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Abstract—Multipliers has a dominant part in the digital 

world. It is a memoryless sub-block integrated into the 
microprocessor. It is the block with large delay and high 

power consumption.In this paper, the  Booth multipliers are 

discussed.The main advantage of using Booth multipliers is 

reducing the partial products which reduce power 

consumption of the device. This methodology helps to achieve 

low power with high performance and less complex circuits. 

Here, we study Radix-4 8-bit and 16-bit Booth multipliers 

using approximate Booth encoders. This is Implemented on 

SPARTAN 3E FPGA. This entire design is structured, 

implemented in Verilog HDL language on Xilinx 14.7 design 

Tool.The error tolerant computing is analyzed by using two 
approximate Booth encoders with respect to approximate 

factor. In image processing the peak signal-to-noise ratio 

(PSNR) is found to assess the quality of image by using two 

approximate booth encoders in Booth multiplier. 

Keywords—Radix-4 Multiplier, Booth Encoder, 

Approximate computing, High speed, low power , PSNR. 

I.  INTRODUCTION 

Multipliers are used in many different places in 

microprocessor design. It is the non-memory sub-block of the 

microprocessor with the largest size and delay that has a big 

impact on the cycle time. Multipliers are also very important 

and frequently used in Digital Signal Processing applications 

to run complex high-speed calculations. [1] 

Booth multiplication is used critically to increase the speed of 

the multiplier by encoding the multiplicands that are 

multiplied. This technique is standard and used in the design 
of a sub-block in the chip and provides major enhancements 

over the traditional technique. In the conventional multiplier, 

the number of partial products to be added is determined by 

the number of bits the multiplier or multiplicand being used. 

The bigger the number of bits the multiplicand or the 

multiplier contains, the longer time it takes to produce the 

product. The delay of the multiplier is determined largely by 

the number of partial products to be added. One of the most 

popular algorithms used to reduce the number of partial 

products is Booth encoding multiplier. Booth encoding 

multiplication can reduce the number of partial products being 
encoded to increase the speed of the binary multiplications. 

Radix-4 Booth encoding multiplier reduces the number of 

partial products by half, N/2. [2] This can increase the time of 
compression and contribute to an increase in speed. [3] 

 

Multipliers typically consist of a partial product matrix (PPM), 

which accumulates the partial products and reduces them to 

just two operands, and a last stage Carry Propagate Adders 

(CPA).The speed of multiplication can be least significant bit 

(LSB) position of each partial product increased by reducing 

the number of partial products and/or accelerating the 

accumulation of partial products approaches namely booth 

algorithms using Wallace Tree 4-2 Compressors, Carry 

Propagate Adders (CPA).[5]Error-tolerant the technique used 
is Normalization of error distance. The approximate design of 

a radix-4 Booth multiplier is one of the most popular schemes 

for signed multiplication. A radix-4 Booth multiplier, a radix- 

4 modified Booth encoding (MBE) is used to generate the 

partial products.  

The implementation of the MBE significantly affects the area, 

delay and power consumption of Booth multiplier. In the 

traditional MBE algorithm, an extra partial product bit is 

generated at the least significant of row due to the negative 

encoding. This leads to an irregular partial product array as 

requiring a complex reduction tree. A more efficient 

approximate radix-4 Booth encoder is proposed in this paper. 
The designs of both approximate radix-4 Booth encoders are 

presented and extensively analyzed .The multiplicand 

encoding process using radix -4 Booth algorithm is based on 

the multiplier bits. It will compare 3 bits at a time with 

overlapping technique. Grouping starts from the LSB, and the 

first block uses only two bits of the multiplier and assumes a 

zero for the third bit. It consists of eight different types of 

states as we are comparing 3bits at a time and during these 

states, we can obtain the outcomes, which are a multiplication 

of multiplicand with 0,-1 and -2 consecutively. The state 

diagram presents various logics to perform the Radix-4 Booth 
multiplication in different states as per the adopting encoding 

technique is shown in Figure.1. 
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Figure.1: Radix-4  Booth multiplication 

 

II. BACKGROUND STUDY 

 

A. RADIX-4APPROXIMATE BOOTH MULTIPLIER  

 

Radix-4 Booth multiplier in which they are two binary inputs 

as input, one is multiplicand and another one is a multiplier. If 

both binary numbers are positive then it will perform two 

booth encoders. Approximate Booth multipliers are designed 

based on the approximate Booth encoders and the approximate 
regular array of partial products.  

