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General Background 

 

The history of slope stability analyses in Geotechnical Engineering is well documented in 

the textbook by Duncan, Wright and Brandon (2014) and elsewhere.  The procedures 

used for slope stability analysis started out as hand or graphical methods, but with the 

introduction of limit equilibrium methods of analysis most calculations became 

computerized. Many engineers seem to believe that these computer programs 

automatically give the correct answer, but, in addition to the “garbage in – garbage out” 

rule still holding, these analyses are simplified and thus approximate at best.  There are 

also specific features of the common methods of analysis that may limit their usefulness 

in numerous ways.  

 

These limitations include unrealistic solutions where the line of thrust goes outside the 

assumed potential sliding mass and the possibility of developing unreal interslice tensile 

forces.  Despite advice from a range of experts from Morgenstern and Price (1965) to 

Wright (2013) that the user always should check the solution to make sure that it is 

physically valid, many computer programs do not make this easy and in the writer’s 

experience many, perhaps even the majority, of computerized analyses are flawed. 

Other limitations include the failure to compute local factors of safety which might 

indicate progressive failure, the failure to include seepage forces, and the failure to 

consider 3D effects. While there is some published literature on the difference between 

2D and 3D slope stability analyses, the truth is that, lacking suitable tools for routinely 

conducting 3D analyses, no-one really has known in the past how great the difference 

between 2D and 3D analyses might be.  The same is true of the inclusion of seepage 

forces.  

 

The ways that applied loads, including tie-back forces, and internal reinforcement are 

modelled, and the effect of that on stability calculations, is also unclear in the 
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documentation for many computer programs. 

 

This report seeks to clarify these issues making use of a new, inherently 3D computer 

program called TSLOPE (http://tagasoft.com)  to make comparisons of the results 

obtained using two alternate simplified methods of analysis.  The paper is confined to 

the use of the method of slices (or columns in 3D). The vast majority of all evaluations of 

slope stability to date have been carried out using one variation or another of the 

method of slices and this is likely to continue.  The advantages and the limitations of 

attempting what might be considered more complete analyses using finite element or 

finite difference techniques are discussed at the end of the paper. 

 

 

Implications of the definition of the factor of safety 

 

There are two ways that the factor of safety has been defined in the analysis of slope 

stability using the method of slices or columns. 

 

The first is the simple definition that the factor of safety is the sum of the resisting forces 

around the failure plane divided by the sum of the driving forces.  This was used in early 

analyses using the method of slices and many geotechnical engineers appear to still 

believe that this is the way the factor of safety is calculated. 

 

However, most modern computer programs define the factor of safety differently, as a 

strength reduction factor.  The factor of safety is that factor by which the assumed shear 

strengths must be reduced in order that the sums of the driving and resisting forces are 

equal.   

 

A common argument in support of this definition is that the shear strengths around the 

failure plane are the greatest source of uncertainty in the analysis, so that it makes sense 

to factor the shear strengths.  That is questionable.  In practice, most geotechnical 

engineers adopt conservative values for the shear strengths or shear strength 

parameters, so that the uncertainty in these values is already considered.  A better 

argument is that the methods that define the factor of safety this way force the factor of 

safety to be the same at the base of each slice and obscure the fact that some parts of 

the potential slip surface may be overstressed, even if the overall factor of safety is 

above 1.0.  That is a good argument for normally requiring an overall factor of safety of 

1.5 in practice.  If the factor of safety is 1.5 or greater, then the local factors of safety are 

less likely to fall below 1.0 and the risk of progressive failure should be diminished.  Also, 

as will be shown subsequently, the omission of seepage forces in limit equilibrium 

methods of analysis can cause the factor of safety to be overestimated by as much as 30 

http://tagasoft.com/
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percent, so that is yet another reason for requiring a factor of safety of 1.5.  On the other 

hand, 3D effects, while they can in some cases reduce the factor of safety, normally 

increase it, sometimes very significantly, so that requiring a 2D factor of safety of 1.5 

may be excessive.  

 

Using the second definition of the factor of safety, the sums of the driving and resisting 

forces are made equal, therefore the methods of analysis that use it are called “limit 

equilibrium analyses”.  Some methods of analysis, such as Bishop’s Simplified Method, 

are limit equilibrium analyses but they do not “fully satisfy equilibrium”, meaning that 

force and moment equilibrium is not satisfied for each slice or column and thus for the 

potential sliding mass as a whole.  Methods which do “fully satisfy equilibrium” such as 

those of Morgenstern and Price (1965) or Spencer (1967) are now generally preferred by 

both academics and practitioners. 

 

The principal direct implication of how the factor of safety is defined is that with the 

first, simple definition one can calculate “local factors of safety” for each slice or column 

whereas in limit equilibrium analyses, the factor of safety at the base of each slice or 

column is by definition the same.  Equations of equilibrium are set up and then solved 

for two unknowns – the factor of safety and a second unknown which usually has to do 

with the assumptions made regarding side forces acting on the slices of columns.  In 

Spencer’s Method this unknown is the angle of inclination of the side forces, which is 

assumed to be constant for all slices or columns. In the Morgenstern and Price method it 

is a scale factor for the side forces whose varying angles of inclination are specified by 

the user.   

 

With the second definition of the factor of safety there is only one factor of safety and it 

applies to each slice or column as well as the overall potential sliding mass. As noted 

previously, this obscures the fact that some segments of the potential slip surface are 

likely closer to failure than others, but it also forces an artificial distribution of the 

normal and shear stresses around the potential slip surface. The normal stresses will 

impact the shear strengths calculated for non-cohesive materials, that is, materials for 

which the strength is at least in part specified to be a function of the normal stress on 

the potential slip surface. This is demonstrated subsequently in several examples which 

show the normal stress distributions obtained using a limit equilibrium analyses and a 

simple method of analysis which is not a limit equilibrium analyses.  It turns out that the 

difference in the normal stresses is the big contributing factor to any differences in the 

factor of safety that are computed by the two methods. 
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Limitations of limit equilibrium methods of analysis 
 

Given the previous discussion, one might then ask, “why do people generally prefer 

methods that fully satisfy equilibrium?”  The basic answer to this question seems to be 

that engineers are taught in undergraduate classes that any analysis of the stresses in a 

rigid body should “fully satisfy equilibrium”, and it certainly looks more elegant or 

sophisticated to do this.  But is it correct for a potential sliding mass that is deformable 

and can’t take tension? 

 

The second definition of the factor of safety and the quest to fully satisfy equilibrium 

implies that the potential sliding mass acts as a rigid body.  Leaving aside for the moment 

whether this is reasonable or not for real slopes, this forces the factor of safety to be the 

same for all slices, thus forcing an artificial distribution of the normal and shear stresses 

around the potential slip surface, and has other implications as well. These implications 

have to do with the development of tensile interslice forces and the calculated line of 

thrust, and also whether or not the solution converges and, further, whether or not it 

converges to the correct solution. 

 

Solutions that “fully satisfy equilibrium” will tend to develop negative interslice forces 

wherever there is a hump in the potential slip surface and at the upper end of a shallow 

potential slip surface.  The computed factors of safety in these cases may be quite 

unconservative because the assumed rigid body gets hung up. Thus, the user needs to 

insert tension cracks as necessary to eliminate any tensile interslice forces, since soil and 

rock masses generally have no tensile capacity.  The user also then has to decide 

whether a model with perhaps artificially deep tension cracks is real or not. 

