Calculus 3 - Limits

In Calculus 1 we considered limits. For example

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-2}{2 x+1}
$$

If we directly substitute $x=1$ we get

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x-2}{2 x+1}=\frac{1^{2}+2 \cdot 1-2}{2 \cdot 1+1}=\frac{1}{3}
$$

a simple number. However, if we consider

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{" 0^{\prime \prime}}{{ }^{\prime \prime} 0^{\prime \prime}} \tag{1}
\end{equation*}
$$

with $\frac{\text { " } 0 \text { " }}{\prime \prime 0 \text { " }}$ meaning nothing. So we consider alternate approaches to derive the limit. For example, graphically we see that (1) and from the graph we

Figure 1: Graph of $f(x)=\frac{x^{2}-1}{x-1}$
determined that

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2 \tag{2}
\end{equation*}
$$

Analytically, we we see

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 1} x+1=2 \tag{3}
\end{equation*}
$$

It's important to realize that not all limits exist. For example consider

$$
f(x)= \begin{cases}1 & \text { if } x<0 \tag{4}\\ x & \text { if } x \geq 0\end{cases}
$$

and the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x) \tag{5}
\end{equation*}
$$

Clearly approaching zero from the left and from the right gives different

Figure 2: Branch function (4)
values. So we created one-sided limits

$$
\begin{align*}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} 1=1 \tag{6}\\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} x=0
\end{align*}
$$

and since

$$
\begin{equation*}
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x) \tag{7}
\end{equation*}
$$

then the limit does not exist (DNE).
In general we considered

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=L \tag{8}
\end{equation*}
$$

and a very formal way (using $\delta-\epsilon$) of proving that limits exist.
So now we extend limits to 3D and consider

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(a, b)} f(x, y) \tag{9}
\end{equation*}
$$

and ask - do these limits exist?
Consider for example,

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,-1)} \frac{10 x y-2 y^{2}}{x^{2}+y^{2}} \tag{10}
\end{equation*}
$$

Well, as a first approach, let's try a direct substitution. Doing so yields

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,-1)} \frac{10 x y-2 y^{2}}{x^{2}+y^{2}}=\frac{-10-2}{1+1}=\frac{-12}{2}=-6 \tag{11}
\end{equation*}
$$

and so the limit is equal to 6 .

Consider

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,-2)} \frac{y^{2}+2 x y}{y+2 x} \tag{12}
\end{equation*}
$$

a direct substitution yields

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,-2)} \frac{y^{2}+2 x y}{y+2 x}=\frac{4-4}{-2+2}=\frac{" 0^{\prime \prime}}{\prime 0^{\prime \prime}} \tag{13}
\end{equation*}
$$

so there's that " 0 " 0 " again meaning we need to do something else. One will notice that factoring will work here since

$$
\begin{align*}
\lim _{(x, y) \rightarrow(1,-2)} \frac{y^{2}+2 x y}{y+2 x} & =\lim _{(x, y) \rightarrow(1,-2)} \frac{y(y+2 x)}{y+2 x} \\
& =\lim _{(x, y) \rightarrow(1,-2)} y \tag{14}\\
& =-2
\end{align*}
$$

so the limit exists!
Consider

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{" 0^{\prime \prime}}{{ }^{\prime \prime} 0^{\prime \prime}} \tag{15}
\end{equation*}
$$

so we need to do something else. How many ways can we approach $(0,0)$? Well, there really are an infinite number of ways. For example, we could let $y=0$ and then let $x \rightarrow 0$ so we would be approaching $(0,0)$ along the x -axis. We could let $x=0$ and then let $y \rightarrow 0$ so we would be approaching $(0,0)$ along the y-axis. We could also let $y=x$ and then let $x \rightarrow 0$ so we would be approaching $(0,0)$ along the line $y=x$.

Figure 3: Following different paths

So let's see what happens in our limit (eqn. (15)) following the x and y axes.

$$
\begin{align*}
& \text { along } x \text { axis }(y=0) \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-0^{2}}{x^{2}+0^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}}=1 \\
& \text { along y axis }(x=0) \lim _{(x, y) \rightarrow(0,0)} \frac{0^{2}-y^{2}}{0^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{-y^{2}}{y^{2}}=-1 \tag{16}
\end{align*}
$$

and since following different paths, we get different limits, the limit DNE! Example 4

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\frac{" 0^{\prime \prime}}{{ }^{\prime \prime} 0^{\prime \prime}} \tag{17}
\end{equation*}
$$

Along $x=0$ (y axis) and $y=0$ (x axis) we obtain

$$
\begin{align*}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{0}{y^{2}}=0 \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{0}{x^{2}}=0 \tag{18}
\end{align*}
$$

and so you might be tempted to say the limit is 0 but if we follow $y=x$ then

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{2 x^{2}}=\frac{1}{2} \neq 0 \tag{19}
\end{equation*}
$$

and so in this example, the limit DNE!

Example 5

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}=\frac{" 0^{\prime \prime}}{{ }^{\prime \prime} 0^{\prime \prime}} \tag{20}
\end{equation*}
$$

Along $x=0, y=0$ and $y=x$ we get

$$
\begin{align*}
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}} & =0 \\
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}} & =0 \tag{21}\\
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}} & =\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}}{x^{4}+x^{2}}=0
\end{align*}
$$

and so you might be tempted to say the limit is 0 but if we follow $y=x^{2}$ then

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{4}}{x^{4}+x^{4}}=\frac{2}{2}=1 \neq 0 \tag{22}
\end{equation*}
$$

and so in this example, the limit DNE!
Example 6

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}=\frac{" 0^{\prime \prime}}{{ }^{\prime \prime} 0^{\prime \prime}} \tag{23}
\end{equation*}
$$

Along $x=0, y=0$ and $y=x$ we get the limit is zero. So maybe the limit is actually zero. This we consider in the next class.