Booth encoding has been anticipated for improving the 

performance of multiplication of twos complement binary 

numbers, it has been further improved by the MBE or radix-4 

Booth encoding. The Booth encoder has a vital role in the 

Booth multiplier, which cuts the number of partial product 

rows by half. Approximate radix-4 booth multiplier designed 

based on two approximate booth encoders those are Radix4 

encoder1 and Radix4 encoder2.  

 

 B. METHOD1: RADIX-4 BOOTH ENCODING 
APPROXIMATION 

The benefit of the Radix4 encoder1 design is an error is less. 

In the approximate Booth multiplier, the proposed 

approximate Booth encoder Radix4 encoder1 shown in 

Figure.2 is used in the first part to generate the inexact partial 

products. The approximate Booth encoders can then be used in 

all or only part of the partial product generation process; 

therefore, an approximation factor p (p=1, 2, ..., 2N) is defined 

as the number of least significant partial product columns that 

are generated by the approximate Booth encoder.  

This Booth encoder is the conventional design of modified 

booth encoder. The traditionally modified booth encoder has 
more delay but this Booth encoder has less delay. This 

encoder reduces the complexity. The conventional MBE, as 

only entries are modified, however, all modifications change a 

ʹ1ʹ to a ʹ0ʹ. The absolute value of the approximate product is 

always larger than its exact. 

 

 
 

Figure.2: Radix4  encoder1 

 

The approximate radix-4 Booth multiplier (Radix4 multiplier 

1) uses radix4 encoder1 (to generate the p least significant 
partial product columns) and the regular approximate partial 

product array. The exact MBE is used for generating the 2N-p 

most significant partial product columns. The exact 4-2 

compressors are used to accumulate both approximate and 

exact partial products.  

Approximate radix-4 Booth multiplier (Radix4 multiplier2) 

uses Radix4 encoder2 shown in Figure.3 the regular 

approximate partial product array and the exact 4-2 

compressors. The error is controlled by the approximation 

factor of a counterpart. Compared with the exact MBE, 

Radix4 encoder1 can significantly reduce the critical path 

delay of Booth encoding. 
 

 

C. METHOD2:  RADIX-4 BOOTH ENCODING 

APPROXIMATION 

Radix4 encoder1, the modification is achieved by not only 

changing a ʹ1ʹ to a ʹ0ʹ but also changing a ʹ0ʹ to a ʹ1ʹ. The 

approximate product can be either larger or smaller. Then the 

exact product and errors can complement each other in the 

partial product reduction process. Radix4 encoder2 in a Booth 

multiplier, the error may not be larger than for a Booth 

multiplier with Radix4 encoder1.  
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                           Figure.3: Radix4 encoder2 

 
D.   APPROXIMATE WALLACE TREE DESIGN  

 

The reduction of partial products using full adders as 4-2 

compressors became generally known as the “Wallace Tree”. 

This architecture reduces the partial product rate. The tree 

reduction for an 8*8 bit partial product tree, the ovals around 

the dots represent either a full adder or a Half adder. This is 

reducing the need for carry propagation in the adder avoid the 

latency of one addition is equal to gate delay of the adder. 

The chip/system designers add accuracy as a new constraint to 

optimize Latency-Power-Area metrics. In this paper, we 

present a new power and area-efficient Approximate Wallace 
Tree structure (AWTs). 

 
Figure.3: Approximate Wallace tree structure 

 

 

E.  COMPRESSOR 4-2: 

 

[15]There are various ways to implement the 4-2 compressor. 

In Figure.4 the simplest of which is cascading two full adder 

cells together shown in Figure.5. This structure was a 

popularized by Santoro who built a 64*64 bit multiplier. The 

interconnection of these full adder must not make the carry out 

dependent on the carry in. It takes two full adders to build one 

4-2 compressor. The speed of each 4-2 compressor is limited 
by the delay of 3 XOR gates in series. Thus, a 4-2 is slightly 

faster than the two-full adder. Thus, the tree compression is 

slightly faster using 4-2 with a trade off a little more hardware. 

 

 
 

                          Figure.4: 4-2 Compressor 

 

The compressor has 5 inputs x1, x2, x3, x4 and Cin to generate 3 

outputs Sum, Carry and Cout. The 4 inputs x1, x2, x3 and x4 

and the output Sum have the same weight. The input Cin is 
output from a previous lower significant compressor and the 

Cout output is for the compressor in the next significant stage. 