 

More attention in the literature has been applied to the line of thrust, that is the locus of 

the points of application of the interslice forces, and this has generally been the principal 

recommended test for whether a solution is reasonable or not.  Ideally the line of thrust 

should be located at something like the third point of the slices or columns but it should 

never travel outside the boundaries of the potential sliding mass, as it commonly does in 

problems with tensile interslice forces and sometimes does in pseudo-static seismic 

analyses.  

 

The occurrence of tensile interslice forces and odd lines of thrust is illustrated using the 

example of a relatively simple embankment dam, but it is also helpful to compare the 

results using a method that “fully satisfies equilibrium”, in this case Spencer’s Method, 

with a method that uses the first, simple definition of the factor of safety, in this case the 
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Ordinary Method of Columns (OMC), a 3D implementation of the Ordinary Method of 

Slices (OMS).  The OMC and some past criticisms of the OMS are described in more detail 

subsequently, but for this first example, it is sufficient to say that it uses the first 

definition of the factor of safety and that interslice, or intercolumn, forces are neglected.  

It is as if a bunch of square columns coated with Teflon can slide up and down as the 

overall slope deforms. Thus, the OMC implies that the potential sliding mass is 

deformable whereas Spencer’s method implies that the potential sliding mass is rigid. 

 

Figure 1 shows results for the stability of the downstream slope of a simple dam 

embankment analysed using both Spencer’s Method and the OMC.  In Figure 1(a) using 

Spencer’s Method causes the development of tensile interslice forces, indicated by slices 

coloured red, and causes the line of thrust, shown as a red line, to swing outside the 

potential sliding mass.   

 

 
 

Figure 1(a) – No Tension Crack, Spencer 

 

 
 

Figure 1(b) – No Tension Crack, OMC 
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In Figure 1(c), the tensile interslice forces in the solution by Spencer’s method have been 

eliminated by inserting a tension crack, slightly lowering the computed factor of safety. 

However, instead of the line of thrust going way outside of the potential sliding mass at 

the top of the slope, it now has a hiccup at the toe.  

 
 

Figure 1(c) – With Tension Crack, Spencer 

 

 
 

Figure 1(d) – With Tension Crack, OMC 
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Figure 1(e) – With Shorter Tension Crack, Spencer 

 

Note that in both Figures 1(b) and 1(d), the OMC gives a lower factor of safety than 

Spencer’s method.  This is partly because Spencer’s method does not account for 

seepage forces, but the seepage forces in this problem are not very large relative to the 

gravity forces and most of the difference results from the difference in the distribution 

of the normal stresses on the bases of the columns.  In this problem both the core and 

the downstream shell are specified to have shear strengths with both cohesive and non-

cohesive components and the non-cohesive component is sensitive to the normal forces.  

The normal forces in the figures have different scales because the scale is set so that the 

maximum values have the same length, but the vector sums of the normal forces are 

equal.  However, with Spencer’s method more of the load is transferred towards the 

ends of the slip surface and, overall, this increases the shear strengths and the factor of 

safety.  With the OMC there is no internal load transfer and the normal stress results 

solely from the weight of the column in question.  The truth likely lies somewhere in 

between these two extremes. 

 

If the engineer is troubled by the line of thrust in Figure 1(c) and wants to spend more 

time on the problem, it can be eliminated by halving the depth of the tension crack, as 

shown in Figure 1(e). The resulting factor of safety of 1.57 might be considered the “best 

answer” by many authorities, but the corresponding value of 1.44 by the OMC is a safer 

and likely more realistic value, given that the dam embankment is not rigid and must be 

subject to some seepage forces. 

 

The difficulty of obtaining what Morgenstern and Price called a “physically acceptable” 

solution, without tension and with the line of thrust contained within the potential 

sliding mass, using Spencer’s method illustrates the importance of the user being able to 

readily see the line of thrust and the occurrence of tension.   
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Figure 1(f) – With Tension Crack and Seismic Coefficient, Spencer 

 

 

 
 

Figure 1(g) – With Tension Crack and Seismic Coefficient, OMC 

 

Figures 1(f) and 1(g) illustrate how these problems can be compounded by the addition 

of external loads such as pseudo-static seismic forces. In Figure 1(f) the problem with the 

line of thrust seen in Figure 1(c) is now aggravated. It is not uncommon for the line of 

thrust in pseudo-static analyses using methods that fully satisfy equilibrium to come out 

of the slope and the engineer must decide whether he/she can live with that or not.  In 

the corresponding analysis by the OMC, the normal stresses on the bases of the columns 

are not impacted by the added seismic loads so that a nicer looking distribution of the 

normal forces are obtained and the same shear strengths apply around the slip surface 

as were used in the static analysis.  But, pseudo-static analyses are approximate anyway 

and these points are less important than whether standard static strength properties are 

used or whether adjustments, which might be considerable, are made for different 
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drainage conditions and rates of loading.  This latter point is illustrated in a subsequent 

example involving Treasure Island. 

 

This question of the reasonableness of the results of slope stability analyses obtained 

using the various forms of the method of slices has been repeatedly addressed in the 

literature but, sadly, it is often ignored in practice.  Morgenstern and Price (1965), in 

their very elegant paper which introduced the concept of a user-specified distribution of 

the angle of inclination, emphasized that there were multiple possible solutions and that 

the user should vary the assumed distribution of the angle of inclination so that a 

reasonable line of thrust was achieved, if possible. Whitman and Bailey (1967), who 

correctly took Morgenstern and Price to be the gold standard for analyses that fully 

satisfy equilibrium, said “the use of the Morgenstern-Price approach together with a 

computer does not free the engineer from making a judgment concerning the 

reasonableness of a solution.”  Chin and Fredland (1983) noted some difficulties with 

methods that fully satisfy equilibrium, including the fact that they sometimes have 

trouble converging to a solution, and suggest some possible workarounds. Krahn (2003) 

discussed the limits of limit equilibrium analyses including convergence issues and 

difficulties with applying external forces.  He suggested that the latter can best be 

addressed using a hybrid finite element - limit equilibrium analysis but that seems 

unwieldy for routine use. Wright (2013), in a “must watch” lecture, included several case 

histories that illustrate various problems with methods that fully satisfy equilibrium.  

Wright emphasized that there is no absolutely correct solution, and suggested that the 

engineer should always use at least two computer programs for any critical problem, in 

part because computer programs may include hidden assumptions and also may not 

show the intermediate results that are necessary to judge the reasonableness of the 

final result.  Or, as an alternative, the engineer can use one program that offers two 

good methods of solution and makes all the key data visible. 

 

Seepage Forces 

 

Slope failures are often said to be due to water, or rather the failure to recognize the 

correct water conditions, and application of the pore pressures normal to the bases of 

the slices in conventional slope stability analyses may give the impression that this 

accounts for seepage forces in non-hydrostatic conditions.  However, this is not correct.  

