and Applications (BigDataService), 2016 IEEE Second International Conference, Oxford, United Kingdom, on, pp. 14-23. IEEE, 2016"



#### ARIZONA STATE UNIVERSITY

## **Blockchains for Cybersecurity Research**

## Victor Benjamin, Ph.D.

Assistant Professor, Department of Information Systems Co-Director, Actionable Analytics Lab

# Introduction - Problem Context

- Industry thinks cybersecurity data sharing is good
  - Business-to-Business sharing (e.g., supply chains)
  - Business-to-Government (e.g., incident sharing)
- In reality, common reluctance to share data
  - Liability
  - Accessibility, transparency, and data ownership
  - Sharing platform focus, usefulness, and usability

# What can fix this?

- Need for platform that supports consortiums
  - Encourages community building
  - Can cater to special interest groups
    - E.g., Maritime Information Sharing and Analysis Center



# A Path Forward

- Blockchains, the technology behind Bitcoin
  - First work on crypto-secured chain of blocks in 1991
  - First "modern" conceptualization of Blockchain in 2008
- Peer-to-peer networks
  - Managed autonomously
  - Highly configurable

## Bitcoins – A Quick Primer



# **Blockchain Characteristics**

- A distributed computing infrastructure offering:
  - Decentralized
  - Resiliency
  - Immutability
  - Security
  - Privacy
- Qualities for a cybersecurity data sharing platform

# **Blockchain for Cybersecurity Data**





https://cdn.anonfiles.com/1403546269644.txt

## **Use Case: Threat Analytics**



# Use Case: Cyber-physical Security





# Conclusion

• Platforms must be built with stakeholders in mind

Blockchains offer a unique opportunity

- General take-away: think outside the box
  - Hackers do it
  - Security researchers and practitioners need to as well

## Thanks!

- Ongoing exploration and proto-typing
- Interested? Contact me <u>Victor.Benjamin@asu.edu</u>



## Resha Shenandoah

**Digital Archivist** 

Project Manager, Data Infrastructure Building Blocks for Intelligence and Security Informatics (DIBBs-ISI) University of Arizona Artificial Intelligence Lab

PI: Dr. Hsinchun Chen, University of Arizona. Co-PIs: Dr. Mark Patton and Cathy Larson, University of Arizona. Project Partners: Dr. Ahmed Abbasi, University of Virginia; Dr. Paul Hu, University of Utah; Dr. Bhavani Thurasingham, University of Texas at Dallas; Dr. Chris Yang, Drexel University.

This material is based in part upon work supported by the National Science Foundation under Grant Number ACI-1443019.

## DIBBs-ISI: azsecure-data.org

#### 14 Collections, 200+ GB total

| Websites:        | Phishing                       | 171,360                        |
|------------------|--------------------------------|--------------------------------|
|                  | US Patriot, Hate, Militia 2009 | 74 identified by SPLC          |
|                  |                                | 133 linked                     |
| Forums:          | Geo Web                        | 65                             |
|                  | Dark Web                       | 28                             |
|                  | Hacker                         | 2                              |
|                  | Chinese underground economy    | 2                              |
| Network Traffic: |                                | 4 collections                  |
| Malware Instance | es:                            | 25,118 unique instances from 1 |
|                  |                                | collection                     |

Also collections containing chat logs and international news.

#### Languages:

Arabic, Chinese, English, French, German, Indonesian, Pashto, Russian, Urdu

#### File types:

arff, asp, binetflow, cfm, class, css, csv, exe, ghc, html, java, mpg, pcap, pdf, php, rar, sql, swf, txt, wd3, webarchive, wma, wmv, xlsx

## DIBBs-ISI: azsecure-data.org

Between August 2016 and March 2017:

- 1,404 GB of data downloaded
- 17,190 file requests
- 51 distinct countries/regions originating requests

Most requested collection: PhishMonger

• 14,551 file requests

## azsecure-data.org: PhishMonger

- Invokes the PhishTank API hourly
  - Indexes online, valid phishing sites
  - Typically 25,000 to 50,000 sites per request
  - Updated hourly
- Identifies newly added phish URLs
- Fetches new phishing websites
- Saves data

#### **Targeted Brands with 200+ Sites**



## azsecure-data.org: PhishMonger

- Leverages exclusively open source software:
  - Ubuntu Linux, GNU Wget, Filezilla Server FTP
- Coded in Python 3.5
  - Harnesses the Twisted library for time based scheduling
- Runs on Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
- Additional statistical scripts written in R

Most common file types include: png, html, jpg gif, js, css, ttf, svg, ico, woff

Contact:

- Ahmed Abbasi, <u>abbasi@comm.virginia.edu</u>
- David G. Dobolyi, <u>dd2es@comm.virginia.edu</u>

