
IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 452 | P a g e

Design and Implementation of High-Speed Low Power

and Error Tolerant Radix-4 Multiplier architecture on

Spartan 3E FPGA

SK. Shakeela1, Dr. E.V. Krishna Rao2

1 Student of M. Tech, Dept. of ECE, LBRCE, L.B. Nagar, Mylavaram-521230, A.P, India
 2 Professor of ECE and Dean of Academics, LBRCE, L.B. Nagar, Mylavaram-521230, A.P, India

Abstract—Multipliers has a dominant part in the digital

world. It is a memoryless sub-block integrated into the
microprocessor. It is the block with large delay and high

power consumption.In this paper, the Booth multipliers are

discussed.The main advantage of using Booth multipliers is

reducing the partial products which reduce power

consumption of the device. This methodology helps to achieve

low power with high performance and less complex circuits.

Here, we study Radix-4 8-bit and 16-bit Booth multipliers

using approximate Booth encoders. This is Implemented on

SPARTAN 3E FPGA. This entire design is structured,

implemented in Verilog HDL language on Xilinx 14.7 design

Tool.The error tolerant computing is analyzed by using two
approximate Booth encoders with respect to approximate

factor. In image processing the peak signal-to-noise ratio

(PSNR) is found to assess the quality of image by using two

approximate booth encoders in Booth multiplier.

Keywords—Radix-4 Multiplier, Booth Encoder,

Approximate computing, High speed, low power , PSNR.

I. INTRODUCTION

Multipliers are used in many different places in

microprocessor design. It is the non-memory sub-block of the

microprocessor with the largest size and delay that has a big

impact on the cycle time. Multipliers are also very important

and frequently used in Digital Signal Processing applications

to run complex high-speed calculations. [1]

Booth multiplication is used critically to increase the speed of

the multiplier by encoding the multiplicands that are

multiplied. This technique is standard and used in the design
of a sub-block in the chip and provides major enhancements

over the traditional technique. In the conventional multiplier,

the number of partial products to be added is determined by

the number of bits the multiplier or multiplicand being used.

The bigger the number of bits the multiplicand or the

multiplier contains, the longer time it takes to produce the

product. The delay of the multiplier is determined largely by

the number of partial products to be added. One of the most

popular algorithms used to reduce the number of partial

products is Booth encoding multiplier. Booth encoding

multiplication can reduce the number of partial products being
encoded to increase the speed of the binary multiplications.

Radix-4 Booth encoding multiplier reduces the number of

partial products by half, N/2. [2] This can increase the time of
compression and contribute to an increase in speed. [3]

Multipliers typically consist of a partial product matrix (PPM),

which accumulates the partial products and reduces them to

just two operands, and a last stage Carry Propagate Adders

(CPA).The speed of multiplication can be least significant bit

(LSB) position of each partial product increased by reducing

the number of partial products and/or accelerating the

accumulation of partial products approaches namely booth

algorithms using Wallace Tree 4-2 Compressors, Carry

Propagate Adders (CPA).[5]Error-tolerant the technique used
is Normalization of error distance. The approximate design of

a radix-4 Booth multiplier is one of the most popular schemes

for signed multiplication. A radix-4 Booth multiplier, a radix-

4 modified Booth encoding (MBE) is used to generate the

partial products.

The implementation of the MBE significantly affects the area,

delay and power consumption of Booth multiplier. In the

traditional MBE algorithm, an extra partial product bit is

generated at the least significant of row due to the negative

encoding. This leads to an irregular partial product array as

requiring a complex reduction tree. A more efficient

approximate radix-4 Booth encoder is proposed in this paper.
The designs of both approximate radix-4 Booth encoders are

presented and extensively analyzed .The multiplicand

encoding process using radix -4 Booth algorithm is based on

the multiplier bits. It will compare 3 bits at a time with

overlapping technique. Grouping starts from the LSB, and the

first block uses only two bits of the multiplier and assumes a

zero for the third bit. It consists of eight different types of

states as we are comparing 3bits at a time and during these

states, we can obtain the outcomes, which are a multiplication

of multiplicand with 0,-1 and -2 consecutively. The state

diagram presents various logics to perform the Radix-4 Booth
multiplication in different states as per the adopting encoding

technique is shown in Figure.1.