The seepage forces that one assumes might be applied by using total unit weights and 

specifying the pore pressures along the slip surface do not actually make their way into 

the analysis.  This can easily be checked by running an analysis of a cohesive slope with 

varying phreatic surfaces. Regardless of how steep the phreatic surface, it will make no 

difference to the computed factor of safety.  The reason that a cohesive slope, or a slope 

in which all the strengths are specified as fixed quantities, as with undrained shear 



Page 10 of 41 
 

 

 

    

strengths, must be used is that the strength of frictional material will vary with the 

normal effective stress so that changing the phreatic surface will make a difference, but 

it does not make a difference to the limit equilibrium problem. 

 

This problem related to seepage forces was noted by King (1989) and is most simply 

explained by saying that if the seepage forces are pictured as boundary water pressures, 

the corresponding forces will be applied at the centre of the base of each slice and they 

make no difference to the standard equations of equilibrium.  They make no difference 

to the moment because the moment arm is zero and they are not included in the 

solution for force equilibrium parallel to the base of the slice. They make no difference 

to force equilibrium normal to the base of the slice because the force due to the weight 

of the slice is fixed and increasing the pore pressure simply reduces the effective stress, 

which may change the calculated shear strength, but doesn’t impact the solution of the 

equations of equilibrium.  The shear strength will change if a frictional material is 

specified but it has no effect if the shear strength is specified as a fixed number.  The 

writer and his then colleagues learnt this the hard way some years ago when trying to 

include excess pore pressures generated by earthquake loading in a second stage 

analysis.  Once the programming was completed we found that it made no difference to 

the calculated factor of safety! King suggested a solution which involved calculating the 

distributed seepage forces and applying them at the appropriate height in each slice, but 

this is a little unwieldy and requires a companion seepage analysis, so that his proposed 

solution has never caught on. In the OMC, however, it is easy to specify the seepage 

forces as horizontally applied forces on each slice, as discussed by Pyke (2016).   

 

The application in the OMC or non-application in Spencer’s method of seepage forces is 

illustrated in Figure 2 which shows an idealized levee section that is based on real levees 

in the Sacramento - San Joaquin Delta of California.  The soil properties are specified 

entirely as a cohesion, so that the shear strengths used in both Spencer’s method and 

the OMC are the same, despite the difference in the distribution of the normal stresses 

which can be seen in Figures 2(a) and 2(b).  In Figures 2(a) and 2(b) the phreatic surface 

is made flat and brought down below the levee so that there are no seepage forces.  For 

this case Spencer’s method and the OMC give identical factors of safety of 1.27, as 

shown on the figures and in Table 1. 
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Figure 2(a) – Flat Phreatic Surface, Spencer 

 

 

 
 

Figure 2(b) – Flat Phreatic Surface, OMC 

 

In Figures 2(c), (d), (e) and (f) the phreatic surface is raised in two steps and it can be 

seen that the factor of safety by Spencer’s Method does not change. Note that for the 

top phreatic surface there is a red flag on the first slice using Spencer’s method.  This is 

not due to interslice tension but is the result of a negative normal stress on the base of 

that slice as a result of the steep angle of inclination of the base, the same thing that 

standard implementations of the OMS has been criticized for. It can be eliminated by 

moving the tension crack to the left but in this case it makes no difference to the 

calculated factor of safety. The same issue does not arise in the OMC as implemented in 
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TSLOPE because the alternate method of calculating normal stresses is used, as 

explained further below. 

 
Figure 2(c) – Middle Phreatic Surface, Spencer 

 
Figure 2(d) – Middle Phreatic Surface, OMC 

 
Figure 2(e) – Top Phreatic Surface, Spencer 
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Figure 2(f) – Top Phreatic Surface, OMC 

 

 

Case OMC Spencer 

Flat phreatic surface 1.27 1.27 

Middle phreatic surface 1.08 1.27 

Top phreatic surface 0.98 1.27 

 

Table 1 – Factors of Safety, All Cohesion Case  

 

It may be seen that the OMC gives factors of safety which are 15 and 23 percent lower 

than the factors of safety by Spencer’s method so that provides a measure of the 

importance of including seepage forces.  For this levee example, the difference could be 

critical, but this example has been chosen to represent something of a worst case and 

often the seepage forces do not make this much difference because they are small 

relative to the driving forces due to gravity.  But if you can’t or don’t make a check on 

the magnitude of the seepage forces, you will never know. 

 

If the shear strength is specified to be entirely non-cohesive and is thus a function of the 

normal stresses at the bases of the columns, the effect of changing the phreatic surface 

becomes more dramatic because it includes two factors, the seepage forces and a 

change in the shear strengths.  This can be seen in the following figures.  Figures 2 (g) 

and 2(h) show the solution for the flat phreatic surface using both Spencer’s Method and 

the OMC.  It can be seen that the spreading out of the normal forces by Spencer’s 

method results in higher average shear strengths and hence a higher factor of safety.  

Again, the truth probably lies somewhere in between these two limits but the engineer 

has to decide whether the potential sliding mass is more rigid or less rigid in assigning 

weights to the two answers. 
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Figure 2(g) – Flat Phreatic Surface, Spencer, Cohesionless 

 
 

Figure 2(h) – Flat Phreatic Surface, OMC, Cohesionless 

 

The results for the top phreatic surface are shown in Figures 2(i) and 2(j).  It may be seen 

that the result of combining the lack of seepage forces in Spencer’s Method and the 

effect of the different normal stress distribution is now quite large.  The OMC factor of 

safety for the flat phreatic surface was 75% of the Spencer factor of safety but another 

75% or so reduction due to the different normal stress distribution now means that the 

OMC factor of safety is only 55% of the Spencer factor of safety. Again, this might be 

something of an extreme case since both effects are maximized.  In practice a levee 

would not be composed of solely cohesionless materials, nonetheless, even a factor of 

safety of 1.5 and a conservative choice of soil strength parameters might not provide the 

expected margin of safety for levees with significant cohesionless soil content if the 
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analysis is done using standard limit equilibrium methods. Figures for the intermediate 

case are not shown but the calculated factors of safety are shown for all three cases in 

Table 2.   

 

 
 

Figure 2(i) – Top Phreatic Surface, Spencer, Cohesionless 

 

 

 
 

Figure 2(j) – Top Phreatic Surface, OMC, Cohesionless 

 

 

Case OMC Spencer 

Flat phreatic surface 1.88 2.48 

Middle phreatic surface 1.22 1.97 

Top phreatic surface 0.97 1.75 

 

Table 2 – Factors of Safety, Cohesionless Case  
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Returning to just the question of seepage forces, since these will often not make that 

much difference, this suggests that an increase in the total weights, elimination of 

negative pore pressures in partially saturated soils, a change from drained to undrained 

loading conditions and more general softening of soils might be bigger factors in why 

landslides often appear to be triggered by water.  But, in critical cases the engineer 

needs to use a method of analysis such as the OMC, which does include seepage forces, 

at least as a check on standard limit equilibrium calculations. 

