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Abstract

We use administrative panel data to decompose worker performance into components relating to general
talent, task-specific talent, general experience, and task-specific experience. We consider the context of high
school teachers, in which tasks consist of teaching particular subjects in particular tracks. Using the timing
of changes in the subjects and difficulty levels to which teachers are assigned to provide identifying variation,
we show that a substantial part of the productivity gains to teacher experience are actually subject-specific.
Similarly, while three-quarters of the variance in the permanent component of productivity among teachers
is portable across subjects and levels, there exist non-trivial subject-specific and level-specific components.
Counterfactual simulations suggest that maximizing the test-score contribution of task-specific experience
and task-specific talent can increase student performance by as much as .04 test score standard deviations
relative to random assignment of teachers to classrooms. JEL Codes: I21, I28, J24, J45, L23.
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1. Introduction

How should principals allocate teachers to courses so as to maximize the teachers’ contribution to student
achievement?

The optimal course assignment depends on teachers’ existing comparative advantages in different courses
or classroom environments, as well as the extent to which current assignments will increase teachers’ fu-
ture productivity (or the principal’s information about such productivity). However, the large literature on
teacher value-added and the returns to teaching experience (discussed below) has focused primarily on esti-
mating variation in teacher productivity that is assumed (or restricted) to be common to all course or grade
assignments. If this assumption is true, then any allocation of existing teachers with fixed course loads will
feature the same distribution of value-added contributions to achievement. However, if this assumption is
false, then improving the mechanism by which teachers are assigned to courses may yield significant gains
at potentially low cost (Jacob and Rockoff (2011)).

To see this, suppose first that teachers have pre-determined comparative advantages for particular subjects
or difficulty levels. Then course swaps among teachers could produce efficiency gains if both teachers move
toward their relatively more effective courses. Furthermore, if principals cannot ascertain teachers’ relative
strengths at the time of hire, then the optimal assignment strategy might involve rotating teachers across
several different classroom contexts early in their careers so as to produce information about the courses the
teachers will be particularly effective at teaching. Permanent subject-specific skill might exist, for example,
if a teacher’s choice of undergraduate major leads to a deeper understanding of the content in a particular
subject (e.g. Physics rather than Biology). Permanent level-specific skill might exist, for example, if a
teacher’s natural charisma or sense of humor leads to strong classroom control skills that are comparatively
more important in the remedial or basic level courses where students may tend to be less engaged.

Now suppose instead that task-specific skill is primarily learned through experience rather than predeter-
mined prior to the time of hire. Then rotating the classroom environments to which teachers are assigned
will waste a component of each teacher’s skill, and slow each teacher’s progress toward his/her full potential.
Subject-specific experience might be important, for example, if a teacher’s knowledge of the subject content
deepens with each opportunity to teach it. Track- or level-specific experience might also be significant if the
appropriate pace at which to deliver content depends on student skill and is slowly calibrated with practice.
In addition, experience teaching a certain subject-level combination (e.g. honors biology) might be particu-
larly valuable if it allows teachers to hone particular lectures over time that would be inappropriate for either
a different level or a different subject.

More generally, knowledge of the importance of task-specific talent and task-specific experience is essential
for any employer wishing to maximize the productivity of his/her workforce. For tasks with larger potential
experience gains and smaller variance in task-specific innate talent, the key to a productive workforce is
employee retention: the optimal strategy is to keep employees of all talent levels at their originally assigned
tasks to benefit from experience. Conversely, for tasks featuring smaller experience gains and a larger
variance in task-specific talent, the optimal strategy is to lay off or reassign low performing workers in an
attempt to either improve general worker skill or identify superior worker-task matches.

Thus, in this paper we introduce a method for decomposing worker productivity into components relating
to general talent, task-specific talent, general experience, and task-specific experience. Our decomposition
requires data featuring (1) signals (possibly noisy) of individual workers’ task-specific output, (2) histories
of worker task assignments, and (3) frequent rotation of workers across tasks. We implement our method
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using the context of high school teachers, in which tasks consist of teaching particular subjects in particular
tracks (difficulty levels).3

Specifically, we use administrative panel data from the North Carolina Education Research Data Center
(NCERDC) to decompose teacher effectiveness at improving student achievement into (1) a set of permanent
components capturing general talent, subject-specific talent, level-specific talent, and subject-level specific
talent, and (2) a set of functions capturing returns from general experience, subject-specific experience,
level-specific experience, and subject-level-specific experience. The data track teachers and students in the
universe of public high schools in North Carolina from 1997-2009. Critically, the data feature over 24,000
within-teacher changes in subject assignments and over 18,000 changes in academic-level assignments. Such
rich data permit estimation of an education production function that features general, subject-specific, level-
specific, and subject-level-specific experience profiles as well as a full set of school-teacher-subject-level
fixed effects. The flexibility of our model allows us to control for many potential biases that might otherwise
accompany endogenous course assignment decisions. We then use our results to project the potential student
achievement gains that could be reaped by better utilizing knowledge about course-specific experience and
skill relative to the course assignment patterns observed in the data.

Myriad papers have estimated education production functions featuring both teacher fixed effects and a
common experience profile. The bulk of the evidence suggests that the standard deviation of permanent
teacher quality is between .1 and .2 test score standard deviations at both the primary or secondary school
levels.4 Similarly, the existing literature suggests that while teachers tend to improve with experience by
around .05 test score standard deviations in their first year, another .03 to .05 over the next couple of years,
and another .03 to .05 over the next several years, with the profile for mid-career teachers flattening out at
between .1 and .2 standard deviations better than a novice teacher.5 More recent studies relax the functional
form assumptions imposed in these early studies and find somewhat larger returns to high levels of teaching
experience.6

However, this literature has generally ignored the possibility that the baseline effectiveness of a teacher
and/or the gains to teaching experience might be specific to a particular classroom environment. In such a
context, models that impose homogeneity of productivity across different classroom environments will return
a weighted average of teacher productivity across the environments each teacher actually faced (weighted
by the fraction of time spent in each environment). To the extent that teachers face different classroom con-
texts over their careers, models that impose homogeneity of returns to experience across different classroom
environments may underestimate the gains to context-specific experience. Similarly, to the extent that teach-
ers’ classroom environment remain somewhat stable during their career, such models may overestimate the
returns to general experience.

A few papers, though, have addressed various aspects of the context-specificity of teacher productivity,
mostly using elementary or middle school data. Jackson (2013) shows that a substantial portion of the

3Throughout the paper below, we use the term “task” to refer to a subject-level combination, while we use the term “context” more
generally to refer to particular characteristics or features of the classroom environment, which include but are not limited to the subject
and level.

4For primary school estimates, see, for example, Rockoff (2004), Hanushek et al. (2005), Clotfelter et al. (2006), Sass et al. (2014),
Boyd et al. (2008), Jackson and Bruegmann (2009), Harris (2009), Harris and Sass (2011), and Jackson (2013). For secondary school
estimates, see, for example, Aaronson et al. (2007), Jackson (2014), and Mansfield (Forthcoming). Harris (2009), by contrast, finds
little evidence of returns to experience using high school data from Florida.

5e.g. Rivkin et al. (2005), Clotfelter et al. (2007).
6Wiswall (2013) and Papay and Kraft (2015).
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variation in teacher contributions to student achievement is specific to the school in which a teacher has
taught. Lockwood and McCaffrey (2009) and Aucejo (2011) examine the degree to which teachers have
comparative advantages at teaching relatively high versus low ability students, and find evidence that a small
component of teaching productivity is specific to student ability level. Perhaps more closely related to our
paper is work by Ost (2014) showing that teachers who always repeat elementary grade assignments improve
35% faster than teachers who never repeat grade assignments. Similarly, Master et al. (2012) show that the
efficacy of a teacher teaching English-language learners (ELL) depends on his/her experience teaching the
ELL population. The paper most closely related to ours is Condie et al. (2014), who also consider subjects
as tasks. They demonstrate the existence of meaningful comparative advantages of elementary teachers at
teaching English vs. math. These papers, however, focus either on context-specific experience or context-
specific skill, rather than providing a unified treatment of both factors.

Given the applicability of our methodology to the broader worker-to-task assignment problem, our paper
also contributes to a growing literature on task-specific human capital, brought to the forefront by Gibbons
and Waldman (2004), which considers the possibility that a considerable portion of a worker’s human capital
might be specific to the particular tasks the worker has performed at the jobs the worker has held.7 Part of the
literature on task-specific human capital either has assumed that only the experience component of human
capital is task-specific (e.g. Gibbons and Waldman (2004), Clement et al. (2007), and DeAngelo and Owens
(2012)). Alternatively, Polataev and Robinson (2008) assume that the degree of task-specificity is common
between the talent and experience components of human capital, while Gathmann and Schoenberg (2010)
instrument to remove the influence of the task-specific talent component in order to focus on task-specific
experience. Yamaguchi (2012) allows for both task-specific talent and gains to task-specific experience, but
does not have productivity data, and thus must infer the size of each component indirectly from observed
sequences of occupational choices.

To preview our results, we find that about a quarter to a third of the returns to years of experience are actually
specific to the subject that the teacher taught. We find little evidence of returns to level-specific experience
and no evidence of returns to subject-level experience. In agreement with the rest of the value-added litera-
ture, we find that the variation in fixed teaching skill is comparable in magnitude to the gains to experience.
While 74% of the variance in permanent skill is general to all subjects and levels, we find a small but mean-
ingful role for subject-specific (17%) and level-specific (9%) teaching talent: receiving a teacher whose
subject-specific (level-specific) talent is one standard deviation above his/her average among all subjects
(levels) he/she teaches increases a student’s expected test score by .063 (.046) standard deviations.

We test for and fail to find convincing evidence of estimation biases driven by dynamic assignment responses
to teacher-year or school-year shocks or unmodeled teacher-specific heterogeneity in gains from experience.
Backcasting tests for bias from non-random student sorting to teachers suggest that, if anything, the signifi-
cant gains to both general and subject-specific experience that we estimate may be understated. Split-sample
forecast tests suggest that our estimates of teachers’ combined general and task-specific talent have consid-
erable out-of-sample predictive power, though admittedly slightly less than what a model with no bias or
misspecification would imply. While similar split-sample forecast tests for teachers’ estimated task-specific
comparative advantages (more important for teacher assignment) are underpowered, they do not find evi-
dence of any forecast bias in subject-specific talent estimates, though level-specific talent estimates do not
seem to predict out-of-sample comparative advantages nearly as well.

7See, for example, Yamaguchi (2012), Clement et al. (2007), Polataev and Robinson (2008), Gathmann and Schoenberg (2010),
DeAngelo and Owens (2012).
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Of course, the knowledge that a large fraction of the gains from experience are subject-specific may be of
limited value to principals if most changes in course assignments are driven by necessity. For example,
parental leave or teacher retirements may require principals to reassign teachers to unfamiliar subjects or
tracks. Using our estimated experience profiles, we address this possibility by performing counterfactual
simulations in which we reassign the teachers observed teaching in each school-field combination in the
chosen year to the courses that were offered at their school at the time in order to maximize student per-
formance, given posterior beliefs about the teachers’ course-specific talent as well as the four-dimensional
stocks of general and context-specific experience that these teachers possessed at the beginning of the year.

Our simulations indicate that efficient use of task-specific experience and talent can, in principle, increase
student achievement non-trivially: relative to random assignment of teachers to classrooms, the efficient
allocation raises mean test scores by as much as .04 student-level standard deviations for school-field com-
binations with seven or more teachers. The degree to which principals’ classroom assignments already
effectively incorporate information about teacher comparative advantages is difficult to discern; however,
under the strong assumption that the information about teachers’ subject-specific and level-specific talent re-
flected in our statewide panel of 1997-2009 test scores is a superset of the information available to principals,
our simulations suggest that efficient use of context-specific experience might increase mean test scores in
larger high schools by as much as .02-.03 student-level standard deviations relative to the observed patterns
of teachers’ classroom assignments. Furthermore, since we hold the teaching load fixed for each teacher,
these efficiency gains could potentially be reaped with near zero cost.8 These simulated gains are compa-
rable in magnitude to the gains from subject-specialization in elementary school projected by Condie et al.
(2014). We also show that they are comparable in magnitude to the gains administrators could expect to reap
from a policy in which the least effective 10% of teachers are removed and replaced by average teachers.

The rest of the paper proceeds as follows. Section 2 presents the education production function whose
parameters we estimate. Section 3 describes how comparisons of teachers with different course assign-
ment histories can provide joint identification of both school-teacher-subject-level fixed effects and general,
subject-specific, level-specific, and subject-level-specific experience profiles. Section 4 discusses the North
Carolina administrative data and provides summary statistics illustrating the variation in teacher course as-
signments. Section 5 presents the parameter estimates from our main specifications. Section 6 presents tests
for possible threats to our identifying assumptions and demonstrates the robustness of our results to alterna-
tive choices regarding sample selection, variable definition, and model specification. Section 7 describes and
presents results from the counterfactual simulations that gauge the test score gains that might be achievable
through effective use of a teaching staff’s context-specific talent and experience. Section 8 concludes.

2. Model Specification

Because our goal is to determine the relative importance of context-specific teacher skill and experience for
test score performance, we craft our specification of the achievement production function in a fashion that
permits us to isolate the contribution of these components. Let Yict represent the standardized test score of
student i in classroom c at time t. Let r(i, c, t) denote the teacher that taught student i in classroom c at time

8Note that we cannot address the possibility that proposed reallocations would either detract from competing non-test score ob-
jectives or carry compensating differential costs (e.g. if teachers have strong preferences for teaching courses in their comparative
disadvantages).
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t. Similarly, let s(i, c, t) denote the school at which student i experienced classroom c at time t, let j(i, c, t)
denote the subject taught in student i’s classroom c at time t, and let l(i, c, t) denote the difficulty level or
track associated with the classroom (Basic or Honors).9 Since North Carolina used different test forms for
each subject in each year, we standardize each test score Yict so that the distribution of test scores in each
subject-year combination has zero mean and unit variance.