#### AZSecure-data.org: What's Next?

DSpace

Metadata Search or Browse OAI-PMH - Open Archives Initiative Protocol for Metadata Harvesting Brings data out of silos Persistent identifiers – DOI, Orchid Built-in analytics

#### **Data Preservation**



Alice Through the Looking Glass, ca 1871



HRC Clay Tablet. Sumerian. Ca 2400 BCE http://www.hrc.utexas.edu/educator/modules/gutenberg/books/early/

## Data Life Cycle



Digital Curation Centre: www.dcc.ac.uk

## Data Management Skills

Data Management Skills Competency Matrix

JeSLIB 2017; 6(1): e1096 doi:10.7191/jeslib.2017.1096



One-on-one outreach and training is highly effective, but not efficient or scalable.

# Platform for Cybersecurity Big Data

- Resource for research data management
- Automate metadata creation
- Pipeline
  - Data management for research
  - Data sharing
- Continued user interest improves chances of sustaining cyberinfrastructure
- Must meet user needs

Resha Shenandoah – <u>rshenandoah@email.arizona.edu</u> azsecure-data.org

# DIBBs Tool Inventory for ISI Research

Sagar Samtani, Shuo Yu, Weifeng Li, Hongyi Zhu, Resha Shenandoah, Hsinchun Chen

Artificial Intelligence Lab, The University of Arizona

March 31, 2017

\*This material is based upon work supported by the National Science Foundation under Grant No. NSF ACI-1443019\*

### Introduction

- Security researchers may face steep learning curves when attempting to identify tools that can aid them in developing valuable security insights from data sets.
- These slides aim to reflect some tools in the data analytics landscape that have been used in the AI Lab's past security informatics research.
- We present an inventory of tools into three major sections based on a traditional data analytics pipeline:
  - Collection and storage tools
  - Pre-processing and analytics tools
  - Visualization tools
- We also select a set of ISI papers to show how the tools can be used together to facilitate research.

## **Collection and Storage Tools**

- The collection and storage component of relevant data is the first stage in typical data analytics exercises.
- Data collection aims to:
  - Identify and capture relevant fields of data from a specific source (e.g., web forums, Twitter, etc.)
  - Index and store it in a database or some other format which can be can be retrieved and used for pre-processing and further analytics.
- The collection process comprises three steps to pull from the online sources into the database: **extract**, **transform**, and **load** (ETL).
  - Table 1 summarizes tools to perform such tasks.

### **Collection Process: ETL**

| Collection Stage | Description                | Category                        | Tool Name                              | Notes                                                                      |
|------------------|----------------------------|---------------------------------|----------------------------------------|----------------------------------------------------------------------------|
|                  |                            |                                 | Offline Explorer                       | GUI for scheduling various crawling projects                               |
|                  | Extracting data from their | Spidering Tools                 | cURL                                   | Offers proxy support, user authentication, etc.                            |
| Extract          | sources (e.g.,             |                                 | Wget                                   | Recursive download, conversion of links                                    |
|                  | websites,<br>API's)        | Packages for                    | HtmlUnit                               | A headless web browser written in Java                                     |
|                  |                            | Customized Spiders              | Serenium                               | A browser automation library in Python                                     |
|                  | Transforming               |                                 | Regex                                  | General string pattern matching                                            |
| Transform        | raw data into              | Tropoformotion                  | JSoup                                  | Java library for parsing HTML                                              |
| Transform        | target data                | Transformation                  | BeautifulSoup                          | Python package for parsing HTML and XML                                    |
|                  | elements                   |                                 | urllib                                 | High-level interface for fetching data across the Web                      |
|                  |                            | ading data<br>to data Databases | MySQL                                  | Widely used open-source RDBMS                                              |
|                  |                            |                                 | MS SQL Server                          | Commercial RDBMS by Microsoft                                              |
|                  | Loading data               |                                 | Oracle<br>Database                     | Commercial RDBMS by Oracle                                                 |
| Load             | into data                  |                                 | Apache HBase                           | Open-source, distributed, NoSQL DBMS on top of Hadoop                      |
|                  | warehouse                  |                                 | Apache Hive                            | Open-source data warehouse infrastructure on top of Hadoop                 |
|                  |                            |                                 | MongoDB                                | Open-source NoSQL DBMS. Uses JSON-like documents with schemas              |
|                  |                            | lable 1. Extractio              | <b>n, Fransformat</b><br>Apache Lucene | <b>High-performance</b> , full-featured text search engine library in Java |

### Pre-Processing and Analytics Tools

- Collected data needs to be pre-processed and transformed (cleaning, normalizing, transforming, tokenizing, etc.) prior to analysis.
  - Often consumes the majority (70-75%) of the time in data analytic projects.
- Past security analytics have used dozens of techniques after preprocessing, ranging from summary statistics to complex algorithms (e.g., deep learning).
- Many common data and text mining algorithms/applications are bundled into single packages (e.g., WEKA, Natural Language Toolkit (NLTK)).
  - Other analytics offered in specialized packages (e.g., hidden Markov models (HMM))
- Tables 2 and 3 summarize various pre-processing and analytical tools.