 

 

The Ordinary Method of Columns as an Alternative 

 

Because of the difficulties noted above with methods of analysis that “fully satisfy 

equilibrium” and limit equilibrium methods in general, it is worth re-examining the 

Ordinary Method of Slices (OMS) in which interslice forces are neglected – which is 

similar to assuming a frictionless contact between adjacent slices.  The OMS does not 

require an iterative solution so that convergence and multiple solutions are no longer 

issues.  The OMS, as described for instance by Duncan, Wright and Brandon (2014), and 

also sometimes referred to as the Fellenius or Swedish Circle Method, uses moment 

equilibrium about the centre of a circular slip surface and the factor of safety is defined 

as the sum of the resisting moments divided by the sum of the driving moments.  A 

similar method can be extended to non-circular slip surfaces if the factor of safety is 

defined as the sum of the resisting forces around the failure plane divided by the sum of 

the driving forces. These driving and resisting forces are computed as stresses that are 

normal and parallel to the base of each slice.  The sums of these forces make no sense if 

they are added arithmetically but if they are added as vector sums, they do. In the early 

days of slope stability analyses such vector additions were done graphically but now they 

can be done by computer using modern programming languages. 

 

In addition to having the virtue of simplicity, the OMS also effectively accounts for the 

deformable nature of soil and rock masses and allowing the slices to slide up and down 

relative to each other, while still not physically correct, is generally more consistent with 

reality than assuming that the entire potential sliding mass is a rigid body.  The 

assumption of a rigid body is really only realistic when the slip surface is either circular or 

a logarithmic spiral, but even then the potential sliding mass is likely deformable.  For 

non-circular slip surfaces, which are not kinematically admissible, the assumption of a 

rigid body is unrealistic and may often lead to overly conservative results.  Even wedges 

of rock mass, for which special analysis techniques have been developed in rock 



Page 17 of 41 
 

 

 

    

mechanics, and for which failures are kinematically admissible, are rarely if ever single 

unjointed and unfractured blocks of rock.  

 

The OMS has been criticized and largely fallen out of favour in recent times because of a 

widely quoted example contained in the otherwise excellent paper by Whitman and 

Bailey (1967).  This example consists of the analysis of the submerged upstream slope of 

an inclined core dam and is reproduced below.  Whitman and Bailey, and Duncan, 

Wright and Brandon (2014), and others before them, correctly pointed out a problem, 

that actually applies to all analyses by the Method of Slices, but can be seen more clearly 

in the OMS.  If the normal effective stress on the failure plane is computed by taking the 

component of total weight of the slice and any water above it that is normal to the 

potential slip surface and then subtracting the pore pressure that acts on the base of the 

slice, when either or both of the angle of inclination of the base of the slice and the pore 

pressure are large, the calculated normal effective stress can be less than zero.  The 

problem is illustrated and discussed in more detail by Pyke (2016).  However, Whitman 

and Bailey and Duncan, Wright and Brandon, and, again, others before them, also 

suggested a solution to this problem which is to use the buoyant unit weight of the slice 

in calculating the weight of the slice and the component normal to the base of the slice.  

Pyke (2016) explains that not only does this solve the problem but that it is the “more 

correct” solution, and that under non-hydrostatic conditions the buoyant unit weights 

need to be adjusted for any seepage forces in the vertical direction.  This can most easily 

be done in practice by going back to using the total unit weights but applying the water 

pressures in the vertical direction that act on the base and the top of the slice.  

 

The computer program TSLOPE offers only two methods of solution, the Ordinary 

Method of Columns (OMC), which is equivalent to the OMS in 2D, and a unique 3D 

solution for Spencer’s Method. The solution for Spencer’s method uses an optimization 

technique that always converges and the final imbalance in the moments and forces (if 

any) can be seen by the user.  The user can also view a 3D surface that shows the 

variation in the factor of safety with respect to other variables so that it can be 

confirmed that the appropriate minimum value has been found.  A not uncommon 

problem with Spencer’s Method is that it might converge to a false minimum.  The 

TSLOPE solution space analysis provides feedback on this issue. 

 

Spencer’s Method assumes that the angle of inclination of all the interslice forces is the 

same.  This is obviously not correct, but Spencer’s Method converges more reliably than 

the Morgenstern and Price Method, and even with the theoretically nicer Morgenstern 

and Price method, the user has to check that a valid line of thrust and a solution without 

tension is obtained, in addition to struggling with what distribution of interslice forces to 

use in the first place. Because the OMC provides a direct calculation of the factor of 
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safety and has no convergence issues, even if Spencer’s method is specified, TSLOPE 

initially calculates the factor of safety using the OMC and then uses this value and the 

direction of sliding (for a 3D analysis) as the starting point for the calculation by 

Spencer’s Method. 

 

The OMC, as implemented in TSLOPE, is generally similar to the method for 3D analysis 

of slopes described by Hovland (1977) in which inter-column forces are neglected and 

driving and resisting forces are computed parallel to the bases of the slices or columns.  

The factor of safety in TSLOPE is defined as the vector sum of the resisting forces divided 

by the vector sum of the driving forces. The normal effective stresses on the potential 

failure plane are calculated as discussed above.  

 

The results obtained using TSLOPE for two variations of Whitman and Bailey’s Example 4, 

shown in their Figure 11, are shown in Figure 3 and Table 3.  Figures 3(a) and (b) show 

the original Whitman and Bailey problem with the pond level close to, but not quite at, 

the top of the core.  Figures 3(c) and (d) have the pond level brought down to the top of 

the potential sliding mass.  It can be seen from the figures that lowering the pond level 

makes no difference to the factor of safety, as should be the case for hydrostatic 

conditions and a fully submerged potential sliding mass.  The factor of safety computed 

by Spencer’s Method is 2.09. Because much of the potential failure surface passes 

through the core which includes significant cohesion and the distributions of normal 

stresses are not that different, the corresponding factors of safety by the OMC are only 8 

percent lower at 1.93.   

 

 

 
 

Figure 3(a) – Original Whitman and Bailey Example 4, Spencer 
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Figure 3(b) – Original Whitman and Bailey Example 4, OMC 

 
 

Figure 3(c) - Whitman and Bailey Example 4 with Lowered Pond, Spencer 

 
 

Figure 3(d) - Whitman and Bailey Example 4 with Lowered Pond, OMC 
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Case OMC Spencer 

Original problem 1.93 2.09 

With lowered pond 1.93 2.09 

 

Table 3 – Factors of Safety for Whitman and Bailey Example 4 

 

Whitman and Bailey obtained factors of safety ranging from 2.01 to 2.03 using the 

Morgenstern and Price method, which they considered to be the “most correct” 

solution.  These values are consistent with the answers from TSLOPE given that the 

details of the geometry that we have read from their figure may not be precisely correct. 

It might also be noted that these results may not be for the critical slip circle as we are 

just using the circle adopted by Whitman and Bailey.  For that circle, Whitman and Bailey 

obtained a factor of safety of 1.84 by the Fellenius Method, which is generally 

considered to be the same as the OMS, when using buoyant unit weights. This answer is 

not dissimilar to the answer given by TSLOPE and differs from their “most correct” 

solution by only 9 percent. 

 

If Whitman and Bailey had emphasized the point that this is the “more correct” way of 

conducting a Fellenius or OMS analysis, the OMS would have been cast in an entirely 

different light.  However, instead of doing that, they placed great emphasis on the factor 

of safety of 1.14 that they obtained using the Fellenius Method with total unit weights, 

which was only 57 percent of their “most correct” solution.  The details of their 

programming are unknown and we have not been able to reproduce that number, but 

that is not critical.  The critical point is that if Fellenius or the OMS is used with the 

“more correct” way of handing unit weights and pore pressures, it gives factors of safety 

that are not inconsistent with limit equilibrium methods, and that differ only because of 

the difference in the distribution of effective stresses around the slip surface, at least for 

problems without seepage forces, applied loads or internal reinforcing. These factors can 

introduce more significant differences depending on how they are handled. 