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 453 | P a g e

Figure.1: Radix-4 Booth multiplication

II. BACKGROUND STUDY

A. RADIX-4APPROXIMATE BOOTH MULTIPLIER

Radix-4 Booth multiplier in which they are two binary inputs

as input, one is multiplicand and another one is a multiplier. If

both binary numbers are positive then it will perform two

booth encoders. Approximate Booth multipliers are designed

based on the approximate Booth encoders and the approximate
regular array of partial products.

Booth encoding has been anticipated for improving the

performance of multiplication of twos complement binary

numbers, it has been further improved by the MBE or radix-4

Booth encoding. The Booth encoder has a vital role in the

Booth multiplier, which cuts the number of partial product

rows by half. Approximate radix-4 booth multiplier designed

based on two approximate booth encoders those are Radix4

encoder1 and Radix4 encoder2.

 B. METHOD1: RADIX-4 BOOTH ENCODING
APPROXIMATION

The benefit of the Radix4 encoder1 design is an error is less.

In the approximate Booth multiplier, the proposed

approximate Booth encoder Radix4 encoder1 shown in

Figure.2 is used in the first part to generate the inexact partial

products. The approximate Booth encoders can then be used in

all or only part of the partial product generation process;

therefore, an approximation factor p (p=1, 2, ..., 2N) is defined

as the number of least significant partial product columns that

are generated by the approximate Booth encoder.

This Booth encoder is the conventional design of modified

booth encoder. The traditionally modified booth encoder has
more delay but this Booth encoder has less delay. This

encoder reduces the complexity. The conventional MBE, as

only entries are modified, however, all modifications change a

ʹ1ʹ to a ʹ0ʹ. The absolute value of the approximate product is

always larger than its exact.

Figure.2: Radix4 encoder1

The approximate radix-4 Booth multiplier (Radix4 multiplier

1) uses radix4 encoder1 (to generate the p least significant
partial product columns) and the regular approximate partial

product array. The exact MBE is used for generating the 2N-p

most significant partial product columns. The exact 4-2

compressors are used to accumulate both approximate and

exact partial products.

Approximate radix-4 Booth multiplier (Radix4 multiplier2)

uses Radix4 encoder2 shown in Figure.3 the regular

approximate partial product array and the exact 4-2

compressors. The error is controlled by the approximation

factor of a counterpart. Compared with the exact MBE,

Radix4 encoder1 can significantly reduce the critical path

delay of Booth encoding.

C. METHOD2: RADIX-4 BOOTH ENCODING

APPROXIMATION

Radix4 encoder1, the modification is achieved by not only

changing a ʹ1ʹ to a ʹ0ʹ but also changing a ʹ0ʹ to a ʹ1ʹ. The

approximate product can be either larger or smaller. Then the

exact product and errors can complement each other in the

partial product reduction process. Radix4 encoder2 in a Booth

multiplier, the error may not be larger than for a Booth

multiplier with Radix4 encoder1.

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 454 | P a g e

 Figure.3: Radix4 encoder2

D. APPROXIMATE WALLACE TREE DESIGN

The reduction of partial products using full adders as 4-2

compressors became generally known as the “Wallace Tree”.

This architecture reduces the partial product rate. The tree

reduction for an 8*8 bit partial product tree, the ovals around

the dots represent either a full adder or a Half adder. This is

reducing the need for carry propagation in the adder avoid the

latency of one addition is equal to gate delay of the adder.

The chip/system designers add accuracy as a new constraint to

optimize Latency-Power-Area metrics. In this paper, we

present a new power and area-efficient Approximate Wallace
Tree structure (AWTs).

Figure.3: Approximate Wallace tree structure

E. COMPRESSOR 4-2:

[15]There are various ways to implement the 4-2 compressor.

In Figure.4 the simplest of which is cascading two full adder

cells together shown in Figure.5. This structure was a

popularized by Santoro who built a 64*64 bit multiplier. The

interconnection of these full adder must not make the carry out

dependent on the carry in. It takes two full adders to build one

4-2 compressor. The speed of each 4-2 compressor is limited
by the delay of 3 XOR gates in series. Thus, a 4-2 is slightly

faster than the two-full adder. Thus, the tree compression is

slightly faster using 4-2 with a trade off a little more hardware.