By suppressing the dependence of s, r, j, and l on (i, c, t), we can represent the production of test score
performance compactly via:

Yict = Xictβjl + δsjl + µsrjl + dgen(expgenrt ) + dj(expjrt) + dl(explrt) + djl(expjlrt) + εict (1)

Because we estimate the model at the classroom level, we aggregate this production function and focus our
attention on the classroom-mean of test score performance, denoted Yct:

Yct = Xctβjl + δsjl + µsrjl + dgen(expgenrt ) + dj(expjrt) + dl(explrt) + djl(expjlrt) + εct (2)

Xct represents a vector of class-averages of student observable characteristics and middle school reading and
math test scores, along with other classroom characteristics (e.g. class size |Ic|) and a full set of calendar
year indicators. We allow the coefficients on Xct, βjl, to differ across subject-level combinations.10 This
allows for the possibility that a high class average of 8th grade math scores might be a stronger predictor
of class performance in Algebra 1 than in English 1. Similarly, classroom composition might matter more
in a particular subject or level if more group work takes place in say, basic biology (e.g. labs) than in
honors math. Xct is included to control for non-random sorting of students to particular teachers within
school-subject-level cells (discussed further in Section 3.2).11

δsjl represents inputs provided by the school-subject-level combination. The set of {δ} parameters will not
only capture the contribution of any school-level inputs such as principal quality, neighborhood quality, or
quality of the school facilities, they will also capture any variation in the quality of curricula or textbooks
across subjects and levels within the school. δsjl will be estimated via a full set of school-subject-level fixed
effects, δ̂sjl. These fixed effects will capture the average residual achievement at each school-subject-level
combination, after removing the part of achievement that can be predicted based on observable classroom
characteristics. Importantly, in practice they will also reflect the contribution of average unobserved inputs
of the students who sort into particular school-subject-level combinations. Thus, the school-subject-level
design matrix also acts as a control function that absorbs school inputs as well as any potential sorting biases
that might otherwise be created by students’ endogenous choices of school, subject, and level.

µsrjl captures the experience-invariant component of teacher r’s ability to increase student achievement in
subject-level (j, l) at school s. µsrjl will be estimated via a full set of school-teacher-subject-level fixed
effects, µ̂srjl. The average school-teacher-subject-level will be normalized to 0 for each school-subject-
level in our baseline specification (see Section 3.2 for further discussion), so that µ̂srjl can be interpreted
as the deviation of a particular teacher’s performance in a particular subject-level combination from the

9Section 4.2 describes how we assign courses to difficulty levels.
10The coefficients on the calendar year indicators are restricted to be the same across all subject-levels to improve efficiency.
11Given that we include classroom averages of student inputs to better control for sorting on unobservable student characteristics

(Altonji and Mansfield, 2014), aggregation of our outcome test scores to the classroom level is essentially without loss of generality.
This is because the student-level observables are orthogonal to all the inputs of interest once class averages of these student observables
have been conditioned on, since the inputs of interest display no within-class variation.
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mean (student-weighted) performance of all teachers that taught in the chosen teacher’s school-subject-
level combination during the sample (e.g. how a particular honors biology teacher’s students performed
relative to the honors biology students of his/her colleagues). This specification of the contribution of teacher
quality allows the estimation of a fully non-parametric joint distribution of general teacher talent and subject-
specific, level-specific, and even subject-level-specific permanent comparative advantages within and across
teachers. Note that by including the identity of the school in the definition of the fixed effect, we are
allowing each teacher’s mean contribution and comparative advantages for particular subjects and levels to
be different at each school at which they teach (a teacher who teaches in two schools is essentially treated as
two different teachers).

expgenrt represents the total number of years of general teaching experience that teacher r possessed at the
beginning of year t, defined as the number of previous years in which the teacher taught at least one course.
Analogously, expjrt, exp

l
rt, and expjlrt represent previous years of experience teaching at least one course

in the subject, level, and subject-level combination associated with classroom c, respectively. dgen(∗) is
a function that captures the part of the gains from years of teacher experience that are portable (“general”)
across all subjects and levels. The dj(∗), dl(∗), and djl(∗) functions capture how additional years of subject-
specific experience, level-specific experience, and subject-level-specific experience affect a teacher’s ability
to increase student test scores. dgen(∗), dj(∗), dl(∗), and djl(∗) are each flexibly parameterized using
indicators for narrow ranges of experience.

Because the estimates from the “baseline” specification in (2) prove to be somewhat sensitive to choice of
controls and the exact parametrization of the experience profiles, we also devote considerable attention to a
less volatile “restricted” specification in which we constrain µsrjl = µsr ∀(j, l) and (s, r), allowing us to
replace the school-teacher-subject-level fixed effects with school-teacher fixed effects only:

Yct = Xctβjl + δsjl + µsr + dgen(expgenrt ) + dj(expjrt) + dl(explrt) + djl(expjlrt) + εct (3)

Finally, εct represents the class average of an error component εict that combines time-varying inputs not
captured by the other components of the model. In particular, we model the class-level error component as:

εct = φst + νrt + ζct +
1

|Ic|
∑
i∈c

eict (4)

φst captures year-specific deviations in school inputs relative to the sample-wide average for the school-
subject-level (e.g. due to school renovation). νrt represents year-specific deviations in a teacher’s quality
from what would be expected based on the teacher’s time-invariant skill and context-specific experience
(e.g. due to teacher illness). ζct captures classroom level shocks, such as an uncontrollably disruptive
student or the archetypal dog barking outside the classroom window on test day. Finally, eict represents
the contributions of residual student-level inputs that are unpredictable based on observables as well as
measurement error reflecting the extent to which the student’s exam performance deviates from what the
student could have expected to score, given his/her accumulated knowledge in the subject.
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3. Identification

3.1. Identifying the Returns to General and Task-Specific Experience

Let Exp = [Expgen, Expj , Expl, Expjl] represent the random vector of general and context-specific
experience stocks for classroom teachers accumulated as of year t, of which each observed combination
[expgenrt , exp

j
rt, exp

l
rt, exp

jl
rt] is a draw. Similarly, let M and D represent random vectors of school-teacher-

subject-level and school-subject-level cell indicators, respectively. Each draw from M and D represents
a row of the design matrices corresponding to the fixed effects capturing {µsrjl} and {δsjl}, respectively.
Finally, let X represent the random vector of observed classroom characteristics, and let ε represent the
random variable of which εct is a draw. To identify the functions mapping experience stocks to productivity,
{dgen(∗), dj(∗), dl(∗), djl(∗)}, we assume that the following condition holds:

Assumption 1: Conditional Mean Independence of
Time-Varying Unobserved Inputs and Teacher Experience

E[ ε |Exp,M,D,X] = E[ ε |M,D,X] (5)

Assumption 1 states that knowledge of the four-dimensional experience stock of the teacher does not provide
further information about any unobserved inputs, conditional on observed classroom inputs and the identity
of the school, teacher, subject, and level. Put another way, the timing of experience accumulation in each
dimension of experience is assumed to be exogenous.

Recall from (4) that the regression error contains school-year, teacher-year, and classroom shocks (along
with class-averages of individual-level unobserved inputs): εct = φst+νrt+ζct+

1
|Ic|
∑
i∈c eict. Thus, there

are a number of sources of possible threats to the validity of Assumption 1, each of which relates to the exact
timing of changes in experience. For example, suppose that when a school is in decline, teacher turnover
begins to increase, and the teachers that remain are forced to teach both new subjects and new difficulty
levels more frequently. In this case, we may be more likely to observe zero subject-specific or level-specific
experience when the contribution of time-varying school inputs φst is low. Since year-specific deviations in
school quality from the sample-wide average are included in εct, this scenario violates Assumption 1 and
could potentially produce an overestimate of the returns to task-specific experience. Alternatively, suppose
principals are reluctant to force a teacher to take on new subjects or levels when the teacher faces other short-
term obstacles (such as illness or pregnancy). In that case, zero subject-specific or level-specific experience
may be observed more frequently when the value of the teacher-year shock νrt is high. This scenario
also violates Assumption 1, and might cause an underestimate of the returns to task-specific experience.
Similarly, if teachers respond to a particularly unruly classroom by quitting teaching, or switching levels
or subjects, we might underestimate the returns to experience (since those who survive to the next year
of experience will have experienced above-average classroom shocks the previous year, thereby hiding the
gains to the next year of experience). Finally, returns to experience could also be overestimated if students
with superior unobserved inputs systematically sort into classes within subject-levels taught by teachers with
high general or context-specific experience. We address the possibility of such violations of Assumption 1
in Section 6 and find little evidence of violations of sufficient magnitude to produce a substantial bias to any
of our profiles.

Despite these concerns, however, note that Assumption 1 is still much weaker than the assumptions required
to identify experience profiles in most of the literature, since it conditions on the combined identities of
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the school, teacher, subject and level. Essentially, the inclusion of school-teacher-subject-level fixed effects
(µsrjl) controls for any arbitrary selection of teachers into experience categories based on the fixed com-
ponent of general or context-specific productivity. Conditioning on the identity of the teacher accounts for
the possibility that better teachers persist long enough to gain more experience. Similarly, conditioning on
the teacher-subject combination accounts for the possibility that the teachers allowed to gain more subject-
specific experience in a particular subject are those with comparative advantages in teaching the subject,
while conditioning on the teacher-level combination accounts for the possibility that persistence at teaching
honors courses might signal a comparative advantage for teaching such courses.

Even if the timing of experience accumulation is conditionally independent of the error components, the
simultaneous identification and estimation of each of the four experience profiles also requires considerable
variation in the history of subject and level assignments across teachers. Such variation is necessary to
satisfy the OLS rank condition and, more importantly, to produce sufficiently precise estimates. Appendix
A illustrates how identification of the context-specific experience profile in each context dimension might
be secured for our baseline model, and provides insight into the patterns of student performance in the data
that inform estimates of the experience profile parameters.

The examples in Appendix A reveal that the experience profiles are fully identified from comparisons of dif-
ferent teachers’ rates of performance growth (divergence/convergence of average student residuals) across
years in which the same subject-level combination was taught. Because the average performance of each
teacher in each school-subject-level combination is perfectly fit by the unrestricted school-teacher-subject-
level and school-subject-level fixed effects, such cell averages provide no identifying variation for the expe-
rience profiles. Put another way, the inclusion of these fixed effects forces the identification of the experience
profiles to be delivered exclusively from the path of productivity growth within school-teacher-subject-level
combinations.

3.2. Identification of the General and Context-Specific Components of Fixed Teach-
ing Skill

Identifying fixed or pre-determined general and context-specific teaching skill is more difficult. In particular,
there is a fundamental identification problem that our model cannot overcome: we cannot distinguish average
teaching quality in a particular school-subject-level from school or unobserved student inputs that vary
across school-subject-level cells. For example, suppose a school’s students score 0.1 student-level standard
deviations higher in Biology than in Chemistry. In the absence of restrictions on the distribution of subject-
specific teacher skill, we cannot tell whether all the teachers at the school are particularly effective at teaching
Biology relative to Chemistry, or if instead the Biology textbook is superior to the Chemistry textbook (or
many of the student’s parents are biologists). To address this issue, we perform a sensitivity analysis in which
we introduce two polar opposite assumptions and one moderate assumption for apportioning the between
school-subject-level achievement variation between teachers and other inputs. We decompose the variance
in teacher time-invariant productivity into general, subject-specific, level-specific, and subject-level-specific
components under each assumption.

The first extreme assumption is that average teacher effectiveness is uniform across all levels, subjects, and
schools:

Assumption 2A: Uniform Average Teacher Quality Across Contexts
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1

|Isjl|
∑

(i,c,t)∈(s,j,l)

µ̂srjl = k for some constant k, ∀ (s, j, l) ∈ SJL (6)

where |Isjl| is the number of students observed taking subject j in level l at school s and SJL is the set of
all school-subject-level combinations. This assumption will hold (with a sufficiently large pools of teachers)
if the relatively more effective teachers do not sort into particular schools, subjects, or levels. Assumption
2A implies that all the variation in average residual student performance across subjects, levels, and schools
(after removing the part that is predictable based on classroom observables) can be attributed to either school
inputs or unobserved student inputs. Assumption 2A can be imposed on the model by estimating a full set
of school-subject-level fixed effects (δ̂sjl), and normalizing the student-weighted average teacher-school-
subject-level fixed effect to be zero at each school-subject-level: 1

|Isjl|
∑

(i,c,t)∈(s,j,l) µ̂srjl = 0 (note that
the common mean k does not contribute to variance estimates). Under Assumption 2A, if the school average
performance difference between Biology and Chemistry is 0.1 standard deviations then a teacher whose
Biology students perform 0.1 standard deviations better than her Chemistry students will be assumed to be
equally effective at teaching both Biology and Chemistry.

A second intermediate assumption assumes that between-school variation in residual test scores is fully
attributable to school quality and student sorting, but that the variation in residual performance that is within-
schools but across subject-level combinations is fully attributable to differences in average teacher quality
across these combinations:

Assumption 2B: Uniform Teacher Quality Across Schools, Uniform Student/School Quality Across
Subjects and Levels

δsjl = δs ∀ (s, j, l) ∈ SJL
1

|Is|
∑

(i,c,t)∈s

µsrjl = k for some constant k, ∀ s ∈ S (7)

Estimates from such a model are useful for a principal who needs to determine classroom assignments for
his/her existing stock of teachers. The principal will only require the decomposition of the within-school
variance in time-invariant teacher productivity, and may believe that school inputs are divided relatively
equally across subjects and levels. Assumption 2B is implemented by replacing the school-subject-level
effects with school fixed effects only, and restricting the average school-teacher-subject-level effect to be 0
at each school.

Finally, the opposite extreme approach is to assume that all the variation in average residual student perfor-
mance across subjects, levels, and schools can be attributed to differences in average teacher quality:

Assumption 2C: Uniform School and Unobserved Student Quality Across Contexts

δsjl = k for some constant k, ∀ (s, j, l) ∈ SJL (8)

Assumption 2C will hold if students sort into high schools, subjects, and levels based only on observ-
able characteristics and past performance, and all high schools and subject-level combinations within high
schools provide the same contribution to student achievement. Assumption 2C can be imposed on the model
by excluding school-subject-level fixed effects entirely (δ̂sjl = 0 ∀ (s, j, l)), and matching the between
school-subject-level residual variation using a full set of teacher-school-subject-level fixed effects (without
any normalizations). Under Assumption 2C, a teacher whose Biology students perform 0.1 standard devi-
ations better than her Chemistry students will be assumed to be 0.1 standard deviations more effective at

9



teaching Biology than Chemistry if the school average performance difference between Biology and Chem-
istry is 0.1 standard deviations. In other words, even though the teacher is at the mean of the performance
distribution in both subjects, the comparison set of Biology teachers is assumed to be 0.1 standard deviations
superior on average to the comparison set of Chemistry teachers.