 

 

The difference between 2D and 3D analyses 

 

The short answer to the question “what is the difference between 2D and 3D analyses of 

slope stability by the Method of Slices” is that it can be significant and varies in surprising 

ways.  The examples below illustrate some of the differences, but these are just the tip 

of the iceberg.  Results are given for analyses using both the OMC and Spencer’s Method 

so that these examples also illustrate the differences between results obtained by these 

two methods.   
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1. Hungr et al. Example No. 1 

 

This example, from the paper by Hungr, Salgado and Byrne (1989), has a spherical slip 

surface that cuts into a planar slope.  The original problem had a homogeneous 

frictionless soil with a value of cohesion that was reported to give a factor of safety of 

1.402 according to a “closed-form” solution.  The problem and the solution obtained  

using the OMC is shown in Figure 4(a). 

 

 
 

Figure 4(a) – Hungr et al. Problem - OMC Solution 

 

The factor of safety of 1.35 is slightly less than the theoretical factor of safety of 1.40 

because constant width columns that fit entirely within the spherical slip surface were 

used, leaving small patches of the spherical surface to which the cohesion was not applied.  

A factor of safety of 1.30 was obtained using Spencer’s Method.  

 

In 2D both the OMC and Spencer give the same answer, as shown below in Figures 4(b) 

and (c), even though the computed stresses around the slip surface are different and the 

Spencer solution shows significant tension.  This occurs because the strength is specified 

only as a cohesion and the factor of safety is close to one.  But note the difference 

between the 2D and 3D answers.  The 3D solution gives a factor of safety that is some 25 

percent higher than the 2D solution.  This should not come as a surprise because it is 

entirely consistent with the well-known technical note by Baligh and Azzouz (1975) on 

end effects, but it probably does come as a surprise to many engineers who would  

assume that a 2D analysis through a slope with a constant cross section will provide the 

correct answer.  It turns out that it does not in all cases.  In particular, significant errors 

can arise when trying to compute soil properties by using back analyses of failures 

because a 2D solution may give back-calculated properties that are too high or too low.   
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Figure 4(b) – 2D Solution by OMC 

 

 
Figure 4(c) – 2D Solution by Spencer’s Method 

 

Back-calculated properties can be even more in error if the failure has an aspect ratio of 

less the one, as is more typically the case, rather than being spherical. 

 

Figure 4(d) shows a top view of a family of three ellipsoids with the middle one being the 

same as the sphere in Figure 4(a) and the inner and outer ellipsoids having aspect ratios 

of 0.5 and 2.0 respectively. 
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Figure 4(d) – Family of Ellipsoids 

 

 

Aspect Ratio OMC  Spencer   

0.5 1.63 1.54 

1.0 1.35 1.30 

2.0 1.20 1.17 

2D 1.08 1.08 

 

Table 4 – Factors of Safety for Hungr et al. Example 1 

 

The computed factors of safety for these three ellipsoids along with the 2D case are 

shown in Table 4.  It may be seen that for an aspect ratio of 0.5, the 3D factor of safety is 

now 50 percent greater than the 2D solution.  As the aspect ratio increases, the “end 

effects” diminish and the factor of safety for an ellipsoid approaches the 2D factor of 

safety.  Many, or even most, natural landslides have aspect ratios of less than one being 

controlled by local weaknesses in structure, material properties or water conditions and 

accurate reconstruction or prediction of failures requires a 3D analysis. 

 

Going back to examine the 2D solutions in more detail, it can be seen that the interslice 

forces in the Spencer’s Method solution are in tension in the upper half of the potential 

sliding mass.  While not shown in these figures, in the OMC solution the local factors of 

safety are correspondingly less than one in the upper half of the potential sliding mass. 

The line of thrust in the solution by Spencer’s method of course is not tenable, but that is 

of no great consequence in this limited instance.  However, if the material is assumed to 

be cohesionless and to have shear strengths that vary with the normal effective stress on 
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the slip surface, the load redistribution that takes place in Spencer’s Method in order to 

force the factor of safety to be the same on the base of each slice, leads to a reasonable 

line of thrust but also a calculated factor of safety that diverges from that obtained by 

the OMC, as shown in Figures 4(e) and (f). The black arrows in these figures indicate the 

effective normal stresses on the base of each slice. 

 
Figure 4(e) – 2D Solution by OMC, c=0, φ=20 degrees 

 

 
Figure 4(f) – 2D Solution by Spencer’s Method, c=0, φ=20 degrees 

It is not really possible to say which of the solutions shown in Figures 4(e) and (f) is the 

“more correct”.  If the potential sliding mass is more like a rigid body the Spencer’s 

solution, which is kinematically admissible in this case, may be “more correct” and if the 

potential sliding mass is deformable, if for instance it is composed of sand particles, the 

OMC solution may well be “more correct”. 

 
The differences between both 2D and 3D analyses with an aspect ratio of one and the 

two solution methods are further illustrated in Tables 5(a) and 5(b).  Table 5(a) shows 
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the calculated factors of safety for three values of cohesion and Table 5(b) shows the 

calculated factors of safety for three values of the angle of friction. 

 

Cohesion 2D 

OMC 

2D 

Spencer 

3D 

OMC 

3D 

Spencer 

0.1 1.08 1.08 1.35 1.30 

0.2 2.17 2.17 2.69 2.59 

0.3 3.25 3.25 4.04 3.89 

 

Table 5(a) – Factors of Safety for All Cohesion 

 

 

Angle of 

Friction 

2D 

OMC 

2D 

Spencer 

3D 

OMC 

3D 

Spencer 

10 0.73 0.90 0.67 0.93 

20 0.99 1.22 0.90 1.26 

30 1.58 1.94 1.42 2.00 

 

Table 5(b) – Factors of Safety for All Friction 

 

Several interesting things can be seen in these two tables. In Table 5(a) it can be seen 

that when the shear strengths are specified as fixed numbers, the OMC and Spencer’s 

method give essentially the same answer.  And, for this geometry, when the shear 

strengths are specified as fixed numbers, the 3D factor of safety is about 25 percent 

greater than the 2D factor of safety.  In Table 5(b) it can be seen that when the shear 

strengths are a function of the effective stresses on the bases of the slices or columns, 

the OMC gives a factor of safety that is about 25 percent less than Spencer’s method in 

2D analyses and 40 percent less in 3D analyses. 3D analyses give factors of safety by 

Spencer’s Method that are essentially the same as those from 2D analyses and the 3D 

factors of safety by the OMC are about 10 percent less than those computed in 2D 

analyses.  The reason for this last result is simply that the slices in the 2D section down 

the centre of the spherical slip surface have higher effective stresses at the base than do 

the columns in the 3D analysis which shorten as they move out to the perimeter of the 

potential sliding mass. 

 

So, at least an interim conclusion that can be drawn from this example is that simple 

rules on the effects of different methods of analysis and 3D effects are likely to be 

misleading and the engineer both has to keep his or her wits about them and test 

alternate solutions to their particular problem.  If you don’t do that, you will never know 

what the possible errors might be. 