 Figure.4: 4-2 Compressor

The compressor has 5 inputs x1, x2, x3, x4 and Cin to generate 3

outputs Sum, Carry and Cout. The 4 inputs x1, x2, x3 and x4

and the output Sum have the same weight. The input Cin is
output from a previous lower significant compressor and the

Cout output is for the compressor in the next significant stage.

Figure.5: 4-2 Compressor using full adder

The main goal of either multi-operand carry-save addition or
parallel multiplication is to reduce n numbers to two numbers;

therefore, n-2 compressors (or n-2 counters) have been widely

used in computer arithmetic. A 4-2 compressor is usually a

slice of a circuit that reduces n numbers to two numbers when

properly replicated. A widely used structure for compression

is the 4-2 compressor.

This gives the outputs of the 4- 2 compressor, the common

implementation of a 4-2 compressor is accomplished by

utilizing two full-adder (FA) cells

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 455 | P a g e

F. CARRY LOOK AHEAD ADDER(CLA):

[16] The ripple-carry adder, its limiting factor is the time it

takes to propagate the carry. The carry look-ahead adder

answers this problem by calculating the carry signals in
advance, based on the input signals. The result is a reduced

carry propagation time. To be able to understand how the

carry look-ahead adder works we must manipulate the

Boolean expression dealing with the full adder.

The Propagate P and generate G in a full-adder, is given as:

Pi = xi ⊕ yi Carry propagate

Gi = xi yi Carry generate

Notice that both propagate and generate signals depend only

on the input bits and thus will be valid after one gate delay.

The new expressions for the output sum and the carryout are

given by:

Si = Pi ⊕ Ci-1

Ci+1= Gi + P iCi

Although it is impractical to have a single level of carry look –

ahead logic for log adder

Hence equations show that a carry signal will be generated in

two cases:

 if both bits xi and yi are 1

 if either xi or yi is 1 and the carry-in Ci is1.

It is shown in the Figure.6 Carry look ahead adder.

To make the carry generator from 4 bits to n bits, we need

only add AND gates and inputs for the OR gate. The largest
AND gate in the carry section has always n+1 inputs and the

number of AND gates requirements is n.

Figure.6: carry look ahead adder

G. ERROR ANALYSIS AND EVALUATION:

[17] The approximate designs, several metrics have been

proposed to measure the error of approximate adders and

multipliers including the mean error distance (MED), the

relative error distance (RED) and the normalization of MED

(NMED). Several error metrics are used to fairly compare

different approximate designs of various sizes. Here the error

distance (ED), relative error distance (RED)and Normalized

error distance are found out for two approximate multipliers.

Where ED is defined as the difference between approximate

value and exact value. RED is defined as error distance by the

output of exact value. Normalized error distance is defined as

the ratio of error distance to the square root of relative error

distance.
The error rate of approximate booth encoder1 will be

significantly smaller than for approximate encoder2.

The below table 1 and 2 represents the error of approximate

multipliers at different approximate factors which is nothing

but an error distance, this is further demonstrated with the

peak signal to noise ratio(PSNR) results for the image

application.

Table1: Error analysis of Radix4 multiplier1

Approximate

factor(p)

RED NED(10-2)

2 0.0085 0.021

4 0.017 0.30
6 0.024 0.38

8 0.031 0.45

10 0.043 0.48

12 0.052 0.52

 Table2: Error analysis of Radix4 multiplier2

Approximate

factor(p)

RED NED(10-2)

 2 0.0087 0.021

 4 0.0168 0.30

 6 0.027 0.46

 8 0.031 0.48

10 0.054 0.51

12 0.059 0.63

III. PROPOSED METHOD

In this proposed method, we implement Radix-4 8-bit and 16-

bit Booth multipliers. In last part of Booth multipliers to

compute final product result we use different adder which is

parallel prefix adder. Parallel-prefix adders, also known as
carry-tree adders, which pre-compute the propagate and

generate signals. These signals are variously combined using

the fundamental carry operator (fco). Due to associative

property of the fco, these operators can be combined in

different ways to form various adder structures. The parallel

prefix adder used in this multiplier is spanning tree adder. It

has been proved that it can be useful to apply a radix-4

architecture in high-speed multipliers. Figure.8 shows the 16-

Bit Spanning tree adder.
Spanning tree adder is a very widespread and extensively

used adder. It is one of the parallel prefix adders. These adders
are the ultimate class of adders that are based on the use of
generating and propagate signals.