### **Pre-Processing and Analytics Tools**

| Category                             | Tool Name                           | Programming<br>Language | Notes                                                                                                                                                                                 |
|--------------------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | WEKA                                | Java, GUI               |                                                                                                                                                                                       |
| General Data                         | Scikit-learn                        | Python                  | One-stop tools that cover common pre-processing, classification, and clustering algorithms.<br>RapidMiner and WEKA can be used independently without a specific programming language. |
| Mining                               | RapidMiner                          | GUI                     |                                                                                                                                                                                       |
| R                                    | R                                   | R                       | A widely used programming language and software environment for statistical computing and graphics.                                                                                   |
| General Text                         | Natural Language Toolkit<br>(NLTK)  | Python                  | One-stop tools that cover word/sentence tokenization, POS tagging, parsing, chunking, named                                                                                           |
| Mining                               | Stanford CoreNLP                    | Java                    | entity recognition, etc. NLTK has interfaces to call Stanford NLP tools.                                                                                                              |
|                                      | Apache OpenNLP                      | Java                    |                                                                                                                                                                                       |
| Hidden Markov                        | hmmlearn                            | Python                  | General HMM package                                                                                                                                                                   |
| Models (HMM)                         | NLTK                                | Python                  | Specialized in POS tagging                                                                                                                                                            |
| Conditional                          | Stanford NER CRF                    | Java                    | CRF implementation for named entity recognition (NER)                                                                                                                                 |
| Random Fields                        | CRF++                               | C++                     | General CRF package                                                                                                                                                                   |
| (CRF)                                | NLTK                                | Python                  | Specialized in POS tagging                                                                                                                                                            |
|                                      | Mallet                              | Java                    | Command line based tool for standard LDA                                                                                                                                              |
| Latent Dirichlet<br>Allocation (LDA) | Stanford Topic Modelling<br>Toolbox | GUI                     | GUI based tool that supports LDA, labelled LDA, partially labelled LDA, and calculating perplexity.<br>Can also perform temporal LDA                                                  |
|                                      | Gensim                              | Python                  | Perform latent semantic analysis (LSA) and LDA in Python                                                                                                                              |

#### Table 2. General and Specialized Data and Text Mining Tools

### **Pre-Processing and Analytics Tools**

| Category                         | Tool Name             | Programming<br>Language | Notes                                                                                                                                      |
|----------------------------------|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | UCINET                | GUI                     | Licensed software (minimum \$40) that can handle medium sized networks (2 millions nodes max)                                              |
| Social Network<br>Analysis (SNA) | Gephi                 | GUI                     | Open source GUI based software that can handle larger data sizes than UCINET. Can read directly from databases                             |
|                                  | NetworkX              | Python                  | Python based network analysis tools. Can read from a variety of data sources. Allows for significant customization compared to other tools |
|                                  | WordNet               | -                       | English lexical database grouped into synonyms                                                                                             |
| Ontologies                       | SentiWordNet          | -                       | Tagged WordNet with positivity, negativity, and neutrality for opinion mining                                                              |
|                                  | Gensim                | Python, C               | A two-layer neural net that processes text. Outputs a set of vectors:                                                                      |
| Word2vec                         | DL4J                  | Java, Scala             | feature vectors for words in that corpus. Turns text into a numerical form for deep nets.                                                  |
|                                  | Keras                 | Python                  | High-level neural networks library running on top of either TensorFlow or Theano. Recommended for fast experimentation.                    |
| Deep Learning                    | TensorFlow            | Python, C++             | Two different low lovel implementations for deep learning models                                                                           |
|                                  | Thean Pable 3. Genera | 1 BindPSpecialized      | Two different low-level implementations for deep learning models Data and Text Mining Tools (cont'd)                                       |

### Visualization Tools

- The final stage in the data often incorporates a visualization component.
- Desktop software (table 4) provide turnkey solutions to manage, connect, pivot data and render predefined types of visualizations in a GUI.
- For better customizability, lightweight toolkits, packages, and online services can be implemented along with analytical scripts (table 5).

| Tool Name                  | Cost                   | Notes                                                                                                              |  |
|----------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Microsoft Excel            | License required       | Excel supports charts, graphs, generated from specified groups of cells. Excel 2010 and later support Pivot Table. |  |
| Tableau                    | Free education license | Generates graph types that can be combined into dashboards and shared over the internet.                           |  |
| ParaView Free, open-source |                        | Developed to analyze extremely large datasets using distributed memory computing resources.                        |  |