While Assumptions 2A-2C allow us to separate school inputs from teacher inputs, identification of {µsrjl}
also requires that other unobserved inputs are not correlated with the observation of a particular teacher in a
particular subject-level combination. As before, M and D represent the random vectors of school-teacher-
subject-level and school-subject-level cell indicators, while Exp represents the random vector of teacher
experience stocks and X represents the random vector of observed classroom characteristics. Similarly, let
S represent the random vector of school indicators (draws of which would represent a row of a design matrix
for a set of school fixed effects). Then assumptions 3A-3C capture this additional condition for each of the
three cases considered:

Assumption 3A-3C: Conditional Mean Independence of
Students’ Unobserved Inputs and Teacher Identity

3A : E[ε|M,Exp,X] = E[ε|D,Exp,X]

3B : E[ε|M,Exp,X] = E[ε|S,Exp,X]

3C : E[ε|M,Exp,X] = E[ε|Exp,X] (9)

Assumption 3A states that the identity of the teacher does not provide further information about any unob-
served inputs, conditional on the identities of the school, subject, and track, along with the levels of general
and context-specific experience of the teacher and the observable classroom characteristics. Note that by
conditioning on all four dimensions of teacher experience, we remove the concern that a teacher will be
perceived to have greater general skill because he/she has more general experience, or that a teacher will be
perceived to have a comparative advantage at teaching in a particular context because many of the test-score
observations from that context are accompanied by considerable context-specific experience. Assumption
3B is much stronger, since it conditions on the school rather than the school-subject-level, while Assump-
tion 3C, which conditions only on teacher experience stocks and observed classroom inputs, is the strongest
assumption of all.

There remain several potential threats to the validity of the fixed effect estimates even in the case of As-
sumption 3A. Suppose, for example, that a particular teacher is assigned to a room with broken air con-
ditioning each time the teacher teaches honors physics, but is assigned to functioning rooms whenever the
teacher teaches honors chemistry. In this case, conditioning on context-specific experience will not remove
the correlation between the classroom-level error component ζct and the indicator for the school-teacher-
subject-level combination associated with the chosen teacher teaching honors physics. Similarly, a teacher
who happens to be assigned to basic English 1 classes during the years her kids are young (when she has
little time to prepare for class) might exhibit a correlation between the unobserved teacher-year shock νrt
and the indicator for the school-teacher-subject-level combination associated her basic English 1 course.

Perhaps the most serious concern stems from the possibility that unobservably superior students are able to
disproportionately select a particular teacher.12 This possibility is somewhat less likely at the high school

12 Rothstein (2010) documents non-random student sorting into particular classrooms within North Carolina elementary schools.
However, Kinsler (2012) retests the same data, accounting for small sample sizes, and fails to reject such non-random sorting.
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level, since class assignments are frequently generated by scheduling algorithms (given students’ subject-
level choices), making it difficult for students to select into particular classrooms within a subject-level.
We rely on classroom averages of student covariates to absorb any within-subject-level sorting based on
student inputs. Altonji and Mansfield (2014) show that classroom averages of observable characteristics can
in theory absorb all the bias from sorting on both observables and unobservables, if the set of observables
is diverse enough to span the set of classroom amenities that are driving students to sort. Furthermore,
Mansfield (Forthcoming) and Jackson (2014), using the same NCERDC dataset we employ here, find little
evidence of remaining student sorting after controlling for track. In Section 6.2, though, we investigate
further the possibility that sorting of students to teachers could bias our estimated production function.

Appendix B provides a concrete example that illustrates the kinds of moments in the data that identify time-
invariant teaching skill. The example in Appendix B reveals that each school-teacher-subject-level fixed
effect µ̂srjl will be estimated using only a single teacher’s performance during the few years in which they
taught the subject-level associated with the fixed effect. As such, sampling error for any given fixed effect
estimate µ̂srjl will not converge to zero even with the fairly long panel we employ. Consequently, we do not
focus on individual µ̂srjl estimates, but instead seek to characterize the joint distribution of the components
of time-invariant teaching skill. Specifically, we decompose the variance in performance across teachers and
contexts into components attributable to general teaching talent, subject-specific talent, level-specific talent,
and subject-level-specific talent.

To see how this may be done, note first that we can rewrite the true value of teacher r’s context-specific
productivity µsrjl via:

µsrjl = µsr + (µsrjl − µsr) (10)

The first component in (10) can be interpreted as the contribution of teacher talent that may be school-
specific, but is general or portable across tasks (subject-level combinations) within the school. We will refer
to V ar(µsr) as the variance in general teaching talent. The second component contains the teacher’s per-
sistent subject-level-specific deviation in quality from the teacher’s average across all subject-level combi-
nations. This can be interpreted as the teacher’s comparative advantage or disadvantage at teaching subject-
level combination (j, l). This second component can then be decomposed into three further components:

(µsrjl − µsr) ≡ µ̃srjl = µ̃srj + µ̃srl + (µ̃srjl − µ̃srj − µ̃srl) (11)

The first component of (11) can be interpreted as the part of the teacher’s comparative advantage at subject-
level combination (j, l) that is portable across levels but not subjects. We will refer to V ar(µ̃srj) as the
variance in subject-specific teaching talent. The second component of (11) can be interpreted as the part of
the teacher’s comparative advantage at subject-level combination (j, l) that is portable across subjects but not
levels. We will refer to V ar(µ̃srl) as the variance in level-specific teaching talent. The third component of
(11) is the part of a teacher’s comparative advantage at (j, l) that is not portable across levels or subjects, and
thus could not have been predicted based on the sum of the teacher’s subject-specific skill and the teacher’s
level-specific skill. We will refer to V ar(µ̃srjl − µ̃srj − µ̃srj) as the variance in subject-level-specific
teaching skill.

Note that we do not observe the true variance of school-teacher-subject-level effects, V ar(µsrjl), but rather
the sample variance, which contains sampling error: V ar(µ̂srjl). To recover the true latent variance de-
composition, we follow the method of Aaronson et al. (2007) and Mansfield (Forthcoming). Appendix C
describes this sampling error correction in detail.

Because we can only estimate a value of µ̂srjl for those school-teacher-subject-level combinations that we
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actually observe in the data, the variance in subject-specific and level-specific skill that we estimate will
represent the variance among the range of subject and level combinations that principals actually assign.

While we are likely to underestimate the variance in subject-specific (or level-specific) talent across the full
range of possible subjects (or levels), the estimates we do obtain are more relevant and interesting to prin-
cipals and administrators. Much of the missing variance stems from variation in the strength of teacher’s
comparative disadvantages among classroom assignments that are never seriously considered by principals
(i.e. variation among English teachers in their ability to teach physics). Rather, the choice principals gener-
ally face is between hiring a new teacher to teach exactly the courses taught by an exiting teacher and hiring
a new teacher to teach different courses while rotating existing teachers who are certified in the chosen field
to new subjects or levels within that field (for example, rewarding stayers by letting them teach the honors
class that was vacated by the exiting teacher).13 Given the limited support for the distribution of comparative
advantages that underlies our estimates, in our simulations in Section 7 we only reallocate teachers across
classrooms within fields.

4. Data

4.1. Overview

The decomposition of worker productivity developed in Sections 2 and 3 requires that the data 1) contain
signals of worker output in each task, 2) allow the construction of accurate measures of general and task-
specific experience, and 3) exhibit considerable worker rotation among tasks. We employ administrative
data provided by the North Carolina Education Research Data Center (NCERDC) that satisfies each of these
three conditions for the context of high school teaching.

4.2. Task-Specific Output and Sample Restrictions

The NCERDC data consists of standardized test scores for the universe of public high school students in
North Carolina from 1997 - 2009 in eleven subjects and two course difficulty levels.14

During the sample period, North Carolina provided a standardized curriculum in each subject and assessed
achievement via statewide end-of-course tests.15 The eleven subjects, which can be grouped into four fields

13Teacher certification in North Carolina, as in most states, is at the level of the field (math, science, history, etc.) rather than the
subject (Biology, Chemistry, Physics), and is not specific to a level of difficulty (special education excepted).

14 The student-level End-of-Course test data provide a set of four difficulty level categories (honors, AP, college placement, and other)
that do not perfectly match the difficulty level categories provided with the beginning-of-year classroom data (Special Education,
Remedial, Basic, Applied/Technical, Honors, Cooperative Education, Advanced Placement, International Baccalaureate, and Non-
Classroom), which contain the correct teacher ID (on which the level-specific experience stocks are based). In order to minimize
the probability that the relevant level-specific experience of the teacher is mismeasured, we drop student observations coming from
classes labeled as Special Education, Cooperative Education, and Non-Classroom. We classify Remedial, Basic, and Applied/Technical
classes as “basic” and Advanced Placement, International Baccalaureate, and Honors as “honors”. In the rare cases where schools offer
distinct Advanced Placement and Honors courses in the same tested subject we drop observations from classrooms where the teacher’s
relevant level-specific experience depends on whether these two difficulty levels are combined during the construction of level-specific
experience stocks.

15Note that these tests are subject-specific but not level-specific.
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based on common certification requirements, are as follows: Math: Algebra 1, Algebra 2, Geometry; Sci-
ence: Biology, Chemistry, Physical Science, Physics; Social Studies: Econ/Law/Politics, Civics and Eco-
nomics, U.S. History; English: English 1.16 Because statewide achievement tests were administered imme-
diately at the conclusion of each year-long course, and the subjects are (largely) distinct from one another,
average student performance in each course represents a signal (albeit a noisy, possibly biased one) of the
task-specific output of the teacher. 17

In our framework, accurately distilling the signal of a teacher’s task-specific productivity from student sort-
ing requires rich data on student inputs. Fortunately, the NCERDC data contain information about a variety
of current student inputs (or proxies for such inputs), as well as past student inputs.18 In addition, we also
include in Xct the number of classes and number of distinct courses taught contemporaneously by the stu-
dent’s teacher in order to capture teacher workload, and include indicators for whether the student’s teacher
taught the current subject, level, and subject-level (and whether he/she taught at all) in the previous year to
capture depreciation of human capital. We also include in Xct a full set of dummies for the calendar year t
in which the test was taken, as emphasized by Papay and Kraft (2015).

Properly measuring teacher contributions to achievement also requires that each student test score observa-
tion be matched to the teacher who taught the class in which the student’s test score was generated. We
utilize the fuzzy matching algorithm developed by Mansfield (Forthcoming), which exploits the fact that
classroom-average demographics can be constructed and compared for both the test-score-level data and the
classroom-level data (which contains the valid teacher ID).19

Our original dataset consists of 8,407,382 test scores from 460,792 classrooms, 28,347 teachers, and 1,307
high schools. We drop from the sample 2,878,254 test score observations for which we cannot match a
teacher and 794,541 for which we cannot verify a difficulty level (discussed in footnote (14) above).

In addition, recall that the second key data requirement is that measures of both general and task-specific
experience can be accurately constructed. The NCERDC data contain all classroom assignments (subject
and level) for each teacher for the years 1995-2009, even in non-tested subjects. However, complete histories
of classroom assignments, necessary to construct subject-specific, level-specific, and subject-level-specific
experience, can only be assembled for teachers who began teaching after the data collection commences in
1995 (as indicated by an entry level paycode). Because our identification strategy relies on observing each
teacher’s full history of subject- and level-specific experience at each point in time, we drop an additional
2,364,544 test scores associated with teachers for whom we cannot properly construct context-specific expe-
rience stocks. Note that we cannot distinguish novice teachers from teachers who previously taught outside
of North Carolina unless such transferring teachers are given partial credit for their prior experience (and

16Testing began for Physics, Geometry, Chemistry, Physical Science, and Algebra 2 in 1999. In addition, Econ/Law/Politics was
discontinued in 2004 and replaced by Civics and Economics in 2006. U.S. History was not tested between 2004 and 2005.

17In principle, one might worry that differences in teacher performance may be reflecting the extent to which teachers adhere to the
state curriculum rather than differences in ability to foster learning. Fortunately, several features of the North Carolina context mitigate
such concerns. First, in recent years No Child Left Behind legislation has put pressure on principals to ensure that teachers teach the
standard curriculum, since schools that fail to meet state standards are subject to sanctions and possible closure. Second, the North
Carolina end-of-course exam scores we use as outcome measures must comprise 25% of the student’s year-end grade in a given subject,
so that parents are likely to complain about teachers that ignore the standard curriculum. Finally, during the sample period, teacher
bonuses of up to $1,500 were linked to average test scores of the students in the school at which they teach.

18Observable current student inputs include indicators for parental education, race, gender, gifted status, current grade, and current
Limited English Proficiency status. Observable past student inputs include the student’s 7th and 8th grade math and reading scores
(though to reduce the influence of missing data we only include 7th grade test scores as a robustness check in Section 6.4).

19See Mansfield (Forthcoming) for a full description of the algorithm and summary statistics regarding its efficacy.

13



thus would not have an entry level paycode). Nonetheless, the problem of accurately constructing stocks of
context-specific experience would be considerably more severe in contexts where data exist only for a single
school district (even a large one).

After several other sample restrictions, our final sample consists of 1,126,300 test scores aggregated to
61,993 classroom-level observations, from 8,750 teachers, and 596 high schools.20 Basic summary statistics
comparing the original and final samples are presented in Table 1.

4.3. Generating the Experience Profile

For the baseline specification we construct flexible experience profiles by creating indicators for eight expe-
rience categories: 0 years of experience, 1 year, 2 years, 3 years, 4 years, 5-6 years, 7-10 years, and 11 or
more years of experience. In our featured specifications, experience is measured as the number of prior years
in which at least one classroom was taught in the relevant context for the chosen experience dimension. We
posit that teaching a second classroom in the same year, when there is no opportunity to alter the lesson plan
or assignments, is likely to provide negligible experience value relative to teaching a classroom in a different
year. However, as a robustness check we also present results from specifications in which experience is
measured using the total number of classrooms taught prior to the year of the observation.

We also assume that teachers’ general and context-specific experience is fully portable across schools. This
assumption is partly driven by the existence of a statewide testing regime that is tied to students’ course
grades, so that curriculum differences between schools should be minimal. Further, since only 16% of our
classrooms are taught by a teacher who in his/her second (or greater) school, we also have limited variation
with which to test this assumption. However, in Section 6.4 we examine the sensitivity of our results to
this assumption by estimating our general and context-specific experience profiles for only the subset of
classrooms featuring teachers in their initial schools.

To capture depreciation in teachers’ “experience capital”, we include in Xct a set of indicators for whether
the teacher of the classroom taught the subject, level, and subject-level in the previous year, as well as an
indicator for whether the teacher taught at all in the previous year. We also include a second set of analogous
indicators for whether the teacher of the classroom taught in the relevant contexts two years prior.

Finally, to account for possible decreases in teacher effort prior to an assignment change (explained further
in Section 6.1) we also include four indicators that equal one if the observation is from a classroom that
represents the teacher’s last year teaching the school-subject combination, the school-level combination, the
school-subject-level combination, and at the school in any classroom, respectively.