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 456 | P a g e

Figure.8: 16-Bit Spanning tree adder.

IV. SIMULATION RESULTS AND DISCUSSION

In this Section, the simulation results of Radix4 multiplier1 ,2

is shown in Figure.9,10 and11,12 using spanning tree adder

and Radix4 multiplier1,2 using 16 bit is shown in

Figure.13,14. From these Simulation results, it is observed that

error tolerance is greatly reduced in order from Radix-4 8-bit

to 16-bit.

The Graphical representation of these multipliers in terms of

Area, Power and Delay are shown in the respective Table.3.

From these Figures.15,16,17, it is visualized that this proposed
method helps to reduce power, delay but area increases

gradually with the design due to the use of a compressor

Radix-4 8-Bit Approximate Booth multiplier

Figure.9: Radix4 multiplier1

Figure.10: Radix4 multiplier2

Figure.11: Radix4 multiplier1(using spanning tree adder)

Figure.12: Radix4 multiplier2(using spanning tree adder)

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 457 | P a g e

Figure.13: Radix4 16-bit Multiplier 1

Figure.14: Radix4 16-bit Multiplier2

Table.3: Radix4 8-bit multiplier vs 16-bit multiplier

Parameters Radix -4 8-bit

multiplier
Radix -4

8-bit

Spanning

tree

Radix -4 16-bit

multiplier

Total
Power(mw)

119.92 114.76 82

Total Delay(ns) 29.050 25.545 7.00

Total

Area(slices)

307 276 617

0
20
40
60
80

100
120
140

Total
Power(mW)

8-Bit vs 16-Bit Radix 4
Multiplier

Radix-4 8 bit

Radix-4 8 bit spanning tree

Radix-4 16 bit

Figure.15: Total Power radix4 8-bit multiplier vs 16-bit

multiplier

0

20

40

Total
Delay(ns)

8-Bit vs 16-Bit Radix 4
Multiplier

Radix-4 8 bit

Radix-4 8 bit spanning tree

Radix-4 16 bit

Figure.16: Total Delay radix4 8-bit multiplier vs 16-bit

multiplier

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 458 | P a g e

0

100

200

300

400

500

600

700

Total
Area(slices)

8-Bit vs 16-Bit Radix 4 Multiplier

Radix-4 8 bit

Radix-4 8-bit Spanning tree

Radix-4 16 bit

Figure.17: Total Area radix4 8-bit multiplier vs 16-bit

multiplier

V. IMAGE PROCESSING:

In this section, the Radix4 multiplier1 and multiplier2 with

various approximate factors are applied to image

processing. The peak signal-to noise ratio (PSNR) is used to

assess the quality of the output image.

The below Table.4 shows the PSNR value of Images using

booth multipliers at different approximation factors. These are

calculated in C using MATLAB .From this Table.4 the PSNR

of Radix4 Multiplier2 is higher than that of Radix4

Multiplier1 .So, it has better quality of image. The images

using Radix 4 multipliers1 and 2 at different approximate

factors are shown in Fig.18 and Fig.19.

(a) (b) (c)

 (d) (e) (f)

Fig.17:ImagesusingRadix4 multiplier1 atdifferent approximate

factor.

(a) p=2,(b) p=4,(c) p=6,(d) p=8,(e) p=10,(f) p=12

(a) (b) (c)

 (d) (e) (f)

Fig.18:Images usingRadix4multiplier2 atdifferent approximate

factor.

(a) p=2,(b) p=4,(c) p=6,(d) p=8,(e) p=10,(f) p=12.

Table.4: PSNR (dB) of Images Radix4 multipliers at different

approximation factors

IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-228 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 459 | P a g e

VI. CONCLUSION

Multipliers are crucial and recurrently used in Digital Signal

Processing applications to run complex high-speed
calculations. This is Implemented on SPARTAN 3E FPGA.