#### **Table 4. Desktop Visualization Software**

### Visualization Tools

| Category                       | Tool Name                   | Programming Language | Notes                                                                                                                                                                     |  |
|--------------------------------|-----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                | Visualization Toolkit (VTK) | C++, Python, Java    |                                                                                                                                                                           |  |
|                                | OpenFrameworks (OF)         | C++                  |                                                                                                                                                                           |  |
| General Data                   | Matplotlib                  | Python               |                                                                                                                                                                           |  |
| Visualization                  | ggplot2                     | R                    | General tools enabling users to customize their visualization components (e.g., point,<br>line, axes, legends, layout, color coding) programmatically.                    |  |
|                                | Processing                  | Java, Python, JS     |                                                                                                                                                                           |  |
|                                | Seaborn                     | Python               |                                                                                                                                                                           |  |
|                                | pandas                      | Python               |                                                                                                                                                                           |  |
| Word Cloud                     | Wordle                      | Online, JS           | Word cloud is a graphical representation of word frequencies. It can be used to visualize most frequently used keywords in the corpus.                                    |  |
| Ν                              | Mapbox                      | Online, JS           | When location data (e.g. state, zipcode, latitude and longitude) is available, these geo-                                                                                 |  |
| Geo-map Tools                  | geoplotlib                  | Python               | map tools can help you layout the data onto a map and generate visualizations such as                                                                                     |  |
|                                | choroplethr                 | R                    | color map, flow maps, etc.                                                                                                                                                |  |
|                                | Gephi                       | GUI, Java            |                                                                                                                                                                           |  |
| Network                        | networkx                    | Python               | Network visualization tools can visualize the relationship between data attributes or                                                                                     |  |
| Visualization<br>Tools         | graph-tool                  | Python               | different data sources. The built in layout algorithms automatically generate visually pleasing graphs.                                                                   |  |
|                                | igraph                      | R                    |                                                                                                                                                                           |  |
|                                | Color Brewer 2              | Online               |                                                                                                                                                                           |  |
| Color Selection<br>(Aesthetic) | Palettable                  | Python               | These color selection tools helps to improve the aesthetic of the visualization. They also provide safe color selections for web presenting, printing, color-blind cases. |  |
| (                              | RColorBrewer                | R                    |                                                                                                                                                                           |  |

Table 5. Lightweight Toolkits, Packages, and Online Services

### Example ISI Papers

- To show the research context of applying the listed tools, we reviewed over 100 research papers from past ISI conferences and workshops.
  - 56 papers from IEEE ISI 2016
  - 47 from IEEE ISI 2015
  - 8 from FOSINT-SI 2016
  - 10 from ISI-ICDM 2015
- We selected representative papers to show how those tools can be used together to support and facilitate research.
  - References are attached at the end.

### Example ISI Papers

| Paper                   | Collection and Storage         | Pre-Processing and Analytics                    | Visualization  |
|-------------------------|--------------------------------|-------------------------------------------------|----------------|
| Samtani et al. (2016)   | Offline Explorer, MySQL, Regex | RapidMiner, Stanford Topic Modelling<br>Toolbox | Tableau, D3.js |
| Grisham et al. (2016)   | Selenium, MySQL                | Stanford Topic Modelling Toolbox                | -              |
| Benjamin & Chen (2016)  | Offline Explorer, MySQL, Regex | Word2vec                                        | -              |
| Benjamin & Chen (2014)  | IRC Bots                       | WEKA                                            | -              |
| Samtani & Chen (2016)   | Offline Explorer, MySQL, Regex | Gephi                                           | Gephi          |
| Solaimani et al. (2016) | MongoDB                        | CoreNLP, WordNet                                | -              |
| Dobolyi & Abbasi (2016) | PhishTank API, Wget            | R                                               | R              |
| Park et al. (2016)      | SQLite                         | Apache OpenNLP                                  | -              |