Page 26 of 41 
 

 

 

    

 

This example was confined to simple circular, spherical or ellipsoidal slip surfaces.  The 

next two examples illustrate the possible effects of natural and man-made 3D 

topography.  

 

 

2. Kettleman Hills Landfill Failure 

 

An early example of the analysis of 3D effects on real world problems was provided by 

the failure of the liner system at the Kettleman Hills hazardous waste landfill, reported 

by Mitchell et al. (1990) and Seed et al. (1990) and summarized and updated by Duncan, 

Wright and Brandon (2014, pp. 32 and 282). 

 

As may be seen in Figure 5(a), the initial landfill was placed against liners on one side and 

one end of what was to be a completely lined basin.  Because the liner had not been 

completed on the left hand side of the basin as seen in Figure 5(a), the landfill had a 

partially free face on that side, as well as on the front.   When the landfill had reached a  

 

 
 

Figure 5(a) – 3D View of Kettleman Hills Landfill 

 

maximum height of 90 feet, a slope failure occurred with horizontal and vertical  

movement of up to 14 and 35 feet.  Subsequent investigations suggested that the basic 

failure occurred along a wetted HDPE liner compacted clay layer interface which resulted 

from the clay layer having been placed wet of optimum moisture content and then 

subsequent consolidation with drainage restricted by the HDPE liner.  The extent of this 

wetted interface condition was not clear, thus Seed et al. (1990) conducted stability 

analyses for both partial and full wetting of the base.  For a number of 2D cross sections, 



Page 27 of 41 
 

 

 

    

Seed et al. (1990) obtained factors of safety of 1.2 to 1.25 for the partial base wetting 

case and 1.10 to 1.15 for the full base wetting case.  For the diagonal 2D cross-section 

that is shown in Figures 5(a) and (b), drawn in the direction of movement indicated by a 

3D analysis, TSLOPE gives 2D factors of safety of 1.21 and 1.22 for the OMC and 

Spencer’s Method respectively, assuming full base wetting. 

 

 
 

Figure 5(b) – Analysis of 2D Section by Spencer’s Method  

 

 

Case OMC  Spencer  

2D Section 1.21 1.22 

3D Problem 1.00 1.05 

 

Table 6 – Calculated Factors of Safety 

 

Seed et al. then explored 3D effects by conducting what they described as a “force-

equilibrium analysis” using five blocks and obtained 3D factors of safety of 1.08 and 1.01 

for the partial and full base wetting cases.  Assuming full base wetting, TSLOPE gives 

factor of safety of 1.00 and 1.05 by the OMC and Spencer’s method respectively, as 

listed in Table 6.  Thus, making normal judgments about the appropriate 2D section to 

analyse, the 3D factor of safety appears to be 10-20 percent below the 2D factor of 

safety. The reason for the lower 3D factor of safety can be explained in either of several 

ways. One way is to say that because of the longer back slope relative to the base area, 

there is more “push” from the slope relative to the resistance provided by the base. 

Alternately, one can view this as a problem where the “end effects” are less than they 

would be in a long slope with a constant 2D cross section. The 10 to 20 percent 

difference may or may not be a big deal from the design point of view because the 

failure to recognize the lower wetted interface strengths was a larger problem, but, 
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again, it is significant in back calculating properties from the failure and understanding 

the failure mechanism. 

 

Duncan et al. (2014) summarized subsequent studies which tended to play down the 

significance of the 3D effects pointing to other uncertainties and noting that it was 

possible to find 2D cross sections that showed factors of safety of less than one, 

suggesting that there might have been progressive failure. However, these cross sections 

had at least some “end effects” and could not fail on their own. And, at least some of the 

guess work can be eliminated by conducting a 3D analysis in the first place.  If this is 

done using the OMC, a single analysis can also calculate the local factors of safety, as 

shown in Figure 5(c) indicating locations where progressive failure might start, and 

repeat analyses can be conducted as desired to follow progressive failure. 

 

 

 
 

Figure 5(c) – Analysis of 3D Problem Showing LFoS from OMC and FoS by Spencer  

 

However, the cases where 3D effects lead to lower factors of safety are not as dramatic 

and are probably limited in number compared to the cases where 3D effects increase the 

factor of safety. 

 

 

 

 

 



Page 29 of 41 
 

 

 

    

3. Puente Hills Canyon 9 Design 

 

A more graphic example of the positive effects of 3D geometry is provided by the Puente 

Hills Canyon 9 landfill of the Sanitation Districts of Los Angeles County, which happens to 

have triggered the development of the 3D approach used in the current version of 

TSLOPE.  Canyon 9 represented an expansion of an existing landfill so that one side of 

the expanded facility consisted of existing compacted municipal solid waste (MSW) that 

sat on natural ground without a liner.  However, new regulations required that both the 

floor and the slopes of the expansion be placed on a single HDPE liner. Over the floor the 

HDPE liner was placed on top of a compacted clay layer that had a lower strength than 

the interface of a roughened HDPE liner and the MSW, so that sliding along the floor was 

controlled by the undrained strength of the clay layer (c = 250 psf; φ = 13.5 degrees).  

However, on the slopes, a smooth HDPE liner was placed directly on the slopes 

excavated in the in situ soft rock and the weakest interface was judged to be the contact 

between the liner and the MSW (c = 0; φ = 10 degrees) because the liner was anchored 

into the in situ material on a number of benches.  Thus, there were three zones of the 

base of the landfill that had different strengths for the purpose of analysis, although 2D 

analyses of sections that passed through the mouth of the canyon, such as shown in 

Figures 6(a) and (b), suggested that the critical 2D section involved sliding only on the 

floor and the slopes and did not involve the existing MSW (assumed at the time to have 

a shear strength of c = 0; φ = 30 degrees). However, when construction was well 

advanced, a leading geotechnical consultant who was brought in to perform the analyses 

of slope stability that were required by regulators, found, not surprisingly, 

 

 
Figure 6(a) – 2D Cross Section through Mouth of Canyon 
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Figure 6(b) – 3D View of Base of Canyon 

 

that the conventional 2D factor of safety of a section passing through the mouth of the 

canyon was only 1.22 – less than the required minimum – and, surprisingly, found that 

an early, commercially available 3D slope stability program gave similar results.   