This proposed method shows different methods of radix4 and

those parameters like power, delay and area. Error tolerance is

increased for higher Radix states.This Approximate multiplier

finds its application in space signal computing for retrieving

and analysing the data from the received signal. It also helps

in Digital image processing, and in DSP architectures to

reduce noise ratio.This entire design is structured,

implemented in Verilog HDL language on Xilinx 14.7 design

Tool.The proposed multipliers have also been applied to

image processing,resulting in very small loss of accuracy .

VII. APPLICATIONS

Radix Multipliers plays a large role in the digital era. Major

data transmission is done in 0 and 1. There is a noise which

occurs in transmission of the data. Hence approximation of

data is vital for every transmission. Thus, error tolerant

computing has its vast applications in Digital Image

processing and Space signal processing and large scope in

scientific applications.

VIII. REFERENCES

[1] Bryan C. Catanzaro, Department of Electrical and

Computer Engineering Brigham Young University, “Higher

Radix Floating-Point Representations for FPGA-Based

Arithmetic”, 2005.

[2] Behrooz Parhami, “Computer Arithmetic: Algorithms and

Hardware Designs”, Oxford New York, Oxford University
Press, New York, 2000.

[3] C. N.Marimuthu, P. Thangaraj, Anna University, India,

“Low Power High Performance Multiplier”, ICGST-PDCS

International Conference on Computer Science and

Engineering, 2008

[4] S. Venkataramani, S. T. Chakradhar, and K. Roy.
“Computing approximately, and efficiently,” Proc. Design,

Automation & Test in Europe Conference& Exhibition

(DATE), 2015, pp.748-751.

[5] Liu, W., Qian, L., Wang, C., Jiang, H., Han, J., and

Lombardi, F. (2017). Design of Approximate Radix-4 Booth

Multipliers for Error-Tolerant Computing. IEEE Transactions

on Computers 66, 1435–1441.

[6] J. Han and M. Orshansky, “Approximate computing: an

emerging paradigm for energy-efficient design,” Proc. 18th

IEEE European Test Symposium,2013, pp.1-6.

[7] H. Mahdiani, A. Ahmadi, S. Fakhraie, and C. Lucas, “Bio-

inspired imprecise computational blocks for efficient VLSI

implementation of soft-computing applications,” IEEE Trans.

CircuitsSyst. I, Reg. Papers, vol. 57, pp. 850-862, 2010.

[8] V. Gupta, D. Mohapatra, S. Park, A. Raghunathan, and K.

Roy,“IMPACT: IMPrecise Adders for Low-Power

Approximate Computing,” Proc. Int. Symp. Low Power

Electronics and Design(ISLPED), pp. 1-3, 2011.

[9] W. Liu, L. Chen, C. Wang, M. OʹNeill and F. Lombardi,

“Design andanalysis of floating-point adders”, IEEE Trans.

Computers, vol. 65, pp.308-314, Jan. 2016.

[10] J. Liang, J. Han, and F. Lombardi, “New metrics for the

reliability of approximateand probabilistic adders,” IEEE

Trans. Computers, vol. 63, pp.1760-1771, Sep. 2013.

[11] A. Booth, “A signed binary multiplication technique,”

Quarterly J. Mechanicsand Applied Mathematics, vol. 4,

pp/236-240, June 1951.

[12] O. MacSorley, High-speed arithmetic in binary

computers, Proc. IRE,vol. 49, pp. 67-91, 1961.

[13] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi,

“Design of low error fixed-width modified Booth multiplier,”

IEEE Trans. VLSI Systems, vol.12, no. 5, pp. 522–531, 2004.

[14] M. J. Schulte and E. E. Swartzlander Jr., “Truncated

multiplication with correction constant,” Proc. Workshop

VLSI Signal Process. VI, 1993, pp.388–396.

[15] International Journal of Advanced Research in

Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 11, November 2015 Design of Low Power

Approximate Compressor For Dadda Multiplier S.Sudha,

M.Revathy

[16]http://users.encs.concordia.ca/~asim/coe

[17] Liang, J., Han, J., and Lombardi, F. (2013). New metrics

for the reliability of approximate and probabilistic adders.

IEEE Transactions on Computers 62,

http://users.encs.concordia.ca/~asim/coen312/Lectures/CLA_adder.pdf