Table 6. Example ISI Papers

### References

- Benjamin, V., & Chen, H. (2016, September). Identifying language groups within multilingual cybercriminal forums. In *Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 205-207). IEEE.
- Dobolyi, D. G., & Abbasi, A. (2016, September). PhishMonger: A free and open source public archive of realworld phishing websites. In *Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 31-36). IEEE.
- Grisham, J., Barreras, C., Afarin, C., Patton, M., & Chen, H. (2016, September). Identifying top listers in Alphabay using Latent Dirichlet Allocation. *In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 219-219). IEEE.
- Park, A. J., Beck, B., Fletche, D., Lam, P., & Tsang, H. H. (2016, August). Temporal analysis of radical dark web forum users. *In Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Conference on (pp. 880-883).* IEEE.
- Samtani, S., & Chen, H. (2016, September). Using social network analysis to identify key hackers for keylogging tools in hacker forums. In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on (pp. 319-321). IEEE.
- Samtani, S., & Chen, H. (2016, September). Using social network analysis to identify key hackers for keylogging tools in hacker forums. *In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 319-321). IEEE.
- Samtani, S., Chinn, K., Larson, C., & Chen, H. (2016, September). AZSecure Hacker Assets Portal: Cyber threat intelligence and malware analysis. *In Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 19-24). IEEE.
- Solaimani, M., Salam, S., Mustafa, A. M., Khan, L., Brandt, P. T., & Thuraisingham, B. (2016, September). Near real-time atrocity event coding. In *Intelligence and Security Informatics (ISI), 2016 IEEE Conference on* (pp. 139-144). IEEE.

Alacker Assets Portal

## AZSecure Hacker Assets Portal: Enhancing Cybersecurity Education

Sagar Samtani, Kory Chinn, Cathy Larson, Hsinchun Chen

Artificial Intelligence Lab, The University of Arizona

March 31, 2017

\*This material is based upon work supported by the National Science Foundation under Grant No. NSF DUE-1303362 (SFS) and NSF SES-1314631 (SaTC).\*

#### **AZSecure Hacker Assets Portal Team**



Sagar Samtani -3<sup>rd</sup> Year Ph.D. and SFS Student -University of Arizona

Kory Chinn -Undergraduate Senior -University of Arizona

<u>Cathy Larson</u> -Former Associate Director, AI Lab -University of Arizona

Dr. Hsinchun Chen -Regents' Professor -Director, Al Lab -University of Arizona

### Introduction: "Know Your Enemy"

- Recent years have seen a significant increase in cybersecurity education initiatives.
- One novel way to enhance cybersecurity education and bolster future cyberdefenses is to directly study tools disseminated in online hacker communities.
- Online hacker forums allow hackers to share assets such as malicious tutorials, code, attachments.
- Spanning regions such as the US and Russia, there are tens of millions of posts in hundreds of forums made by millions of members.
  - Tens of thousands of malicious assets

#### Introduction – Hacker Asset Examples

| 03-07-2014                                                                                      | Colphi] Noob Botnet Construct                                                                                                                                                                                                                                                                                                                                                         | 08-08-2014                                                                            | Post Date                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rufty *<br>Senor Member<br>Join Date: Aperanny<br>Posts: 247<br>Code to<br>Execute —<br>Exploit | <pre>just a old snippet by me which shows one of a possible construct to code a bot in delphi. enjoy it<br/>Code:<br/>program autoStart;<br/>uses<br/>Windows, Registry, SysUtils, ShellApi, TLHelp32, WinTypes, Messages, WinProcs, WinINet, URLMon;<br/>Var, CidWame, NewName, NewDir, SPath, dlURL: String;<br/>Overbrifte, IGLe, Anti&amp;E: Boolean;<br/>i: Integer;<br/>{</pre> | [?] •<br>Senior Member<br>Join Date: Dec 2010<br>Location: Russi Attach<br>Posts: 165 | Pos<br>hi guys, I found the subject published, these are<br>two grabbers who already know<br>BlackpOs<br>http://i.imgur.com/vRKUgGE.png<br>Dexter v2<br>http://i.imgur.com/gYmifkc.cogDescription of<br>Attachment<br>Attachment<br>Defile Type: rar Blackpos rar 5.4 KB, 143 views |

#### Figure 1. Forum post with source code to create botnets

#### Figure 2. Forum post with BlackPOS malware attachment



### Introduction – AZSecure Hacker Assets Portal Objective

portal providing hacker forum contents and analysis for cybersecurity education, research, and training purposes.

- We achieve this goal by:
  - Identifying large English, Russian, and Arabic hacker forums
  - Extracting assets using advanced web crawling approaches
  - Analyzing assets using scalable text and data analytic methods
  - Developing a portal allowing users search, download, and analyze assets

#### <u>AZSecure Hacker Assets Portal – Data Testbed</u>

- We use a Tor routed web crawler to automatically collect one Arabic, two Russian, and two English forums known for containing malicious assets (Table 1).
- 15,576 code, 14,851 attachments, and 987 tutorials posted between 2/7/05-10/31/16.
- In addition to integrating other forums, we update our collection monthly to continually identify new and emerging assets.