20We restrict the sample in several additional ways. First, we drop 21,915 scores from classes with fewer than 5 students (since
these are likely to represent data entry errors). Given our focus on high schools, we also drop 263,893 test scores from students in
grades 6-8. We also drop test scores with invalid or outlier values, as well as all scores from 1997 and from Physical Science in 1999
due to concerns about data quality (270,395 scores). Since past test scores are critical for controlling for student sorting, we also drop
685,116 observations for students with missing 8th grade math or reading test scores. Finally, identification of experience cell fixed
effects (estimated in our “full specification” discussed in section 6.4 below) requires that four-dimensional experience cells and school-
teacher-subject-level cells form a connected graph, with the experience cells as vertices and school-teacher-subject-level cells as edges
(or vice versa). We drop 2,424 test scores that are associated with school-teacher-subject-level combinations not contained within the
largest connected component of the graph.
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4.4. The Frequency of Teacher Assignment Rotations

The third data requirement for our decomposition is that we observe considerable worker rotation across
tasks. Table 2 depicts teacher rotation across subjects in our final sample. The top (bottom) entry in each
cell (i, j) represents the number (fraction) of teachers in our sample who ever taught in subject i that also
taught in subject j. The table reveals that there is considerable rotation across subjects, though the vast
majority of rotations occur within fields. This reflects the fact that certification is field-specific. Teacher
rotation across levels is also substantial. The vast majority (87%) of teachers who ever teach an honors
class also teach at least one basic class during their career. The converse is not true; only 43% of teachers
observed teaching at least one basic class are also observed teaching an honors class at some point during
their careers. This finding partly reflects the fact that there tend to be more basic courses than honors courses
to staff at most schools, but is also driven by a substantial fraction of schools that do not track their classes
(so that all classrooms at the school are coded as being taught at the basic level).

Table 3 displays the pattern of rotation across subject-level combinations for teachers in the field of math-
ematics. The table illustrates that teachers do not merely teach either multiple levels of the same subject
or multiple subjects at the same level, but rather are frequently observed teaching at the basic level in one
subject and at the honors level in a different subject. It is this variation that allows us to distinguish the
returns to subject-level-specific experience from the returns to subject-specific and level-specific experience,
respectively. Taken together, these tables demonstrate that rotating across multiple subjects, levels, and
subject-levels during one’s career is the norm, rather than the exception.

As the example in Appendix A makes clear, identification of all four dimensions of experience relies on
teachers continuing to introduce new subjects and levels into their repertoire after their career is already un-
derway, as well as taking single year or multi-year breaks from teaching particular subjects before returning
to them later.21

Figure 1 shows, for each level of general experience, the fraction of teachers who teach a subject, level,
or subject-level for either the first time (1a) or last time (1b), as well as the fraction of teachers who leave
teaching in North Carolina altogether (“General” in 1b). Figure 1 reveals that introducing new courses
is quite common even in mid-career: 19% of teachers with seven prior years of experience teach a new
subject for the first time in their eighth year, while 11% teach a new level and 29% teach a new subject-level
combination.

Gap years in which teachers fail to teach (and then return to) a particular subject or level are also quite
common. 22.5% of unique teacher-subject-level combinations exhibit one or more gap years at some point
during our sample, while 19.9% and 14.1% of teacher-subject and teacher-level combinations exhibit at least
one gap year. By contrast, 10.2% of observed teachers leave public school teaching entirely for at least a
year before returning. These statistics reveal that there is more variation available to identify the returns
to subject- or level-specific experience than there is to identify gains that are portable across all contexts
(Wiswall (2013), Papay and Kraft (2015)).

Finally, Figures 2a and 2b display the distributions of subject-specific, level-specific, and subject-level spe-

21To see this clearly, note that if every teacher taught the same exact subject/level combinations each year for their entire career,
level-specific, subject-specific, and subject-level-specific experience would all increment by one every year, and would thus be perfectly
collinear with general experience. By contrast, the relative within-teacher performance among multiple courses taught simultaneously
provides an important source of variation in identifying the variance in permanent task-specific talent.
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cific experience for classrooms taught by second and third year teachers in our final sample. The data
underlying these figures are presented in Appendix Table H.1. About 71% of classrooms taught by 2nd
year teachers are in subject-level combinations that these teachers taught in their first years, while 55% of
classrooms taught by 3rd year teachers are in subject-level combinations that these teachers taught in both
of their first two years.

4.5. Estimation and Calculation of Standard Errors

We estimate the model at the classroom level via weighted OLS by exploiting the sparsity of the design ma-
trices for the school-subject-level and school-teacher-subject-level fixed effects. Weights for each classroom
observation are proportional to the number of students in the classroom, so that the variances in teacher pro-
ductivity presented below capture the variation in teacher contributions across student-course combinations.
Cluster-robust standard errors are calculated for each parameter. We cluster at the teacher level in order to
accommodate the possibility of autocorrelated teacher-year shocks.

5. Results

5.1. Variation in the General and Context-Specific Components of Time-Invariant
Teacher Productivity

Table 4 contains the results of the decomposition of the variance in time-invariant teacher productivity (“tal-
ent”) into general, subject-specific, level-specific, and subject-level-specific components using the baseline
specification (2). The first column displays the decomposition obtained from imposing Assumption 2A,
in which all between school-subject-level variation in student performance is attributed to differences in
school and unobserved student inputs. The row labeled “School-Teacher-Subject-Level Combos” provides
the total estimated variance (and corresponding standard deviation) in time-invariant teacher contributions
to test scores across randomly sampled student-course combinations, which combines all four components
of time-invariant teacher productivity. A one standard deviation increase in combined permanent teaching
effectiveness is associated with a .154 standard deviation increase in expected student performance. 74% of
this variance in permanent teacher quality can be attributed to general teacher talent that is portable across
all subject-level combinations (see the row labeled “General Talent”). A student assigned to a teacher whose
average effectiveness across the subject-level combinations he/she teaches is one standard deviation above
the school average can expect a .132 standard deviation increase in test score performance relative to being
assigned the average teacher at the school in the absence of knowledge about the chosen teacher’s experience
or level-specific and subject-specific skill.

Subject-specific skill and level-specific skill make up about 17% and 9%, respectively, of the total variance
in permanent teaching effectiveness across randomly chosen student-course combinations (tests). Receiving
a teacher whose subject-specific skill in the selected subject is one standard deviation above the teacher’s
subjectwide average increases expected student achievement by about .063 test score standard deviations.
Note that this is still enough to move a student who would have otherwise scored at the 50th percentile to
the 53rd percentile statewide. Getting a teacher whose level-specific skill is one standard deviation above
his/her levelwide average increases expected performance by .045 test score standard deviations, enough to
move a student from the 50th to the 52nd percentile.
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Finally, the subject-specific, level-specific, and general components of time-invariant teacher productivity
combine to explain nearly the full variance in time-invariant teacher productivity across classroom contexts.
Subject-level-specific talent does not seem to exist. In other words, a teacher’s permanent talent for teaching,
say, honors biology, can be fully explained by the teacher’s general teaching talent across subjects and levels,
combined with the teacher’s talent for teaching honors-level courses and the teacher’s talent for teaching
biology courses, respectively.

Columns 3 and 4 of Table 4 display the alternative decomposition of permanent teacher skill that comes from
imposing Assumption 2B, in which all the variation in average student performance across subject-level
combinations within schools is also attributed to differences in average teacher quality. Not surprisingly,
this increases each of the variance components substantially. Note, though, that the fractions of variance in
teacher productivity explained by each component stay roughly similar to what they were under Assumption
2A. Under Assumption 2B, a one standard deviation increase in general teacher talent is associated with a
.192 increase in average student performance, while a one standard deviation increase in subject-specific
(level-specific) teacher talent is associated with a .077 (.058) increase in expected student performance rel-
ative to a subject (level) in which the teacher has no comparative advantage or disadvantage. Subject-level-
specific talent does not appear to exist under Assumption 2B either. These results are roughly in line with
those of Mansfield (Forthcoming).

The results under Assumption 2C (Columns 5 and 6) assign all the between school-subject-level variation
in student performance to differences in teacher inputs rather than school or student inputs. They provide an
upper bound estimate of the standard deviation in general teacher talent of .225 test score standard deviations.

Overall, we conclude that most of the time-invariant variation in teacher productivity is portable across all
subjects and levels, but that there is a non-negligible achievement gain from being taught by a teacher who
is relatively well-matched to the level and particularly the subject associated with the classroom.

5.2. General and Context-Specific Experience Profiles

Table 5 presents the estimated experience profiles for each type of experience from the baseline specification
(2).22 Panel A of Figure 3 displays these experience profiles graphically. Column 1 of Table 5 contains
estimates of the part of the returns to teaching experience that are portable to all subject-level combinations,
while Columns 2-4 contain estimates of the part of the returns to teaching experience that are subject-, level-
, and subject-level-specific, respectively. There are considerable gains from the first two years of general
experience, such that teachers teaching in their third year can expect to improve student performance by
.085 test score standard deviations more than a novice teacher, even if they are teaching at a new level in a
new subject. These gains grow to .113 by 7 years of experience, but seem to plateau thereafter. However,
the results become quite noisy for higher levels of experience; since we must observe the entire history of
teacher assignments, only the cohorts of new teachers from the late 1990’s are observed at the higher levels
of experience in our sample.

Row 1 of Column 2 indicates that teaching a subject for the second time increases the teacher’s expected
performance by .014 test-score standard deviations within that subject, relative to the first attempt. An addi-
tional year of subject-specific experience increases performance by an additional .019 standard deviations,

22The coefficients on our controls for teacher workload and depreciation of experience capital for this specification are presented in
Appendix Table H.2.
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while a third year of subject-experience adds an additional .016 standard deviations. Gains seem to slow
beyond the third year of subject experience. Overall, teachers with more than 7 years of subject-specific
experience are between .046 and .067 student level standard deviations more effective than teachers with the
same total years of general teaching experience but who are teaching the subject for the first time.

The results in Column 2 suggest that part of the returns to experience generally estimated in the literature
are actually specific to the subject taught. Since teachers frequently reteach the same subject many times,
subject-specific experience and overall (general) years of experience are highly correlated. Thus, when
returns to subject-specific experience are not separated from returns to general experience, the returns to
subject-specific experience will generally be reflected in larger estimated returns to general experience.

Columns 3 and 4, by contrast, show that the returns to level-specific and subject-level-specific experience
seem to be virtually non-existent, once years of subject-specific and general experience have been taken into
account. In fact, the returns to subject-level-specific experience seem to be negative. Note that such negative
returns are not implausible in principle: teaching the exact same course again and again could cause teachers
to lose enthusiasm or to stop updating course materials (even as the state curriculum drifts slightly).

That said, this negative profile might also be spurious if it is merely the product of overfitting; while including
a full set of school-teacher-subject-level fixed effects removes potential bias from teachers systematically
repeating the courses at which they are relatively effective more frequently, it also considerably limits the
remaining variation in experience stocks that can be used to identify gains from experience.23 Given that
subject-specific and subject-level-specific experience are very highly correlated, OLS may be able to reduce
squared residuals more by fitting sampling error than by fitting true productivity gains.

To address concerns about overfitting, we turn attention to our “restricted” specification (3) that replaces
the school-teacher-subject-level effects µsrjl with school-teacher fixed effects only.24 Because the results
from the restricted specification have proven to be more robust to alternative sample restrictions and the
inclusion of additional controls, we focus primarily on experience profiles that maintain these restrictions
for the remainder of the paper.

Table 6 displays the estimated general and context-specific experience profiles for the restricted specification
(with Panel B of Figure 3 providing a graphical depiction). The results for general and level experience
are essentially unaffected by the restrictions, but the negative effects of subject-level-specific experience
disappear, while the gains to subject-specific experience are somewhat diminished. Specifically, a teacher
with two (four) prior years of subject-specific experience could be expected to increase achievement by .023
(.041) test score standard deviations relative to the teacher’s expected performance when teaching the subject
for the first time (holding the other experience components fixed).

Column 5 in Table 6 sums across the first four columns to provide the returns to experience for a teacher who
never changes the subject-level he/she teaches. After two (four) years, such a teacher is predicted to perform
.118 (.138) standard deviations better than a novice teacher. Since many teachers teach the same subject-
level every year (perhaps in addition to other courses), this sum is particularly well identified. Most of the

23Specifically, the inclusion of these fixed effects implies that only relative growth rates in performance within a school-teacher-
subject-level cell provide identifying variation.

24Consistent estimation of experience profiles in the restricted specification requires that teachers do not systematically gain more
general or context-specific experience in the subjects or levels in which they have experience-invariant comparative advantages. How-
ever, given that the previous sub-section revealed relatively small variances in subject- and level-specific permanent talent, even sub-
stantially elevated rates of re-assignment of teachers to their more effective subjects and levels would produce minimal bias.
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sampling error in the estimates comes from decomposing this sum into the four experience components.

Given the failure to observe meaningful level-specific and subject-level-specific experience effects, the first
two columns of Table 7 display results from a yet more parsimonious specification in which the level-specific
and subject-level specific experience profiles are constrained to be zero everywhere. The basic pattern of
results for total and subject-specific experience exhibit little change; there are still meaningful gains from the
first several years of both total experience and subject-specific experience. Imposing these further restrictions
increases the precision of the estimates considerably, however, so that experienced teachers are statistically
significantly more effective than novice teachers for all categories of general experience and for all but the
highest experience category of subject-specific experience.

The fourth column of Table 7 presents estimates from the standard specification in the literature, in which
only a single “general” experience term enters the production function. This standard experience profile,
which is driven by both general and specific returns, matches fairly closely those found in the literature.

Overall, the relative magnitudes of the coefficients for the different dimensions of experience parallel the
results for context-specific talent presented in Section 5.1: a large role for the general component, with a
moderate role for the subject-specific component and small-to-nonexistent roles for the level-specific and
subject-level-specific components.

6. Tests of Identifying Assumptions and Robustness Checks

6.1. Testing for Dynamic Classroom Assignment Responses to Unobserved Shocks

Assumption 1, which is necessary for consistent estimates of experience profiles, will be violated if particular
experience profiles are more likely to be observed during years in which either teachers or their schools are
experiencing positive or negative year-specific deviations in productivity relative to what could be predicted
given their full sample performance and teachers’ observed levels of each dimension of experience.

There are a variety of scenarios that could bring about such a correlation. Some involve endogenous alloca-
tion responses to idiosyncratic shocks, and may not exhibit any pre-trend. For example, a teacher who is less
effective while pregnant may quit teaching after the baby arrives. Scenarios such as these would imply that
the set of teachers who make it to the next year of teaching (or perhaps teaching in a particular context) are
those whose teacher-year (or perhaps classroom) shocks were not too negative. Thus, the expected change in
the teacher-year error component would be negative among those who persist, creating a potential downward
bias in our estimate of the return to general experience.