 

The owner, justifiably, threw a flag at this point because it was evident that in a 

“bottleneck” canyon like this, as shown in Figure 6(b), the 3D effects had to be significant 

with the mouth of a canyon acting like the abutments of a good arch dam site.  The 

upshot of this was that another geotechnical consultant brought in the writer to develop 

and use a program that more properly modelled the 3D geometry and its effects.  The 

original program, variously called TSLOPE3 or T3, used a horizontal force equilibrium 

solution which Los Angeles County had for some years required geotechnical consultants 

to perform by hand. The properties cited above were assigned over the basal surface as 

shown in Figure 6(c), where the red zone is the floor of the canyon, the green zone is 

slopes lined with HDPE, and the blue zone is the adjacent MSW.  Using the original 

program, a factor of safety of 1.92 was obtained, more than satisfying the regulatory 

requirement of a factor of safety of 1.5.  The updated program, now called just TSLOPE, 

gives a factor of safety or 1.70 using the OMC and, by chance, gives a factor of safety of 

1.93 using Spencer’s Method.    
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Figure 6(c) – 3D View Showing Zones with Different Properties 

 

 

 
 

Figure 6(d) – Local Factors of Safety in 3D Analysis 

 

As in other problems, the higher factor of safety by Spencer’s Method is consistent with 

the implication of a rigid body which is restrained even more by the bottle-neck than is 

the OMC model which assumes that each column can move independently. The fact that 

the Los Angeles County horizontal force equilibrium method and Spencer’s method give 

almost identically the same factor of safety for this problem is a fluke, rather than an 

indication of a fundamental truth. The local factors of safety computed using the OMC 

are shown in Figure 6(d).  In this figure the blue colours indicate a negative factor of 

safety or, in other words, a reverse slope.  Basically, the abutments and the floor of the 
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canyon are holding the MSW up while it tries to slide down the back slope.  The 2D 

factors of safety for the section shown in Figure 6(a) are 1.20 by the OMC and 1.22 by 

Spencer’s Method, so that the 3D analyses show increases of 42 percent and 58 percent 

over the 2D analyses. 

 

The fact that there is a significant 3D effect for this problem, or for a dam in a narrow 

canyon, should come as no surprise, but, again, what turns out to be surprising is that 

there can also be significant 3D effects in real life problems where it would normally be 

thought that a 2D analysis of a slope with a constant cross section suffices.  This can 

happen where a 2D potential failure surface dives under a wall or a revetment whereas 

in reality the failure has to cut through the wall or revetment, as shown in the following 

example. 

 

 

4. Treasure Island 

 

Treasure Island, a man-made island in San Francisco Bay, was originally intended to serve 

as an airport, but, after the completion of the 1939 World’s Fair, the island was taken 

over by the US Navy. It is presently being redeveloped for civilian use.  The sand fill that 

was place to form the island will be densified to mitigate possible liquefaction and the 

final grades will be raised up to 5 feet to allow gravity flow of stormwater for the 

foreseeable future.  Prefabricated vertical drains and surcharging will be used to limit 

future settlement of the underlying young Bay Mud. The cross section below and the soil 

properties are taken from publicly-released bid documents. 

 
Figure 7(a) - Section D-D’ 

 

The shoal materials which underlie the sand fill are clayey sands that generally contain 

from 15 to 30 percent fines.  These materials are not liquefiable in any conventional 

sense and they were very resistant to densification by vibratory loading in trials that 

were performed at the site.  Thus, with the young Bay Mud consolidated not only under 
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the weight of the existing fill but under additional surcharge loads and the rock 

revetment is composed of free-draining, competent rock, there is no obvious concern 

about shoreline stability at this site, even given its proximity to the San Andreas and 

Hayward faults.   

 

Nonetheless, in the bid documents there were brief descriptions of work done by the 

project’s geotechnical consultant using simplified methods of analysis which indicated a 

potential shoreline stability problem.  This raised the question of whether there is any 

screening analysis that is appropriate for this site.  The short answer is yes, there is.  As 

explained by Harry Seed in his Rankine lecture (Seed, 1979), for materials that do not 

undergo a loss of strength and stiffness as a result of cyclic loading, pseudo-static 

analyses are not too bad.  And pseudo-static analyses are also required to compute the 

yield acceleration (the seismic coefficient that reduces the factor of safety to unity – the 

factor of safety for a specified seismic coefficient can then be derived from this) for use 

in the various simplified methods to compute deformations. 

 

TSLOPE was used to compute the static factors of safety and the yield acceleration for 

both 2D and 3D slip surfaces.  For Section D-D’, when a circular slip circle is transformed 

to a spherical or ellipsoidal slip surface, two things happen.  One is that the slip surface 

now has to cut through the rock revetment, rather than diving under it – this will 

increase the factor of safety.  The other is that relatively more of the slip surface will be 

in the young Bay Mud – this might either reduce or increase the factor of safety, 

depending on the strength of the Bay Mud relative to the other materials that are 

involved. 

 

For the “seismic” loading case undrained strengths were used for all materials below the 

water table, except for the rockfill in the revetment.  These strengths were also 

corrected for rate of loading effects in order to represent the short rise time of an 

earthquake pulse.  The critical circular slip surfaces obtained using Spencer’s Method 

and the “static” and “seismic” properties are shown in Figures 7(b) and (c).  These are  

 
 

Figure 7(b) - Section D-D’ Static Analysis 
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Figure 7(c) - Section D-D’ Static Analysis with “Seismic” Properties 

 

 

both for “static” analyses without the application of a seismic coefficient.  The critical 

circular slip surface obtained in the “static” analysis with “seismic” properties was then 

used in subsequent searches for the yield acceleration. 

 

The critical 2D failure surface was also used as the basis for constructing three 3D failure 

surfaces, as shown in Figure 7(d).  The centre 3D slip surface is a sphere, which has an 

aspect ratio of 1.0. In addition, there are two further ellipsoids that have aspect ratios of 

0.5 and 2.0.  The larger the aspect ratio, the more the 3D solution approaches the 2 D 

solution.   

 

 
 

Figure 7(d) – 3D Potential Failure Surfaces 
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OMC    Spencer 

Static analyses 

2.23       2.51       2D  FoS 

2.59       2.95       3D FoS aspect ratio = 2.0 

2.44       2.97       3D FoS aspect ratio = 1.0 

2.57       3.52       3D FoS aspect ratio = 0.5 

 

Seismic analyses 

0.22g     0.26g      2D yield acceleration  

0.27g     0.31g      3D yield acceleration – aspect ratio = 2.0 

0.29g     0.33g      3D yield acceleration – aspect ratio = 1.0 

0.35g     0.39g      3D yield acceleration – aspect ratio = 0.5 

 

Table 7 – 2D and 3D Factors of Safety and Yield Accelerations 

 

The results are shown in Table 7. Again, the reason that the 3D factors of safety are 

higher than the 2D is that in 3D you must cut through the revetment, rather than diving 

under it as happens in 2D.  Of the four cases, the one with the aspect ratio of 0.5, which 

gives the highest factor of safety, is probably the most like a typical landslide. 

As expected for a slope that has been stable for many years and would have been at 

greatest risk at the end of construction, the static factors of safety are healthy enough 

and the yield accelerations are great enough relative to the design peak ground 

acceleration of 0.46g to suggest any deformations under earthquake loadings would be 

quite small. 

 

This example strongly suggests that simplified analyses using conventional procedures 

and 2D slope stability analyses can be unnecessarily conservative, and in this particular 

case suggest that there is a problem where no problem actually exists.  

 

 

5. Greensteep Wall System 

 

However, a slope retained by a wall does not always have higher factors of safety in a 3D 

analysis as the following example shows. 
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Figure 8(a) shows a 2D cross-section through a Greensteep wall system which has been 

designed to have a factor of safety greater when 1.1 when both a surcharge load and a 

seismic coefficient are applied.  The static factor of safety without the surcharge and 

seismic loads is 1.9. 

 
 

Figure 8(a) – 2D Section Through Greensteep Wall System 

 

However, a 3D spherical slip surface through the wall, as shown in Figure 8(b), has a 

factor of safety of 2.5, so that a more economic design might be possible when a 3D 

analysis is used. 