| Forum    | Language | Date Range             | # of Posts | # of Members | # of source code | # of attachments | # of tutorials |
|----------|----------|------------------------|------------|--------------|------------------|------------------|----------------|
| OpenSC   | English  | 02/07/2005-02/21/2016  | 124,993    | 6,796        | 2,590            | 2,349            | 628            |
| Xeksec   | Russian  | 07/07/2007-9/15/2015   | 62,316     | 18,462       | 2,456            | -                | 40             |
| Ashiyane | Arabic   | 5/30/2003 – 9/24/2016  | 34,247     | 6,406        | 5,958            | 10,086           | 80             |
| tuts4you | English  | 6/10/2006 - 10/31/2016 | 40,666     | 2,539        | -                | 2,206            | 38             |
| exelab   | Russian  | 8/25/2008 – 10/27/2016 | 328,477    | 13,289       | 4,572            | -                | 628            |
| Total:   | -        | 02/07/2005- 10/31/2016 | 590,699    | 47,492       | 15,576           | 14,851           | 987            |

Table 1. Summary of AZSecure Hacker Assets Portal System Data

#### AZSecure Hacker Assets Portal – Data Mining Approach



| Algorithm             | Accuracy | Precision | Recall | F1    |
|-----------------------|----------|-----------|--------|-------|
| SVM                   | 98.20    | 96.36     | 98.20  | 98.28 |
| k-Nearest<br>Neighbor | 64.00    | 83.47     | 64.00  | 72.24 |
| Naïve<br>Bayes        | 86.00    | 88.57     | 86.00  | 87.26 |
| Decision<br>Tree      | 82.60    | 86.41     | 82.60  | 84.42 |

- We use two automatic methods to sort assets (Figure 4).
- First, we trained a Support Vector Machine (SVM) with 1,000 code files to classify hacker code into 10 languages.
  - Java, Python, C/C++, HTML, Delphi, VB, SQL, Ruby, and Perl
  - SVM outperformed other classifiers in standard metrics (Table 2)
- We then use Latent Dirichlet Allocation (LDA) to each asset category to identify major themes (e.g., DDoS, Zeus, etc.).
- Six SFS students evaluated accuracy of LDA results and reached a Cronbach's alpha of 0.9393, indicating a high level of consistency.

Table 2. Benchmark Classifier Evaluation Results

#### **AZSecure Hacker Assets Portal System Design and Features**



Figure 5. AZSecure Hacker Assets Portal System Design and Features

#### **Tutorial Data Collection Summary**

| Tutorial Category        | Count | Examples of Content                                       |
|--------------------------|-------|-----------------------------------------------------------|
| Website Exploitation 348 |       | SQL Injection, XSS attacks                                |
| System Exploitation      | 230   | BIOS hacking, rootkit creation, shellcode, spoofing files |
| Carding                  | 201   | Carding, bank hacking                                     |
| Network Exploitation     | 112   | Nmap scanning, Wireshark,<br>DDoS                         |
| Password Cracking        | 43    | Bruteforcing, password cracking approaches                |
| Malware/Viruses          | 22    | Malware analysis, detecting malware                       |
| Penetration Testing      | 13    | Metasploit trainings, Google<br>hacking                   |
| Mobile Exploitation      | 8     | Android Malware                                           |
| Cryptography             | 4     | Basics of cryptography                                    |
| Reverse Engineering      | 2     | Basics of reverse engineering                             |
| Social Engineering       | 2     | Social engineering psychology                             |
| Phishing                 | 2     | Basics of phishing                                        |

Table 2. Summary of Tutorial Data Collection Content

- Tutorials can provide the most direct cybersecurity education.
- We currently have 987 tutorials in 11 categories (Table 2).
- Tutorials teach various topics including:
  - Carding
  - SQL injections
  - Password cracking
  - Creating Android malware
  - Phishing
  - DDoS

#### Code and Attachment Data Collection Summary

| Asset Type  | Exploit<br>Type | Count | Examples of Exploits                                                            | • Students can use code and attachment assets to understand how tools are |
|-------------|-----------------|-------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|             | System          | 9,746 | Crypters, shellcode, DLL<br>injections, Remote<br>Administration Tools (RATs)   | created, implemented, and operated.                                       |
| Source Code | Website         | 5,598 | Content management system (CMS) exploits, SQL Injections                        | <ul> <li>Code assets include:</li> <li>Crypters</li> </ul>                |
|             | Network         | 232   | Bots/botnet/DDoS                                                                | DLL injections                                                            |
|             | System          | 7,935 | Zeus Malware, RATs, binders,<br>Crypters, keyloggers                            | • DDoS                                                                    |
|             | Website         | 3,112 | Cross-site scripting (XSS),<br>website backdoors, website<br>defacing, phishing | <ul> <li>Attachments contain exploits such as:</li> <li>Zeus</li> </ul>   |
| Attachments | Network         | 2,555 | Bots/botnet/DDoS, firewall exploits, flooders                                   | <ul> <li>Android malware</li> <li>Demote administration tools</li> </ul>  |
|             | Database        | 1,039 | SQL payloads, dumpers,<br>SQLmap                                                | <ul><li>Remote administration tools</li><li>Botnets</li></ul>             |
|             | Mobile          | 210   | Android dumpers, crackers,<br>malware, and pentests                             | <ul> <li>Keyloggers</li> </ul>                                            |