We address endogenous responses to idiosyncratic shocks by including in all our specifications four indicator
variables that are set to one if the observation is from a classroom that represents the teacher’s last year
teaching at the school in any classroom, in the current school-subject combination, in the current school-level
combination, and in the current school-subject-level combination, respectively. These indicators capture the
extent to which the year before an assignment change tends to exhibit particularly low performance, thereby
preventing such dips from being fit by the experience profile parameters of interest. In addition to controlling
for the most plausible dynamic response to health shocks, these dummies also control for the possibility that
teachers who anticipate quitting put forth less effort in their final year (which could also bias downward the
estimated general experience profile). Indeed, the coefficients on the dummies corresponding to the last year
in the school-subject and school-subject-level (Appendix Table H.3) are negative and statistically significant.
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However, other scenarios that produce violations of Assumption 1 might involve trends over time in error
components rather than merely single-year idiosyncratic shocks, so that our “last year” indicators are inad-
equate controls. One particularly plausible mechanism stems from the possibility of heterogeneity in the
gains to experience among teachers.25 Since both our baseline and restricted specifications constrain the
gains from general experience to be common to all teachers, any heterogeneity in rates of growth among
teachers in the sample will be reflected in the teacher-year error component, νrt.

Thus, our context-specific experience profiles could be biased upward if teachers with faster than average
growth rates are more likely to stay in the courses and levels they are teaching: the average value of the
teacher-year error component νrt would be higher for higher values of subject-specific or level-specific
experience. This might occur if rapidly improving teachers are rewarded with the opportunity to continue
teaching their courses (while forcing others to adjust to changing classroom demand created by, say, teacher
turnover or variation in student cohort size).

An analogous bias could be created by endogenous responses to school-year shocks. For example, teach-
ers may be more likely to quit a declining school, thereby creating holes in subject or level offerings that
other teachers must be forced to fill. In this case, the school-year error component φst would be positively
correlated with levels of context-specific experience, leading to overestimates of the gains to experience.

We can test both of these hypotheses jointly by examining whether the trend in a teacher’s performance
(relative to the estimated experience profile) predicts the teacher’s future teaching assignments. Indeed, such
a test will also reveal the potential bias from any other sources of dynamic assignment patterns that involve
a time trend in the composite error εct within a teacher.

Specifically, we first identify all teacher-year combinations in which a teacher fails to teach any classroom
in the following year. We then calculate and plot in Appendix Figure H.1a the average test score residuals
across all classrooms of students taught by the teachers from these teacher-year combinations in the years
leading up to their breaks from teaching (denoted t in event time). We see no evidence of any trend in
teacher-year residuals in advance of the break from teaching. In order to distinguish quits/retirements from
parental leave, Figure H.1e plots the same time path of teacher-year residuals leading up to the smaller
sample of teacher-year combinations in which a teacher fails to teach in any classroom in any future year in
the sample. No obvious trend is observed.

We then perform the analogous exercise for changes in subject, level, and subject-level assignments. Specif-
ically, for Figure H.1b (H.1f) we identify all teacher-subject-year combinations in which the teacher fails to
teach any classrooms in the chosen subject in the following year (any future year), and plot the time path
of average teacher-subject-year residuals leading up the change in subject assignment. Figures H.1c - H.1h
plot the analogous trends in teacher-level-year and teacher-subject-level-year residuals leading up to breaks
from teaching a given difficulty level or subject-level combination. None of the Figures H.1a-H.1h show any
evidence of a significant trend in residuals preceding an assignment change that might suggest biases from
dynamic reallocations of teacher assignments in response to unobserved shocks/input trends.26

25 Atteberry et al. (2013) finds evidence of heterogeneous teacher growth in New York City.
26The point estimates that underlie these figures are presented in Appendix Table H.4.
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6.2. Testing for Dynamic Student Sorting

In this subsection, we focus our attention specifically on violations of Assumptions 1 and 2 that are caused
by nonrandom student sorting. To gauge the possible severity of the problem, we implement a “backcasting”
test in the spirit of Rothstein (2010) in which we replace class averages of students’ contemporaneous test
scores with class averages of their math standardized test scores from 7th grade.27 The intuition behind the
test is that if students were randomly assigned to teachers conditional on controls, current teacher identity
or experience should not predict past student performance. To the extent that it does, part of the estimated
gains to teacher experience could simply be capturing the ability of more experienced teachers to attract/be
assigned to unobservably superior students.

The results of this exercise for the restricted specification 3 are presented in Appendix Table H.5. While
the estimates are generally relatively small in magnitude, a number of estimates are statistically significantly
different from zero, creating some cause for concern. A closer look, though, reveals that teachers with
more general and subject-specific experience seem to be attracting students with inferior 7th grade math
scores (conditional on 8th grade scores and the other controls), while teachers with more level-specific and
subject-level specific experience seem to be attracting students with superior past test scores. Thus, the
backcasting test suggests that the substantial gains to general and subject-specific experience reported above
are, if anything, understated. By contrast, the gains to level-specific and subject-level specific experience
could be slightly negative. Thus, these results do not undermine the qualitative conclusions of Section 5.2.

Furthermore, while such backcasting tests are well known in the literature and are valuable for flagging
potential selection and sorting biases, recent research by Kinsler (2012) and Goldhaber and Chaplin (2015)
suggest that these tests may find evidence of significant dynamic student sorting even where none exists. For
example, suppose that classroom assignment in 9th or 10th grade is partially based on 7th grade test scores
(perhaps because these test scores still affect principal or student beliefs about student ability), but that the
part of persistent student inputs captured by 7th grade test scores is fully reflected in the included controls.
In this case, current teacher assignments could significantly predict past test score noise or transitory student
inputs, yet estimates of teacher value-added and gains from experience would nonetheless be unbiased.28

Indeed, when we add 7th grade math and reading scores as controls as a robustness check in the next section,
we find negligible changes in estimated gains from general and context-specific experience.

6.3. Evaluating Forecast Bias in Estimates of Context-Specific Teacher Talent

While the previous subsections have investigated several sources of potential bias in our estimated experience
profiles, in this section we seek to determine the degree to which our estimates of teacher talent, the estimated
fixed effects {µ̂srjl}, properly capture the true talent contributions {µsrjl}. Following Chetty et al. (2014),
we do this by measuring forecast bias: the degree to which teachers’ context-specific talent estimates from

27 These test scores are not included in our baseline specification because 7th test scores are missing for our first cohort (since
they had already reached 8th grade the first year the statewide database was constructed). We wanted a consistent set of controls for
all cohorts in our sample, and did not want to exclude our earliest student cohort, since their 1997 performance creates a baseline of
productivity for the 1997 cohort of new teachers, which permits estimation of the gains to the 14th year of teacher experience and
generally increases the precision of estimates of mid-career teaching (to which few cohorts of teachers contribute).

28Similarly, Chetty et al. (2016) point out that track-level, field-level, or school system-level shocks that are correlated across years
could produce sampling error that is correlated across students’ current and past classroom observations. This represents an additional
mechanism by which backcasting tests could yield spurious “evidence” of bias.

21



one partition of our data predict mean residual achievement in the same context in a second, left out partition.
The implementation of our tests for forecast bias, which mirrors Chetty et al. (2014), is described in detail
in Section Appendix F.

We first test for forecast bias in our estimates of combined general and task-specific talent {µ̂srjl}. This
involves regressing differences in the performance of pairs of teachers within the same school-subject-level
context from a left-out sample of classrooms on our posterior mean belief about the difference in the two
teachers’ talent in the chosen context. This empirical Bayes (EB) posterior belief is formed by multiplying
the difference in estimated fixed effects µ̂srjl − µ̂sr′jl from the primary sample by a reliability ratio that
shrinks the estimated difference toward zero. If the estimated variance in teachers’ talent contributions
across randomly chosen test scores presented in Table 4 is valid, multiplying by this reliability ratio removes
the attenuation bias created by sampling error in the fixed effect estimates {µ̂srjl} that would otherwise
occur in a forecast regression of outcome differences from one sample on outcome differences in a second
disjoint sample. Consequently, under the null hypothesis that the estimated (lower bound) teacher talent
variance across tests is valid, the coefficient on the EB posterior mean from the forecast regression should
converge in probability to 1.

The actual estimated regression coefficient (Appendix Table H.6, Column 1) is 0.825, with a standard error
of 0.019. While this exercise reveals that our estimates of teacher talent can be used to forecast contribu-
tions to student performance out-of-sample fairly accurately, our estimator does not seem to be “forecast
unbiased”. The most straightforward explanation for a coefficient below 1 is that our estimate ˆV ar(µstcl)
slightly overstates the true variance in teacher talent contributions ˆV ar(µstcl), so that the reliability ratio we
use in shrinkage overstates the degree of signal in the fixed effect differences. However, a couple of alter-
native explanations exist. First, the reliability ratio could also be overstated if we are underestimating the
standard errors used to construct the estimated “noise”. Second, the subsample of school-teacher-subject-
level combinations that satisfy the criteria for eligibility for the forecast sample (See Section Appendix F)
might feature a slightly lower true variance in teacher talent contributions than the population.

While this test captures the model’s ability to consistently estimate the combined general and context-specific
talent that a teacher contributes to a given context, the ability to improve the efficiency of teachers’ classroom
assignments only depends on the model’s success in isolating and consistently estimating the context-specific
components of teacher talent. Thus, we also construct two additional forecast tests that measure the degree to
which our estimates of subject-specific and level-specific talent can forecast out-of-sample teachers’ subject-
specific and level-specific comparative advantages, respectively.

Unlike our tests of the consistency of our combined talent estimates, which could be performed using dif-
ferences among teachers who taught in the same school-subject-level context, evaluating our comparative
advantage estimates requires measuring the degree to which difference-in-differences between teachers who
taught the same two courses at the same school can be forecast. This necessitates restricting the forecasting
sample to pairs of teachers who each taught multiple classes in the same two subjects within the same school-
level combination (or, for the second test, both basic and honors in the same school-subject combination).
Only 205 and 289 difference-in-differences exist on which to perform the forecast test for subject-specific
and level-specific talent estimates, respectively. In essence, there is far less overidentifying variation avail-
able to test the model’s ability to detect true variation in subject-specific and level-specific talent.

The methodology for the context-specific forecast tests is otherwise perfectly analogous to the forecast test
for combined teacher talent. Difference-in-differences in residual mean test scores from among the left-out
classrooms in the forecasted sample across teachers and either subjects or levels (conditioning on the same
school-level or school-course environment as appropriate) are regressed on empirical Bayes estimates of
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difference-in-differences in the teachers’ context-specific talent from the forecasting sample.

The regression coefficient on the forecasted difference-in-difference from the subject-specific forecast sam-
ple is 1.013, with a standard error of 0.242. Thus, while the point estimate suggests negligible forecast bias
in estimates of subject-specific talent, the confidence interval is quite wide: only values below 0.539 can be
ruled out with 95% confidence. Nonetheless, the test provides some reassurance that the kind of achievement
data available to principals can provide some meaningful signal of subject-specific skill that might be used
to guide classroom assignments.

The regression coefficient from the level-specific forecast regression is 0.456, with a standard error of 0.333.
The point estimate indicates that our ability to infer level-specific talent is less strong than what our estimate
of the true variance in level-specific talent would suggest. However, the test is severely underpowered: both
0 and 1 are within the 95% confidence interval. The large standard errors are partly due to the limited
overidentifying variation just discussed, but are also attributable to the small estimated variance in level-
specific skill: each classroom provides an extremely weak signal of level-specific skill relative to the “noise”
stemming from the contributions of general teacher talent and other student and school inputs.

6.4. Further Robustness Checks

This subsection aims to provide a broader sense of the robustness of the main results to the array of difficult
choices regarding specifications, variable definitions, and sample restrictions described in sections 2 and 4.

First, so far we have defined experience in a given context as the number of previous years in which the
teacher taught at least one classroom in that context. This assumes that additional classes taught simulta-
neously in a context within a year (e.g. two periods of honors Biology classes) do not provide additional
productivity value, which is based on the idea that teachers often have little time to alter materials between
classes in a given day. However, Appendix Table H.7 presents estimated experience profiles in which ex-
perience in each context is defined as the total number of classrooms taught in the chosen context in prior
years. While the scales are difficult to compare, the results based on the classroom-based definition of expe-
rience are qualitatively very similar to those based on the year-based definition: substantial gains to general
experience, moderate gains to the first few years of subject-specific experience, and negligible gains to level-
specific and subject-level specific experience. Due to the near perfect correlation between year-based and
classroom-based measures of experience, we are unable to determine which measure better captures the true
accumulation of productivity gains from experience. Appendix Table H.8 shows that the decomposition of
the variance in teacher talent is insensitive to the definition of experience.

Second, while we allow the permanent component of teacher productivity to be school-specific, to this point
we have assumed that gains from general experience and from each dimension of context-specific expe-
rience retain their full value at new schools. Appendix Table H.9 presents estimated experience profiles
based on the subsample of classrooms associated with teachers teaching in their first schools, where there
is no concern about mismeasurement of experience stocks due to imperfect portability across schools. This
subsample comprises 83.5 percent of our full sample of classrooms. The experience profiles remain essen-
tially unchanged. Similarly, the decomposition of teacher talent for this subsample (Appendix Table H.10)
is nearly identical to its full sample counterpart.

Third, Appendix Tables H.11 and H.12 present results from a specification in which we alter our controls for
depreciation in experience-based human capital. Specifically, we replace indicators for whether the teacher
taught the chosen subject, level, and subject-level (and whether the teacher taught at all) in the last year
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with linear controls for the number of years since having taught the relevant subject, level, or subject-level
(or taught in any classroom). The estimates of the returns to experience are not sensitive to our handling
of depreciation in experience-based human capital, and our depreciation controls are generally close to zero
and statistically insignificant.

Fourth, Section 6.2 revealed that the identities of students’ high school teachers can partially predict their
prior 7th grade test scores, suggesting that 7th grade math and reading test scores might be valuable controls
for student sorting. Thus, Appendix Table H.13 reports estimated experience profiles from a specification
that includes class-averages of 7th grade math and reading test scores as controls (and sets missing 7th grade
test scores to the samplewide mean of zero). Inclusion of 7th grade math and reading scores has almost no
impact on the estimated profiles. These results reinforce the idea that failure of a backcasting test need not
imply substantive bias in estimates.

Fifth, the baseline and restricted specifications presented in Tables 5 and 6 impose that the returns to general
and subject-specific experience are the same across fields. In Appendix Table H.14, we present separate
estimates of general and subject-specific experience profiles for math, science, social studies, and English
subjects. Comparing across columns, we see that general and subject-specific returns to experience are fairly
similar across all four fields, providing support for the pooled specifications above. However, there is some
variation in experience gains across fields. In particular, the gains to general experience appear highest in
math, and the gains to subject-specific experience appear to be highest in science.