 
Figure 8(b) - 3D Spherical Slip Surface Through Greensteep Wall System 

 

But, if a uniform surcharge load of 200 psf is applied behind the top of the slope, as 

shown in Figure 8(b), the 2D factor of safety only falls to 1.7, whereas the 3D factor of 

safety falls to 1.5.  This happens because in the 3D analysis there is a relatively large 

increase in the driving forces for both the shorter columns and for the cohesive 

materials, such as the wall, which show no increase in strength. 
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Thus, without the surcharge, 3D effects increase the factor of safety, but with the 

surcharge, 3D effects reduce the calculated factor of safety. 

 

Case OMC  Spencer   

No surcharge 2D 1.9 1.9 

No surcharge 3D 2.5 2.5 

With surcharge 2D 1.7 1.7 

With surcharge 3D 1.4 1.5 

 

Table 8 – Computed Factors of Safety 

 

While the engineer should still be wary of taking the calculated factors of safety at 

precisely their face value, this is a great example of how an improved analysis can 

provide much greater insight into a problem. 

 

 

 

 

Applied Loads and Internal Reinforcing 
 

These have some similarities but are not identical because applied loads are fixed 

quantities, but can be driving or resisting forces, while internal reinforcing is always a 

resisting force but also involves the question of whether the allowable forces or the 

ultimate forces should be specified. 

 

Applied Loads 

 

These might include uniform or non-uniform pressures loads, line loads and point loads.  

Pond pressures are a particular example of a non-uniform pressure load. 

 

In limit equilibrium methods, when such forces impinge on the top of a slice or column, 

they are included1 in the total horizontal and vertical forces acting on the slice.  These 

forces also include the weight of the slice, any seismic loads and, maybe, internal 

reinforcement capacities.  These forces will impact the normal stresses on the bases of 

the slices or columns and the shear strength when the angle of friction is non-zero.  

These values are determined in an iterative solution, but the impact on the normal 

stresses and the shear strength is not that easy to see.  In the OMC it is both more 

                                                 

 
1 Included or added or subtracted means as a vector sum in this note. 
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complicated and more simple.  It is more complicated in the sense that more 

programming is required, but simpler for the user to see what is happening.  Because 

applied loads will not automatically be reflected in the normal stresses on the bases of 

the slices or columns, the user has to specify the way in which the applied loads spread 

out and impinge on the potential failure surface. But also, because of the way the factor 

of safety is defined in the OMC, the user has to specify whether the applied load is 

added as a driving force or a resisting force.  For instance, a uniform vertical load above a 

slope is clearly a driving force, but the same uniform vertical load beyond the toe of a 

slope could be thought of as a resisting force.  Pond pressures applied to the upstream 

face of an impervious or lined embankment might be viewed resisting forces when the 

upstream face is being analysed, but when the user is analysing the stability of the 

downstream slope of the same embankment, they may be driving forces, separate from 

any seepage forces. Whether these loads are added to or subtracted from the 

numerator or added to the denominator in the equation for the factor of safety makes a 

difference.  But there is generally no question of this class of loads being reduced by the 

factor of safety in the same way that the shear strength is in limit equilibrium methods.  

These loads are what they are. We will return to a recommended approach after 

discussing “internal reinforcement”. 

 

Internal Reinforcement 

 

The question of internal reinforcement is discussed by both Rocscience in their 

documentation of the program SLIDE and Duncan, Wright and Brandon (2014).  Their 

treatments are similar (and they even use the same worked example) but their 

terminology is different.  Rocscience talk about Active Support and Passive Support 

whereas Duncan et al. call these Method A and Method B.  In either case the resistance 

provided by the reinforcement is treated as resisting force rather than as a driving force.  

Both explanations are a bit confusing because the discussion is made in terms of the 

factor of safety as if the solution calculates the factor of safety directly, which is true for 

the OMC but not for limit equilibrium methods in which the factor of safety is implicit 

and is obtained by iteration.  Thus, how the two different methods should be applied in 

programming the equations of equilibrium is not entirely clear nor is how they are 

actually applied in most slope stability programs.  

  

However, for the “Active” case, in Rocscience’s equation 2 or Duncan et al.’s equation 

8.2, the resistance provided by the reinforcement is “subtracted” from the applied loads, 

and does not involve any factoring. In other words, the resistance provide by the 

reinforcement is just added vectorially to the total forces acting on the slice or column. 

For the “Passive” case, in Rocscience’s equation 3 or Duncan et al.’s equation 8.4, the 

resistance provided by the reinforcement is added to the strength of the soil or rock and 
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factored by the factor of safety. Thus, in the “Active” case the user should specify the 

allowable loads whereas in the “Passive” case the user should specify something more 

like the ultimate load since the loads are going to end up being factored by some 

average factor of safety which applies to both the soil or rock strengths and the 

reinforcement capacities. But Duncan et al., as quoted by Rocscience, are quite clear that 

the “Active” approach is preferable because the desired factoring of the reinforcement 

capacities might well be different for the soil or rock and the reinforcement, and even 

for several types of reinforcement in the same problem.  Thus, it is not at all clear why 

the “Passive” option should even be offered. 

 

In the case of the OMC, the equivalent of the “Active” case is that the resistance 

providing by the reinforcing should be subtracted from the driving forces.  The 

equivalent of the “Passive” case or Method B is that the resistance providing by the 

reinforcing should be added to the resisting forces.  In either case the allowable 

capacities should be used unless the engineer is very bold.  But now we have a choice 

between using the “Active” or the “Passive” cases and it would generally seem to be 

logical to use the “Passive” case both for internal reinforcing such as geogrid or soil nails 

whose strength will normally be only partly mobilized and for anchors which are 

tensioned and apply a known load from the outset. However, this would give 

numerically smaller factors of safety than equivalent limit equilibrium methods using the 

“Active” alternative, which is the preferred approach for those methods, so that, for 

consistency, the allowable capacities of internal reinforcing should be subtracted from 

the driving forces in the OMC. In all cases the user should take appropriate account of 

installation damage, creep and deterioration over time as discussed by Duncan et al. in 

coming up with the allowable capacities. 

 

Conclusion 

 

The safest course of action for consistency between methods of analysis is to treat all 

applied loads and internal reinforcement capacities as “Active” forces and to add or 

subtract them from the numerator of the equation for the factor of safety in the OMC.  

In both the OMC and limit equilibrium methods this means that internal reinforcement 

capacities should be factored separately from the soil or rock strengths. 

 

Examples (to be added). 

 

 

To be completed: 

 

Wedge analyses 



Page 40 of 41 
 

 

 

    

 

Rapid drawdown analyses 

 

Why not finite element or finite difference or discrete element analyses? 

 

Need reliable slip and gapping elements and some way to locate them.  Normally too 

hard to assign the necessary properties, but might be worth it for rapid draw-down and 

other cases where there are transient seepage forces. 

 

 

 

Conclusions (to be expanded) 
 

Methods of analysis. 

 

Seepage forces and 3D effects.   

 

Applied loads and internal reinforcement. 

 

FE or FD or DE for special situations only. 

 

Even with the best tools, the engineer still must exercise judgment! 
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