 Table 3. Summary of Source Code and Attachment Collection Content

### Cyber Threat Intelligence (CTI) Applications



Figure 6. (a) Selecting a specific dimension of the specific dimension

 For each asset, we detail which category of cyberasset it targets (e.g., database, web, etc.) and where, when, who posted the asset in a CTI dashboard (Figure 6).

- Assuming an organization understands their own systems, hacker assets can create proactive CTI inform future cyber-defenses.
- For example, an organization can improve mobile device security given the recent increase in mobile malware.
  - Can also identify key threat actors to monitor

### Please access at: <u>http://www.azsecure-hap.com/</u> OR Contact Sagar Samtani at <u>sagars@email.arizona.edu</u>

New users will need to enter their name, organization, position, and intended use to gain portal access.

We will then evaluate and confirm portal access.

# AZSecure Hacker Underground Economy Collection and Analytics

Weifeng Li, Hsinchun Chen Artificial Intelligence Lab, The University of Arizona March 31<sup>st</sup>, 2017

\*This work is supported by the National Science Foundation under Grant DUE-1303362 and SES-1314631

# **Hacker Underground Economy**

- International online black markets for hacking services and tools
- Provides comprehensive support for conducting data breach crimes:

2013: Target; 2014: Home Depot, Chase; 2015: Anthem; 2016: Yahoo

 Common platforms: hacker forums, DarkNet marketplaces, carding shops



| UPDATE Now of Hello,                                                                                                             | , pinpad+camera ATM Skimmer                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Devices Price for GSM s + pinpad (500 Decode wav(ar Worldwide deli                                                               |                                                                                                                                              |
| Note - This Devices Can Bring in A serious cash flow<br>Possible and realistic :cool:                                            | red#1                                                                                                                                        |
| Configuração / Configuration Trilha / Track : Seleção / Selection Credito / Credit [ITAU] [SANTA]                                | <ul> <li>Id to serve all your</li> <li>eds with JAMES BOND</li> <li>ervices.</li> <li>verified since 2012!</li> <li>anel Features</li> </ul> |
| <ul> <li>Debito / Debit</li> <li>Credito 128k / Credit 128k</li> <li>Ticket / Voucher</li> </ul> Gerar / Generate Limpar / Clean | astics Features                                                                                                                              |
| Orbitall v2.3 - Corporate ©2016                                                                                                  | Sold in patch                                                                                                                                |
| Sendspace.com/f                                                                                                                  | ank Credit/Debit Cards (Plastics)                                                                                                            |

# **Collection Summary**

#### Forums

| # Forums | # Products | # Users | # Topics | Languages              |
|----------|------------|---------|----------|------------------------|
| 34       | 169,009    | 257,183 | 414,530  | English/Russian/Arabic |

#### **DarkNet Marketplaces**

| # Mar | kets | # Products | # Users | # Reviews | Languages             |
|-------|------|------------|---------|-----------|-----------------------|
| 9     |      | 80,590     | 5,528   | 690,411   | English/Russian/Dutch |

#### **Carding Shops**

| # Shops | # Listings (cards, SSNs) | # Users | Languages       |
|---------|--------------------------|---------|-----------------|
| 21      | 1,401,708                | N/A     | English/Russian |

#### In Total:

| # Platforms | # Products | # Participants | Languages                        |
|-------------|------------|----------------|----------------------------------|
| 64          | 1,651,307  | 262,711        | English/Russian/<br>Arabic/Dutch |

\* Hacker assets include but are not limited to: malware(encrypter/ransomware, Trojan, exploit), zeroday vulnerabilities, POS/ATM skimmer, stolen credit/ debit card, fake documents (driver's license, SSN), etc.