Sixth, up to this point we have combined years of experience 5 and 6, 7 through 10, and 11 and beyond into
bins rather than introducing separate indicator variables for each year of experience. We did this because
we expected gains from experience to slow down at higher levels of experience (as our estimates suggest
they do), and combining multiple years into bins allows us to reap additional efficiency gains and identifying
power (necessitated by the need to observe teachers’ full teaching histories in order to construct their stocks
of general and task-specific experience, which removes most well-experienced teachers from the sample).
However, Wiswall (2013) points out that grouping experience levels into broad bins imposes arguably un-
realistic restrictions on the experience profile that can potentially produce substantial bias. To address this
concern, Appendix Table H.15 presents estimated general and context-specific experience profiles from a
version of the restricted specification in which indicators are included for years 1 through 14 of experi-
ence.29 While the estimates become prohibitively noisy beyond six or so years of experience, the results
for the first several years of experience are extremely similar to those presented in Table 6 across all four
dimensions of experience, suggesting that pooling multiple years of experience into experience category
indicators is not generating substantial bias, at least for the unpooled experience categories.

Along the same lines, Appendix Table H.17 displays predicted values for the first ten years of experience in
each dimension from a specification in which the set of indicators for each number of years of experience
is replaced by a quartic in each experience dimension (general, subject-specific, level-specific, and subject-
level specific). The gains to each dimension of experience are again similar, illustrating that a smoother,
more parsimonious specification can still capture the basic qualitative results.

Finally, both the baseline and restricted specifications impose that the separate components of experience

29When the full set of dummies is introduced into the baseline specification, the results become nonsensical, with enormous offsetting
positive and negative effects across dimensions. This is not surprising, as combining multiple years into bins was helping to break the
collinearity between the various dimensions of experience, so that the overfitting/collinearity problem discussed in Section 5.2 now
becomes even more severe.
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are additively separable in the education production function:

d(expgen, expj , expl, expjl) = dgen(expgen) + dj(expj) + dl(expl) + djl(expjl) (12)

However, general experience and different dimensions of context-specific experience may interact with one
another. For example, perhaps students only learn if the teacher has developed effective ways to both ex-
plain a subject’s content and maintain control of the classroom. Lectures that deliver content effectively
may require subject-specific experience, whereas classroom control skills may be learned through general or
level-specific experience. Alternatively, perhaps a teacher can keep student attention by either having excep-
tional command of the content or by having excellent classroom control skills, in which case the different
components of experience would be substitutable rather than complementary.

We relax the additive separability assumption by estimating a “full” specification that captures the contribu-
tion of experience to teacher productivity via a non-parametric function of the four experience components:

Yct = Xctβjl + δsjl + µsrjl + d(expgenrt , exp
j
rt, exp

l
rt, exp

jl
rt) + εct (13)

We implement this specification by replacing the four dimension-specific experience profiles with a full set
of four-dimensional experience cell fixed effects.30 This specification is isomorphic in structure to a model
with worker and firm fixed effects. Since the estimated experience cell fixed effects are measured with
considerable sampling error, to better reveal the underlying structure of the experience contributions we
smooth estimates for each experience cell by using a normal kernel to give weight to “nearby” estimates.31

We then take partial derivatives of this smoothed non-parametric experience production function with respect
to each dimension of experience and integrate over these dimension-specific partial derivative functions to
construct a set of standard experience profiles analogous to those from our additively separable baseline and
restricted specifications. Section Appendix E describes this procedure in further detail.

The results of this exercise are displayed in Table H.18, while Table H.19 displays the corresponding
marginal effect estimates from a “restricted” version that a replaces school-teacher-subject-level fixed ef-
fects with school-teacher fixed effects. Compared to the additively separable results from Table 6, the results
in Table H.19 feature quite similar general and subject-level experience profiles, but somewhat larger gains
to both subject-specific and level-specific experience. Overall, though, accounting for possible misspec-
ification from ignoring interactions among experience components does not change the basic qualitative
conclusion that the bulk of the gains from experience stem from general and subject-specific experience.32

30For example, the vector of experience stocks (expgen, expj , expl, expjl) = (2, 1, 1, 1) is captured by a different indicator
variable than (2, 1, 2, 1).

31Appendix D.1 provides a more detailed explanation of this smoothing procedure.
32Previous versions of this paper attempted to use the full specification to characterize the nature of complementarity present in

the experience production function. While such attempts produced suggestive evidence that general, subject, and level experience are
substitutes rather than complements, identification and estimation of the degree of complementarity places extremely strong demands
on the data, so that the results were both noisy and fragile. Thus, we have chosen to remove the full discussion of sub/supermodularity
of the production function in this version.
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7. Projecting the Achievement Gains from Efficient Use of Context-
Specific Teacher Experience and Talent

7.1. Methodology

The moderate variance in subject- and level-specific time-invariant productivity differences among teachers,
combined with the estimated gains to subject-specific experience, suggest that fully exploiting a teaching
staff’s task-specific human capital could potentially generate non-trivial efficiency gains. In this section we
develop a set of counterfactual simulations to gauge the magnitude of the performance gains that could be
achieved statewide if each principal exploited the full value of the stocks of task-specific experience and
talent of the members of his or her teaching staff.

To see how such simulations might be implemented, consider the allocation of teachers to classrooms that
takes place at a particular school in a particular field over the set of years in our sample. Ideally, we would
solve the dynamic problem of choosing sequences of yearly allocations to maximize the average test score
performance over the entire sample (and perhaps beyond). However, the state space of such a dynamic
problem is prohibitively large: it must include, for each teacher in the school, both the teacher’s stock of
task-specific experience as well as posterior beliefs (with corresponding precisions) about the teacher’s talent
in each subject and level.

Consequently, we instead simulate the dynamic effects of re-solving each year the static optimization prob-
lem in which the expected average test score for the year is maximized, taking the set of classrooms and
teachers to be matched in the chosen year as exogenously given at the start of the year. Four-dimensional ex-
perience stocks are then updated for the next year based on the efficient static allocation. While this approach
necessarily understates the true gains to dynamic optimization, it represents an allocation rule that principals
can automatically implement each fall with minimal computational burden and without making any projec-
tions about enrollment and teacher attrition. By evaluating the dynamic implications of static optimization,
we can ensure that the short-run efficiency gains from implementing the statically optimal allocation are not
undermined by long-run efficiency losses.

Even static optimization, however, requires specifying the principal’s belief about each teacher’s time-
invariant task-specific productivity for each subject-level combination to which the teacher could potentially
be assigned. Thus, we calculate empirical Bayes posterior beliefs about each teacher’s task-specific tal-
ent based on our school-teacher-subject-level fixed effect estimates and their standard errors, and use these
for any school-teacher-subject-level combinations that are observed in our sample. We assign task-specific
productivities of 0 (the population mean) to any school-teacher-subject-level combination that we do not
observe.

These posterior beliefs are designed to make efficient use of the information about teacher comparative
advantages contained in the student test score data, given our assumed achievement production function.
However, a major concern is that the principal may have information about teachers’ subject-specific or level-
specific talent that is not reflected in the test score data, and is therefore unobserved by the econometrician.
Such information might be derived from classroom observations or from knowledge of the teacher’s college
preparation (e.g. a biology major might be likely to have a comparative advantage in biology relative to
chemistry). If such additional sources of principal information exist, then allocations that are optimal based
on the posterior beliefs we calculate may identify spurious efficiency “gains” in which teacher assignments
that were driven by the unobserved component of principal’s information are altered to better fit the noise in
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our empirical Bayes estimates of task-specific talent, and thus would in fact represent achievement losses.

In light of this concern, we compare our simulated “optimal” allocations to two different baselines represent-
ing different informational assumptions. The first baseline consists of the achievement contribution of actual
teacher assignments in our sample under the assumption that the information available to the principal at the
time of allocation is a subset of the information contained in our entire sample of test scores for all public
school teachers in North Carolina. Under this assumption, the gains we identify from teacher reallocations
should be correct in expectation; we are as likely to understate as to overstate the gains from our alternative
allocation.33

However, since this assumption may cause us to overstate (possibly dramatically) the potential efficiency
gains from effective use of test-score-based information about task-specific experience and talent, we also
compare the achievement gains from our “optimal” allocations to a baseline in which teachers are randomly
allocated to classrooms within field. This random baseline allows the reader to gauge the potential impor-
tance of utilizing information about task-specific experience and talent contained in test score data without
making any assumption about the degree to which this and other sources of information are already being
used by principals. Principals and other administrators may simply wish to know whether it is worth the
time and effort to track task-specific experience and generate beliefs about task-specific talent and to incor-
porate these pieces of information into classroom assignments, or if instead they should allocate classrooms
based on other objectives that may be nearly orthogonal to the short run maximization of test scores (e.g.
minimizing parent dissatisfaction).

To ensure that the simulation captures feasible reallocations, we hold fixed the number of classrooms of each
subject-level combination at the levels that actually prevailed at each school in each year. Furthermore, we
also hold fixed the total number of classrooms taught by each teacher in each year, since principals may have
been constrained in the workload they could assign to their more experienced teachers.34 This counterfac-
tual simulation can be rewritten as a binary integer programming problem. The formal presentation of the
problem is located in Appendix G.

Since our estimated gains from general and task-specific experience are based on only the 11 tested subjects,
our simulations only consider efficiency gains from reallocating classrooms in which the tested subjects
were taught. We also do not reallocate classrooms in which English 1 was taught, since this is the only
tested subject in English. In addition, because we do not observe the full teaching histories of any teacher
who began teaching before the sample begins in 1995, for some of our simulations, we do not reallocate
the classrooms taught by such teachers; for other simulations, we impute the full teaching histories for such
teachers. We use the estimates from the full specification in equation (13) for both the posterior beliefs

33 Given that the fixed effect estimates are based on the entire sample, one could argue that they are partially based on information
(teachers’ average test score performance from future years) that principals cannot possibly have observed at the time of allocation, so
that the gains we compute overstate gains from a feasible allocation algorithm even if principals do not have other sources of information
on teachers’ task-specific talent. However, for highly experienced teachers that are included in only a subset of our simulations (but
would make up a substantial fraction of the principals actual staff), the principal will generally have many years of test-score data on
which to base posterior beliefs, so that their posterior beliefs may closely correspond to our empirical Bayes posterior beliefs. Another
possible approach would have been to calculate posterior beliefs for each teacher in each year based on their performance record up to
that date. This would be quite computationally costly for us, since it requires re-estimating the model (and calculating standard errors)
for each year in our sample, but would likely be feasible for an actual school that is allocating only a handful of teachers. Thus, even
our richer static optimization program could be fairly easily implemented by any school, given accurate records on the teachers’ past
course assignments and student performance.

34For example, these teachers may also have been teaching untested classes, or performing other valuable services to the school,
such as lunchroom monitoring, advising student clubs, or coaching student athletic teams.
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about context specific talent and the predicted contributions of each four-dimensional vector of experience
stocks.35

Our simulation procedure captures the gains that could have been reaped by the end of each year had the
principal maximized the value of context-specific experience and context-specific talent in each school start-
ing in 1995 (the first year of the sample). However, estimates in the first few years of the sample conflate
the fact that past rotations have limited potential gains from re-optimizing with the fact that relatively few
teachers are being reallocated.36 Thus, we focus on efficiency gains among classrooms assigned in the last 5
years of the sample, when a substantial fraction of teachers are eligible for reassignment. We do not extend
our simulations beyond the last year of the sample, so that the gains we report may not fully capture the
very long run (steady state) gains from repeated optimization. We hold the allocation of teachers to schools
fixed (thus ignoring any possible effects of classroom reassignments on teacher turnover), and we continue
to assume that context-specific experience is fully portable across schools.

We also compare the results of the “dynamic” simulation to a fully static simulation that solves the binary
integer programming problem in each year t holding fixed observed teacher assignments up through t − 1.
These results reflect the payoff to the first year of optimal static reallocation. The static simulation serves
to illustrate the decomposition of gains into the part stemming from initial reassignment to better match
teachers’ context-specific experience and talent to the courses they teach and the part stemming from longer
run gains associated with the specialization of the teacher work force.

7.2. Results from Counterfactual Simulations

The bar charts in Figure 4 present the student-weighted average expected test score gain from optimal real-
location among all school-year combinations for both the single-year “static” simulation (Panels C and D)
and the “dynamic” simulation in which static re-assignments affect the following year’s experience stocks
(Panels A and B). The numerical values that correspond to the bars in Figure 4 are presented in Table 8.

The results in Figure 4 are reported separately by whether the baseline is the actual allocation observed in
the sample (Panels A and C) or an allocation in which teachers are randomly assigned to classrooms within
field (Panels B and D). In addition, because the scope for efficiency gains from matching and specialization
increases in the size of the teaching force, achievement gains are also presented separately by number of
teachers in the school-field-year combination eligible to be reallocated (i.e. the number who taught at least
one classroom in that school-field-year combination in the actual data for whom the full teaching history is
observed).37

While optimal reallocations were implemented separately by field, the results displayed in Figure 4 pool the

35We smooth the nonparametrically-estimated experience function to a greater degree for the simulations to ensure that our simulated
efficiency gains do not stem from better exploiting the sampling error portion of the estimated returns to experience. We use a bandwidth
(variance on a normal PDF) of 5 to smooth the estimates used for the simulation. In theory, the appropriate smoothing represents a
delicate balance: smoothing too little creates the possibility of spurious gains from better fitting sampling error in estimates, while
smoothing too much also removes the signal. Indeed, complete smoothing would make the productivity of each experience cell
identical, and would therefore eliminate the possibility of any gains from better use of teacher experience stocks. In practice, however,
we have found that bandwidth choices between 2 and 10 yield very similar estimates.

36This is because we do not observe the classroom assignment histories for the vast majority of the teachers in the first few years.
37In the case where only one teacher is observed teaching all of the courses in the field, there can be no gains from teacher reallocation.

Thus, school-field-years featuring only one teacher are omitted from the simulations presented in Figure 4.
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classroom-level gains across the three fields (math, science, social studies). We pool the results because there
was surprisingly little heterogeneity in simulated gains from reallocation across fields (See Appendix Table
H.20 for the disaggregated results). In each panel of Figure 4, the height of the rightmost bar in each set of
three bars represents the total simulated per-student standardized test score gain from optimally allocating
teachers to classrooms, while the heights of the leftmost and middle bars decompose this total per-student
gain into the components stemming from better (or worse) use of teachers’ context-specific experience and
context-specific talent, respectively.