 

 
Figure.5: 4-2 Compressor using full adder 

 

The main goal of either multi-operand carry-save addition or 
parallel multiplication is to reduce n numbers to two numbers; 

therefore, n-2 compressors (or n-2 counters) have been widely 

used in computer arithmetic. A 4-2 compressor is usually a 

slice of a circuit that reduces n numbers to two numbers when 

properly replicated. A widely used structure for compression 

is the 4-2 compressor.  

This gives the outputs of the 4- 2 compressor, the common 

implementation of a 4-2 compressor is accomplished by 

utilizing two full-adder (FA) cells 
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F.  CARRY LOOK AHEAD ADDER(CLA): 

 

[16] The ripple-carry adder, its limiting factor is the time it 

takes to propagate the carry. The carry look-ahead adder 

answers this problem by calculating the carry signals in 
advance, based on the input signals. The result is a reduced 

carry propagation time. To be able to understand how the 

carry look-ahead adder works we must manipulate the 

Boolean expression dealing with the full adder.  

The Propagate P and generate G in a full-adder, is given as:  

Pi = xi ⊕ yi    Carry propagate 

Gi = xi yi  Carry generate 

Notice that both propagate and generate signals depend only 

on the input bits and thus will be valid after one gate delay.  

The new expressions for the output sum and the carryout are 

given by:  

Si = Pi ⊕ Ci-1 

Ci+1= Gi + P iCi  

Although it is impractical to have a single level of carry look –

ahead logic for log adder 

Hence equations show that a carry signal will be generated in 

two cases: 

 if both bits xi and yi are 1 

 if either xi or yi is 1 and the carry-in Ci is1.  

It is shown in the Figure.6 Carry look ahead adder. 

To make the carry generator from 4 bits to n bits, we need 

only add AND gates and inputs for the OR gate. The largest 
AND gate in the carry section has always n+1 inputs and the 

number of AND gates requirements is n.  

 

 

 
 

 

Figure.6: carry look ahead adder 

 

 

G.  ERROR ANALYSIS AND EVALUATION: 

 

[17] The approximate designs, several metrics have been 

proposed to measure the error of approximate adders and 

multipliers including the mean error distance (MED), the 

relative error distance (RED) and the normalization of MED 

(NMED). Several error metrics are used to fairly compare 

different approximate designs of various sizes. Here the error 

distance (ED ), relative error distance (RED)and  Normalized 

error distance are found out for two approximate multipliers. 

Where ED is defined as the difference between approximate 

value and exact value. RED is defined as error distance by the 

output of exact value. Normalized error distance is defined as 

the ratio of error distance to the square root of relative error 

distance. 
The error rate of approximate booth encoder1 will be 

significantly smaller than for approximate encoder2. 

The below table 1 and 2 represents the error of approximate 

multipliers at different approximate factors which is nothing 

but an error distance, this is further demonstrated with the 

peak signal to noise ratio(PSNR) results for the image 

application. 

    

Table1: Error analysis of Radix4 multiplier1 

Approximate 

factor(p) 

RED NED(10-2) 

2 0.0085 0.021 

4 0.017 0.30 
6 0.024 0.38 

8 0.031 0.45 

10 0.043 0.48 

12 0.052 0.52 

 

      Table2: Error analysis of Radix4 multiplier2 

Approximate 

factor(p) 

RED NED(10-2) 

 2 0.0087 0.021 

 4 0.0168 0.30 

 6 0.027 0.46 

 8 0.031 0.48 

10 0.054 0.51 

12 0.059 0.63 

 

 

III. PROPOSED METHOD 

 

In this proposed method, we implement Radix-4  8-bit and 16-

bit Booth multipliers. In last part of Booth multipliers to 

compute final product result we use different adder which is 

parallel prefix adder. Parallel-prefix adders, also known as 
carry-tree adders, which pre-compute the propagate and 

generate signals. These signals are variously combined using 

the fundamental carry operator (fco). Due to associative 

property of the fco, these operators can be combined in 

different ways to form various adder structures. The parallel 

prefix adder used in this multiplier is spanning tree adder. It 

has been proved that it can be useful to apply a radix-4 

architecture in high-speed multipliers. Figure.8 shows the 16-

Bit Spanning tree adder. 
Spanning tree adder is a very widespread and extensively 

used adder. It is one of the parallel prefix adders. These adders 
are the ultimate class of adders that are based on the use of 
generating and propagate signals. 
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Figure.8: 16-Bit Spanning tree adder. 