## **Sample Stolen Data in Collection**



CC/CVV: magnetic strip information

Card Number: 4266841209090735 Expire Date: 01/2012 CVV: 131 Cardholder Name: Walter Leger Address: 4701 Rue Laurent City: Metairie – LA – 70002

• Fullz: magnetic strip information

Driver's License James | Gayner | 28540 Doyle Creek Rd. | Saint Marys | KS | 66536 | 785-437-2803 | 362-82-4079 | k00073521 | KS | 03-17-1967 | JPGayner@yahoo.com | 1ps72bn93d SSN

Health insurance records

Health Insurance PRIMARY\_Cigna Healthcare,U04197556,2461898, SECONDARY, UGA Athletic Dept.,254718352,,650 West Conway Dr,,27y,4/8/1989,,Atlanta,, MARGARET,A,MCWHIRTER,,(404)401-3108,,F,254-71-8352,GA,30327 Ramification: Fraudulent purchase in store



Ramification: Fraudulent loan application/tax return

**Ramification:** Fraudulent healthcare claim

# Summary of Major Data Breach Services in Collection

| Category       | Service                    | Examples                                                    | Price        |
|----------------|----------------------------|-------------------------------------------------------------|--------------|
|                | Malware                    | POS malware; ATM skimmers                                   | \$300~5000   |
| Infrastructure | Phishing                   | Phishing emails; scam sites                                 | \$2.5~100/wk |
|                | Botnets                    | Hosting relays for stolen cards                             | \$2~60/hr    |
|                | Payment Cards              | Dumps; CC/CVV                                               | \$0.1~25     |
| Data           | Identities (Fullz)         | Social Security Numbers; driver's license; insurance cards  | \$1~260      |
|                | Credentials                | Bank accounts; Paypal accounts                              | \$1~300      |
|                | Forging                    | Blank credit cards; driver's license template               | \$40~110     |
| Cashing        | Change of<br>Billing (COB) | Change of billing address for<br>carders to make purchases  | \$35~140     |
|                | Drop                       | Location carders can have illicitly purchased goods sent to | ~50% Royalty |

 Table 1. Common Hacking Services and Their Prices

# Analytics: Key Seller Identification



Figure 1. The AZSecure Key Seller Identification Framework



#### (a) Malware Advertisements

(b) Stolen Data Advertisements

#### Figure 2. Thread Classification Performance



Figure 3. Seller Rating Performance

## Who are the key sellers?

|      | Top 3 Best                  |             |                | Top 3 Worst |                |        |           |       |
|------|-----------------------------|-------------|----------------|-------------|----------------|--------|-----------|-------|
|      | Infrastructure Data         |             | Infrastructure |             | Data           |        |           |       |
| Rank | Seller                      | Score       | User           | Score       | User           | Score  | User      | Score |
|      |                             |             |                | Anti        | chat           |        |           |       |
| 1    | LEOnidUKG                   | 5           | inferno[DGT]   | 3.6         | @NoFrag@       | 1.8    | Isis      | 2.3   |
| 2    | VISMU                       | VISMU 4.5 a |                | 3.5         | kOlbasa        | 2      | PEPSICOLA | 2.3   |
| 3    | gogol 4 «                   |             | «DEXTER»       | 3.4         | Doktor_radosti | 2      | sultan128 | 2.4   |
|      | CrdPro                      |             |                |             |                |        |           |       |
| 1    | HackingAll                  | 4           | Rescator       | 4.4         | N1K70          | 2      | finu2004  | 1.3   |
| 2    | 2 balt 4 Faaxxx 4           |             | 1vanu4         | 2           | sonny13        | 1.3    |           |       |
| 3    | SunSeller 4 ResellerInc     |             | 4              | MID         | 2              | I33tsu | 1.3       |       |
|      | Zloy                        |             |                |             |                |        |           |       |
| 1    | 1 PerfectCrypt 5 BigBuyer 4 |             | root           | 1.5         | riodetray      | 1      |           |       |
| 2    | DiXakMan                    | 4           | Buyers11       | 4           | w370w370       | 1.6    | madman    | 1     |
| 3    | B DjVellf 4 sellcc 4        |             | gorpen         | 2           | jekaa          | 2      |           |       |

Table 2. Top 3 Best/Worst Malware and Stolen Data Sellers for Each Forum

## Key Sellers' Collection v.s. Data Breach Events



 Before the announcements of data breach events, bulks of breached data already appear in key sellers' shops for sale.

# How much is each card worth?

| Card Features: Brand, Type, Mark, Bank | Price Difference |
|----------------------------------------|------------------|
| Visa Electron Card                     | \$21.06          |
| American Express Card                  | \$19.41          |
| World Elite MasterCard for Business    | \$17.11          |
| Corporate Purchasing Card              | \$13.15          |
| Base Price                             | \$7.48           |
| Bank of America Card                   | \$2.63           |
| Debit Card                             | \$2.00           |
| Credit Card                            | \$1.72           |
| J.P. Morgan Chase Card                 | -\$1.78          |
| Standard Card                          | -\$2.43          |
| Prepaid Card                           | -\$4.72          |
| Visa/MasterCard Classic Card           | -\$4.77          |

 Table 3. Selected Card Features Affecting Card Price in the Underground Economy

\* Results were obtained using standard linear regression model with significance level of 0.001.