We focus first on Panel A, which displays results from our “dynamic” simulations in which the actual
allocation observed in North Carolina is used as a baseline. These results indicate that better use of context-
specific talent in particular has the potential to reap non-trivial efficiency gains. Specifically, the total gains
relative to the actual allocation from better use of context-specific teacher productivity grow from .017 test
score standard deviations for school-year-fields in which only two teachers are eligible to be reallocated
to .033 for four-teacher fields and .044 standard deviations for school-year-fields featuring eleven or more
eligible teachers.38 Moreover, these total gains derive almost entirely from more efficient use of teachers’
task-specific talent, while gains from better use of teacher-specific experience are negligible and in some
cases slightly negative.

If instead the random allocation is used as a baseline (Panel B), two-teacher fields reap efficiency gains of
.025 standard deviations, while four-teacher fields produce gains of .044 standard deviations and fields with
eleven or more teachers produce gains .054 standard deviations. Generally speaking, about 20% of the gains
relative to the random allocation comes from effective use of context-specific experience rather than talent;
.05, .010 and .015 of the total per-student test score gain can be attributed to better exploiting teacher subject-
specific and level-specific experience for school-year-fields with two teachers, four teachers, and eleven
or more teachers eligible for reallocation, respectively. The combined results in Panels A and B suggest
that while effective use of teachers’ stocks of context-specific experience could be an important source of
efficiency gains in some contexts, North Carolina principals already seem to be effectively exploiting the
context-specific experience of their staffs, possibly even at the expense of subject-specific and level-specific
teacher talent.

Panels C and D display the corresponding results for the “static” simulations, in which teacher assignments
up until time t − 1 are held fixed when choosing simulated classroom allocations at t. They reveal that
nearly all of the long-run gains from optimal reallocation of teachers are reaped in the first period of reallo-
cation. This is not surprising given the small fraction of the total efficiency gains in the dynamic simulations
attributable to better use of task-specific experience.

Note that if principals have very precise information about task-specific talent at the time of hire, then
there is no tension between maximizing the contributions of task-specific experience versus task-specific
talent: teachers can be assigned when hired to the courses in which they have the strongest comparative
advantages, and then can continue to teach these courses, building up the relevant task-specific experience.
However, for principals that have minimal information about teachers’ context-specific talent at the time of
hire, our estimates suggest that the degree to which teachers should be rotated among courses is likely to
depend strongly on a school’s teacher turnover rate. For schools with very low turnover rates, the variance

38This pattern is mirrored in the fraction of classrooms whose assigned teacher in the simulation differs from the one observed in
the data. 30.3, 44.9, and 51.9 percent of classrooms in the math field with two, four, and 11+ teachers have their original teachers
reassigned in the dynamic simulation. The corresponding percentages are 25.3, 40.4, and 45.6 for the static simulation. Appendix
Table H.21 presents the full set of reallocation rates from our simulations.
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in context-specific talent is sufficiently large that principals might find it worthwhile to rotate teachers for
several years in order to learn the set of course assignments that best utilize task-specific talent. However,
for schools with high turnover rates, the signal about task-specific talent received from a small number of
classrooms is sufficiently coarse that the knowledge necessary to benefit from superior allocation of task-
specific talent cannot be gathered in time for it to be valuable; by contrast, the productivity gains from the
first two years of subject-specific experience are reasonably large, and can be reaped even among teachers
who are only likely to stay for three or four years. This logic suggests that high turnover schools are likely
to be better off minimizing the degree to which teachers are rotated among courses.

In the absence of an analytical solution to the full dynamic problem, a more precise characterization of
the optimal amount of teacher rotation requires simulating test score contributions from alternative rotation
strategies for a variety of parameter combinations governing, for example, turnover rates, principal informa-
tion, teaching loads, and the number of distinct subjects, levels, and courses. We leave such an extensive
simulation exercise for future work. However, we wish to emphasize that each individual school likely faces
fixed and known values of many of these remaining parameters, so that the estimated task-specific expe-
rience profiles and underlying variances in subject-specific and level-specific talent presented in this paper
provide the information necessary for school administrators to perform their own customized simulations to
guide their classroom assignment decisions.

In Appendix Table H.22, we also display results from simulations in which all observed teachers who taught
the tested courses are eligible for reallocation. We impute context-specific experience stocks for those teach-
ers whose full teaching history is not observed based on the distribution of context-specific experience among
the most experienced teachers whose full histories are observed. Adding in the full roster of teachers reduces
dynamic gains relative to the actual allocation to .005 standard deviations for two-teacher fields, .014 stan-
dard deviations for four-teacher fields, and .025 for fields with eleven or more teachers (though note that
29% of the school-year fields in the full sample feature 11+ teachers, relative to 2% for the complete history
subsample). These smaller simulated gains indicate that principals might make better use of their expe-
rienced teachers’ context-specific talent, suggesting that they may learn teachers’ comparative advantages
slowly. When the random baseline is used instead, the corresponding gains are .011 for two-teacher fields,
.027 standard deviations for four-teacher fields and .042 for fields with eleven or more teachers.

On one hand, these magnitudes are clearly not large enough to dramatically shift the distribution of student
achievement; a .025 standard deviation test score gain is only enough to move an average student from the
50th to the 51st percentile of the state test score distribution. However, a number of other considerations
suggest a more optimistic interpretation of these efficiency gains.

First, note that these gains are virtually costless: no change in existing staff is required, and all teaching loads
are held fixed. It is rare to find the potential for across-the-board gains from policy changes that require so
little upheaval.

Second, given that the vast majority of the test-score variation is within classes, most other school-level
policies are likely to have a similarly-sized impact. For example, consider a policy that aims to identify
and replace the worst 10 percent of teachers with new hires. Using the estimates from Table 4, the expected
contribution of a randomly chosen teacher below the 10th percentile of general skill is -.22 test score standard
deviations, so that if such teachers teach only 10 percent of students, average test scores would increase by
0.022 standard deviations even under the optimistic assumption that replacement teachers were of average
quality.

Third, note that the vast majority of students are taught in high schools that feature seven or more teachers

30



in a field. Furthermore, classrooms were only reallocated in tested courses, so that, for example, teachers
who only taught calculus were not available for reallocation. Thus, the largest efficiency gains from our
simulations are probably the relevant gains in most situations, and in fact may still be underestimates for
most large schools.

Finally, these average gains conceal considerable heterogeneity in potential gains among schools. Consider
the specification that incorporates task-specific talent, reallocates only teachers with fully observed teaching
histories, and uses the observed allocation as the baseline. Focusing on schools with fields that generally
feature seven or more teachers and averaging across fields and years, the mean dynamic gain from optimal
reallocation among the 10 percent of schools featuring the smallest gains is only .004 standard deviations,
while schools among the top decile of the distribution of dynamic gains are predicted to enjoy test score
increases of .047 standard deviations on average. Thus, there seem to be a non-trivial subset of schools that
might be able to reap substantial gains simply from changing their teacher assignment mechanism.

On the other hand, several additional caveats and limitations of our simulations should be noted. First, re-
call that the projected gains relative to the actual allocation rely on the questionable assumption that the
principal does not have alternative sources of information beyond what is reflected in the full sample of
test scores. Second, we are unable to evaluate the extent to which any achievement gains from an alterna-
tive teacher assignment mechanism would also contribute to or detract from other important non-test score
student or school outcomes. Furthermore, because we do not allow our simulated classroom assignments
to affect teacher turnover, the simulated efficiency gains could overstate even the true achievement gains
if, for example, good teachers have a taste for variety, and quit more frequently if they are forced to teach
the same subject-level combination repeatedly.39 Similarly, our data do not permit us to estimate gains (or
losses) to high levels of general and context-specific experience. It may be that some of the excess rotation
of teachers away from their comparative advantages is necessary to prevent burnout or human capital depre-
ciation among the most senior teachers. This might also lead us to overstate potential gains from optimal
reallocation.40

8. Conclusions

This paper introduces and implements a method for decomposing worker productivity into task-specific and
general components of both experience and persistent talent. For high school teachers, about a third of the
productivity gains from experience are specific to the subjects to which a teacher has been assigned, while
about 74% of the variance in experience-invariant talent is portable across all courses. Nonetheless, our
simulations provide suggestive evidence that existing allocations of teachers to classrooms in public high
schools might be failing to exploit the variation in subject-specific and level-specific human capital that does
exist, suggesting the potential for efficiency gains of around .02-.03 student test score standard deviations on
average, with larger gains for some schools.

Note, however, that the results of the decomposition we estimate may not generalize to other occupations or

39However, Ost and Schiman (2015) suggests that the opposite is true in the elementary school context: teachers who rotate more
frequently among grades exit schools at a higher rate.

40Note, though, that this scenario could also cause us to understate the gains to reallocation, since we have essentially assumed away
any experience-based gains from reallocation among very experienced teachers by assigning the same experience productivity values
to all levels of experience beyond 10 years.
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even to alternative definitions of teachers’ tasks. In particular, the tasks we consider are still fairly similar in
scope. For example, we might observe greater variation in task-specific talent among teachers if we included
serving as a high school athletic coach as one of a teacher’s tasks. Similarly, developing students’ cognitive
and non-cognitive skills might represent two different tasks facing a teacher even within a given classroom
context.41

The methodology, however, does generalize: a similar decomposition may be estimated in any context in
which worker productivity may be measured at the task level and where the blend of tasks changes over
time. Indeed, there are many other organizational contexts in which we might also expect productivity to
reflect a mix of general and task-specific talent as well as general and task-specific experience, and in which
the nature of this production function may not be easily observable by employers or managers. A company
employing a sales team to sell different products to different types of clientele, for example, might have both
the wherewithal and the need to implement our decomposition.
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11. Tables and Figures

Table 1: Effect of Sample Restrictions on Sample Composition

Full Sample Regression Sample
(1) (2)

School-Year Averages
Enrollment 1,346.0 1,362.3

(654.5) (646.4)
# Teachers 23.1 23.3

(8.9) (8.7)
Teacher-Year Averages

General Experience 4.96 3.28
(3.65) (3.01)

Subject Experience 3.78 2.37
(3.30) (2.48)

Level Experience 4.70 3.11
(3.55) (2.91)

Subject-Level Experience 3.42 2.17
(3.11) (2.35)

Classes Taught Per Year 3.44 3.34
(1.52) (1.50)

Unique Subj./Lvl. Taught Per Year 1.67 1.63
(0.70) (0.67)

Student-Year Averages
Standardized Subject Test 0.041 -0.024

(0.662) (0.636)
Fraction of White Students 0.667 0.641

(0.270) (0.276)
Fraction of Black Students 0.259 0.278

(0.252) (0.258)
Fraction of Other Students 0.074 0.081

(0.100) (0.104)
8th Grade Standardized Reading Scores 0.095 -0.024

(0.975) (0.614)
8th Grade Standardized Math Scores 0.075 -0.030

(0.976) (0.651)

N (Aggregated Classroom Observations) 207,951 61,993

Notes: Student-test-weighted means and standard deviations (in parentheses) of classroom observations are
reported for each sample. Full Sample includes all classroom observations with valid values for the variables
in this table (i.e. current and 8th grade test scores, subject and level designation, race variables, teacher
experience, class size, and grade). Regression Sample includes only classroom observations that satisfy the
more extensive set of sample restrictions described in Section 4. The most important restriction is that the full
history of course assignments must be observed for the teacher of the classroom. The School-Year Averages
for the Regression Sample in Column (2) present the school-average student enrollment and teaching staff
size from the Full Sample, but for the classrooms represented in the Regression Sample (now weighted by
the number of student-tests in the regression sample). If we only count the subset of students and teachers
that actually contribute an observation to our Regression Sample, student-test-weighted school means of
enrollment and number of teachers are 504.9 and 8.4, respectively.
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Table 2: Teacher Mobility Across Subjects: Regression Sample

Math Science Social Studies English

Algebra 1 Algebra 2 Geometry Biology Chemistry Physics Physical
Sciences Civics E/L/P U.S. History English

Math

Algebra 1 1,860 749 742 26 18 16 37 11 12 13 33
1.000 0.403 0.399 0.014 0.010 0.009 0.020 0.006 0.006 0.007 0.018

Algebra 2 749 1,078 533 4 9 14 14 1 3 3 0
0.695 1.000 0.494 0.004 0.008 0.013 0.013 0.001 0.003 0.003 0.000

Geometry 742 533 1,142 8 3 10 6 1 3 3 4
0.650 0.467 1.000 0.007 0.003 0.009 0.005 0.001 0.003 0.003 0.004

Science

Biology 26 4 8 1,472 185 69 525 7 24 20 26
0.018 0.003 0.005 1.000 0.126 0.047 0.357 0.005 0.016 0.014 0.018

Chemistry 18 9 3 185 554 112 307 0 0 1 1
0.032 0.016 0.005 0.334 1.000 0.202 0.554 0.000 0.000 0.002 0.002

Physics 16 14 10 69 112 243 165 0 0 2 0
0.066 0.058 0.041 0.284 0.461 1.000 0.679 0.000 0.000 0.008 0.000

Physcial
Sciences

37 14 6 525 307 165 1,151 6 24 15 21
0.032 0.012 0.005 0.456 0.267 0.143 1.000 0.005 0.021 0.013 0.018

Soc. Stu.