 

 
IV. SIMULATION RESULTS AND DISCUSSION 

 

In this Section, the simulation results of Radix4 multiplier1 ,2 

is shown in Figure.9,10 and11,12 using spanning tree adder 

and  Radix4 multiplier1,2 using 16 bit is shown in 

Figure.13,14. From these Simulation results, it is observed that 

error tolerance is greatly reduced in order from Radix-4 8-bit 

to 16-bit.  

The Graphical representation of these multipliers in terms of 

Area, Power and Delay are shown in the respective Table.3. 

From these Figures.15,16,17, it is visualized that this proposed 
method helps to reduce power, delay but area increases 

gradually with the design due to the use of a compressor 

 

 

Radix-4 8-Bit Approximate Booth multiplier  

 

 

Figure.9: Radix4 multiplier1 

 

    

 

Figure.10: Radix4 multiplier2 

 

 

 

Figure.11: Radix4 multiplier1(using spanning tree adder  ) 

 

 

 

Figure.12: Radix4 multiplier2(using spanning tree adder  ) 
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Figure.13: Radix4 16-bit  Multiplier 1 

 

 

 

Figure.14: Radix4 16-bit Multiplier2  

 

Table.3: Radix4 8-bit multiplier vs 16-bit multiplier 

 

 

Parameters Radix -4 8-bit  

multiplier 
Radix -4 

8-bit  

Spanning 

tree 

Radix -4 16-bit     

multiplier 

Total 
Power(mw) 

119.92 114.76 82 

Total Delay(ns) 29.050   25.545          7.00 

Total 

Area(slices) 

307    276           617 
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Figure.15: Total Power  radix4 8-bit multiplier vs 16-bit 

multiplier 
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Figure.16: Total Delay radix4 8-bit multiplier vs 16-bit 

multiplier 
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Figure.17: Total Area radix4 8-bit multiplier vs 16-bit 

multiplier 

 

V. IMAGE PROCESSING: 

In this section, the Radix4 multiplier1 and multiplier2 with 

various approximate factors are applied to image 

processing. The peak signal-to noise ratio (PSNR) is used to 

assess the quality of the output image.  

The below Table.4 shows the PSNR value of Images using  

booth multipliers at different approximation factors. These are 

calculated in C using MATLAB .From this Table.4 the PSNR 

of Radix4 Multiplier2 is higher than that of Radix4 

Multiplier1 .So, it has better quality of image. The images 

using Radix 4 multipliers1 and 2 at different approximate 

factors are shown in Fig.18 and Fig.19. 

 

    
(a)                    (b)                      (c) 

   
 

         (d)                    (e)                      (f) 

Fig.17:ImagesusingRadix4 multiplier1 atdifferent approximate 

factor. 

(a) p=2,(b) p=4,(c) p=6,(d) p=8,(e) p=10,(f) p=12 

 

 

   
     

(a)                       (b)                     (c) 

 

      
 

            (d)                  (e)                 (f) 

 

Fig.18:Images usingRadix4multiplier2 atdifferent approximate 

factor. 

(a) p=2,(b) p=4,(c) p=6,(d) p=8,(e) p=10,(f) p=12. 

 

 

Table.4: PSNR (dB) of Images Radix4 multipliers at different 

approximation factors 
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VI. CONCLUSION 

 

Multipliers are crucial and recurrently used in Digital Signal 

Processing applications to run complex high-speed 
calculations. This is Implemented on SPARTAN 3E FPGA. 

This proposed method shows different methods of radix4  and 

those parameters like power, delay and area. Error tolerance is 

increased for higher Radix states.This Approximate multiplier 

finds its application in space signal computing for retrieving 

and analysing the data from the received signal. It also helps 

in Digital image processing, and in DSP architectures to 

reduce noise ratio.This entire design is structured, 

implemented in Verilog HDL language on Xilinx 14.7 design 

Tool.The proposed multipliers have also been applied to 

image processing,resulting in very small loss of accuracy . 

 
VII. APPLICATIONS 

 

Radix Multipliers plays a large role in the digital era. Major 

data transmission is done in 0 and 1. There is a noise which 

occurs in transmission of the data. Hence approximation of 

data is vital for every transmission. Thus, error tolerant 

computing has its vast applications in Digital Image 

processing and Space signal processing and large scope in 

scientific applications. 
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