Civics 11 1 1 7 0 0 6 904 279 412 12
0.012 0.001 0.001 0.008 0.000 0.000 0.007 1.000 0.309 0.456 0.013

E/L/P 12 3 3 24 0 0 24 279 952 414 52
0.013 0.003 0.003 0.025 0.000 0.000 0.025 0.293 1.000 0.435 0.055

U.S. History 13 3 3 20 1 2 15 412 414 1,235 36
0.011 0.002 0.002 0.016 0.001 0.002 0.012 0.334 0.335 1.000 0.029

English English 33 0 4 26 1 0 21 12 52 36 2,162
0.015 0.000 0.002 0.012 0.000 0.000 0.010 0.006 0.024 0.017 1.000

Notes: E/L/P denotes Econ/Law/Politics. The top entry in the (i,j)-th cell is the number of teachers who are observed teaching in both the i-th and the j-th subject (not necessarily in the same year). The bottom entry of the (i,j)-th cell is the
fraction of teachers ever observed teaching the i-th subject who are also observed teaching the j-th subject at some point during the sample.
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Table 3: Teacher Mobility Across Math Subject-Level Combinations: Regression Sample

Algebra 1 Algebra 2 Geometry

Low High Low High Low High

Algebra 1
Low Level

1,855 27 676 331 678 315
1.000 0.015 0.364 0.178 0.365 0.170

High Level
27 32 18 10 14 7

0.844 1.000 0.563 0.313 0.438 0.219

Algebra 2
Low Level

676 18 966 341 451 194
0.700 0.019 1.000 0.353 0.467 0.201

High Level
331 10 341 453 202 118

0.731 0.022 0.753 1.000 0.446 0.260

Geometry
Low Level

678 14 451 202 1,053 368
0.644 0.013 0.428 0.192 1.000 0.349

High Level
315 7 194 118 368 457

0.689 0.015 0.425 0.258 0.805 1.000

Notes: The top entry in the (i,j)-th cell is the number of teachers who are observed teaching in both the i-th and the
j-th subject- level (not necessarily in the same year). The bottom entry of the (i,j)-th cell is the fraction of teachers ever
observed teaching the i-th subject-level who are also observed teaching the j-th subject-level at some point during the
sample.
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Table 4: True Variances in Fixed Effects (Using Year-Based Measure of Teacher Experience with the
Baseline Specification )

Lower Bound Intermediate Upper Bound

Var. SD Var. SD Var. SD

(1) (2) (3) (4) (5) (6)

Sch-Subj-Lvl-Tch Combos 0.0236 0.154 0.0467 0.216 0.0605 0.246

General Talent 0.0175 0.132 0.0368 0.192 0.0506 0.225
Subj-Lvl Combos 0.0061 0.078 0.0099 0.099 0.0099 0.099

Sch-Lvl-Tch Combos 0.0197 0.140 0.0407 0.202 0.0545 0.234
Subject Talent 0.0039 0.063 0.0060 0.077 0.0060 0.077

Sch-Subj-Tch Combos 0.0215 0.147 0.0433 0.208 0.0571 0.239
Level Talent 0.0021 0.045 0.0034 0.058 0.0034 0.058

Subject-Level Talent 0.0001 0.011 0.0005 0.023 0.0005 0.023

Notes: Standard errors are clustered at the teacher level. Lower Bound estimates allocate all of the between
school-subject-level variance in residual test scores to school and student inputs (Assumption 2A). This
is implemented by including school-subject-level fixed effects and normalizing the mean among school-
teacher-subject-level fixed effects to be 0 in each school-subject-level. Intermediate estimates allocate the
between school variance in residual test scores to school and student inputs, and the within-school/between
subject-level variance to teachers (Assumption 2B). This is implemented by replacing the school-subject-
level fixed effects with school fixed effects only. Upper Bound estimates allocate all of the between school-
subject-level variance in residual test scores to teachers (Assumption 2C). This is implemented by removing
all school-level controls. See Section 3.2 for details.
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Table 5: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Baseline Specification)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.066*** 0.014 -0.006 0.000 0.074***
[0.017] [0.015] [0.015] [0.013] [0.006]

2 yrs 0.085*** 0.033* -0.006 -0.013 0.099***
[0.025] [0.023] [0.022] [0.020] [0.010]

3 yrs 0.090*** 0.049** -0.001 -0.027 0.110***
[0.030] [0.029] [0.028] [0.026] [0.014]

4 yrs 0.097*** 0.053* -0.004 -0.033 0.113***
[0.035] [0.033] [0.033] [0.031] [0.018]

5-6 yrs 0.097*** 0.056* 0.008 -0.044 0.116***
[0.040] [0.039] [0.037] [0.036] [0.023]

7-10 yrs 0.113*** 0.046 -0.006 -0.054 0.098***
[0.046] [0.046] [0.044] [0.043] [0.031]

11-14 yrs 0.093** 0.067 0.024 -0.099** 0.085**
[0.054] [0.059] [0.055] [0.060] [0.046]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the
subject. The regression includes school-teacher-subject-level fixed effects, calendar year fixed effects, and a vector of classroom observable
characteristics with subject-level-specific coefficients. The regression also includes controls for teacher workload (number of current class
periods and number of distinct subject-levels taught) and depreciation of experience capital (indicators for whether the teacher taught a class
in the current subject, level, subject-level, or taught at all last year, as well as analogous indicators for teaching in each context two years ago).
Finally, the regression also includes controls for decreasing effort/productivity shocks in the year prior to an assignment change (indicators for
whether the current year is the final time the teacher taught the subject, level, subject-level associated with the observation, as well as whether
the current year is the teacher’s final year of teaching high school in North Carolina. Experience is measured as the total number of prior
years in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col.
4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined predicted contribution of all four
dimensions of experience capital for the case in which the teacher has taught the course associated with the classroom observation in every year
of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10%
levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table 6: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.065*** 0.014* -0.003 0.013* 0.089***
[0.011] [0.009] [0.010] [0.008] [0.004]

2 yrs 0.085*** 0.023** -0.004 0.014* 0.118***
[0.014] [0.012] [0.012] [0.010] [0.006]

3 yrs 0.093*** 0.036*** -0.007 0.008 0.131***
[0.016] [0.014] [0.014] [0.012] [0.007]

4 yrs 0.101*** 0.041*** -0.011 0.007 0.138***
[0.018] [0.015] [0.016] [0.014] [0.008]

5-6 yrs 0.103*** 0.041*** -0.002 0.009 0.152***
[0.019] [0.017] [0.017] [0.015] [0.009]

7-10 yrs 0.114*** 0.025 -0.008 0.006 0.138***
[0.022] [0.021] [0.020] [0.019] [0.012]

11-14 yrs 0.107*** 0.027 0.027 -0.019 0.141***
[0.028] [0.038] [0.028] [0.041] [0.026]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the
subject. Restricted Specification refers to the specification in equation (3) in which the school-teacher-subject-level fixed effects µ̂srjl from
Equation (2) are restricted to be common across subject-levels (i.e. replaced by school-teacher effects). Refer to notes below Table 5 for a full
description of the control variables. Experience is measured as the total number of prior years in which the classroom’s teacher taught at least
one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col. 4) associated with the current classroom observation.
Column 5, entitled Combined, captures the combined predicted contribution of all four dimensions of experience capital for the case in which
the teacher has taught the course associated with the classroom observation in every year of a career length defined by the row label. Standard
errors (in brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively.
See Section 2 for methodological details.
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Table 7: Effect of Years of General and Subject-Specific Experience on Student Test Scores (Restricted
Specification with Level and Subject-Level Experience Additionally Constrained to 0)

Restricted Specification w/ Lvl. &
Subj.-Lvl. Exp. Gains Constrained to 0

Standard
Specification

General Subject Combined “General”

(1) (2) (3) (4)

1 yr 0.063*** 0.025*** 0.088*** 0.084***
[0.007] [0.006] [0.004] [0.004]

2 yrs 0.081*** 0.036*** 0.118*** 0.113***
[0.009] [0.008] [0.005] [0.005]

3 yrs 0.087*** 0.045*** 0.133*** 0.127***
[0.010] [0.009] [0.007] [0.006]

4 yrs 0.092*** 0.048*** 0.140*** 0.136***
[0.011] [0.010] [0.007] [0.007]

5-6 yrs 0.100*** 0.050*** 0.151*** 0.148***
[0.012] [0.011] [0.009] [0.008]

7-10 yrs 0.107*** 0.032** 0.139*** 0.148***
[0.014] [0.014] [0.011] [0.010]

11-14 yrs 0.124*** 0.020 0.143*** 0.157***
[0.020] [0.025] [0.023] [0.016]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average
of student standardized test scores in the subject. Restricted Specification refers to the specification
in equation (3). Columns (1-3) report results from imposing on the Restricted Specification the addi-
tional restrictions that gains from level-specific and subject-level-specific experience are constrained
to be 0: dl(exp) = 0 and djl(exp) = 0 ∀ exp. Column 4 reports results from imposing the further
restriction that dj(exp) = 0 ∀ exp, for ease of comparison with with standard experience profiles
estimated in the literature. Refer to notes below Table 5 for a full description of the control variables.
Experience is measured as the total number of prior years in which the classroom’s teacher taught
at least one class at all (Col. 1 & 4) or in the subject (Col. 2) associated with the current classroom
observation. Column 3, entitled Combined, captures the combined predicted contribution of both
dimensions of experience capital for the case in which the teacher has taught the course associated
with the classroom observation in every year of a career length defined by the row label. Standard
errors (in brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10% levels are
represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table 8: Counterfactual Simulations: Achievement Gains from Optimal Allocation Relative to Actual
and Random Allocations (Year-Based Measure of Experience, Excluding Teachers Without Full

Histories)

Eligible
Teach.

Static Dynamic

Actual Random Actual Random
(1) (2) (3) (4)

2
Total .017 .025 .017 .025

Talent .018 .021 .018 .020
Exper. -.001 .004 -.001 .005

3
Total .026 .035 .027 .039

Talent .027 .030 .028 .031
Exper. -.001 .005 -.000 .008

4
Total .031 .041 .033 .044

Talent .032 .035 .033 .035
Exper. -.001 .006 .001 .010

5-6
Total .038 .048 .040 .053

Talent .039 .041 .039 .042
Exper. -.001 .007 .001 .011

7-10
Total .039 .050 .041 .052

Talent .039 .042 .039 .041
Exper. .000 .008 .002 .012

11+
Total .042 .053 .044 .054

Talent .039 .044 .039 .039
Exper. .003 .009 .005 .015

Notes: Each cell presents simulated achievement gains from the optimal allocation of teachers to classrooms relative to either the observed allocation (in
columns labeled “Actual”) or a randomly selected feasible allocation (columns labeled “Random”) among all school-year-field combinations with the number
of eligible teachers specified by the row label. Classroom-level gains are pooled across the three fields (math, science, and social studies). The top entry in each
cell displays the total achievement gains, while the middle and bottom entries display the components of the gains attributable to task-specific experience and
task-specific talent, respectively. Static refers to simulations in which teacher experience stocks are held fixed as they were in the actual sample through year
t− 1 prior to simulated reassignment in year t. Dynamic refers to simulations in which teacher experience stocks used as the basis for simulated reassignment
in year t are based on simulated assignments from 1995 through year t − 1. See Section 7.1 and Appendix Section Appendix G for further detail about
simulation methodology. A teacher is eligible for reassignment if their full teaching history is observed in the data. Estimates of gains from task-specific
experience and of teachers’ task-specific talent are derived from the Full Specification (equation (13)). The principal incorporates information from empirical
Bayes posterior beliefs about each teacher’s task-specific talent based on our school-teacher-subject-level fixed effect estimates for any school-teacher-subject-
level combination that is observed in our sample. We assign task-specific productivities of 0 for any school-teacher-subject-level combination that we do not
observe.
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Figure 1: Fraction of Teachers Starting New or Discontinuing Existing Courses by Year of
General Experience

(a) First Time Teaching Course
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(b) Last Time Teaching Course
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Notes: Panel A plots the fraction of teachers with the given number of years of general experience that teach a new
subject, level, and subject-level combination, respectively, in that year that they have not previously taught. Panel
B plots the fraction of teachers with the given number of years of general experience that discontinue teaching at
least one subject, level, and subject-level combination, respectively, after the chosen year. Counts for the number
of school-teacher-year observations associated with each general experience level are: 0 (5,294), 1 (4,249), 2
(3,545), 3 (2,901), 4 (2,322), 5 (1,792), 6 (1,385), 7 (1,106).
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Figure 2: The Distribution of Context-Specific Experience among Second- and Third-Year
Teachers

(a) Second-Year Teachers
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(b) Third-Year Teachers
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Notes: The figure displays the classroom-weighted distribution of four-dimensional experience stocks among
second- and third-year teachers in our final sample. The sample includes 10,270 and 8,665 total classes taught by
a second-year and third-year teacher respectively. Panel A displays the fractions of classrooms taught by second-
year teachers in which the teacher has 0 versus 1 prior years of the relevant subject-, level-, and subject-level-
specific experience, respectively. Panel B displays the fractions of classrooms taught by third-year teachers in
which the teacher has 0, 1, and 2 prior years of the relevant subject-, level-, and subject-level-specific experience,
respectively. Note that multiple subject-level combinations can be taught in a year. The full joint distribution of
four dimensional experience profiles for second- and third-year teachers can be found in Appendix table H.1.
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Figure 3: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific Experience on Student Test Scores (Various
Specifications)

(a) Additively Separable (Baseline)
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(b) Additively Separable (Restricted)
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(c) Average Accumulated Marginal Effects (Restricted)
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Notes: Figures 3a, 3b, and 3c plot the entries from Tables 5, 6, and H.19, respectively. Refer to the notes from
these tables for further detail concerning these specifications.
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Figure 4: Counterfactual Simulations: Achievement Gains from Optimal Allocation Relative to Actual and Random Allocations (Year-Based
Measure of Experience, Excluding Teachers Without Full Histories)

(a) Dynamic Simulations with Actual Baseline
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(b) Dynamic Simulations with Random Baseline
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(c) Static Simulations with Actual Baseline
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(d) Static Simulations with Random Baseline
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Notes: Each cell presents simulated achievement gains from the optimal allocation of teachers to classrooms relative to either the observed allocation (in sub-figures labeled “Actual”) or a randomly
selected feasible allocation (sub-figures labeled “Random”) among all school-year-field combinations with the number of eligible teachers specified on the x-axis. The gains reported are averages of
classroom-level gains across all classrooms in math, science, and social studies from the final 5 years of simulated allocations (2005-2009). The white cells display the total achievement gains, while the
grey and black cells display the components of the gains attributable to more efficient use of task-specific talent and task-specific experience, respectively. Subfigures labeled Static refer to simulations in
which teacher experience stocks are held fixed as they were in the actual sample through year t − 1 prior to simulated reassignment in year t. Subfigures labeled Dynamic refer to simulations in which
simulated classroom assignments from 1995 through year t− 1 are used construct the teacher experience stocks that determine the simulated reassignment in year t . See Section 7.1 and Appendix Section
Appendix G for further detail about simulation methodology. A teacher is eligible for reassignment if their full teaching history is observed in the data. Estimates of gains from task-specific experience
and of teachers’ task-specific talent are derived from the Full Specification (equation (13)). The principal incorporates information from empirical Bayes posterior beliefs about each teacher’s task-specific
talent based on our school-teacher-subject-level fixed effect estimates for any school-teacher-subject-level combination that is observed in our sample. We assign task-specific productivities of 0 for any
school-teacher-subject-level combination that we do not observe.

46



Technical Appendices

Appendix A. Identification of Experience Profiles

To see how identification of the returns to both general and three dimensions of context-specific experience
might be secured, consider a simple case in which there are only two subjects, chemistry (C) and physics
(P), and only two difficulty levels, basic (B) and honors (H). Suppose that four different teachers (not nec-
essarily at the same school) each teach different subject-level combinations in their first years: Teacher 1
teaches basic physics (BP) in her first year, while teacher 2 teaches honors physics (HP), teacher 3 teaches
basic chemistry (BC) and teacher 4 teaches honors chemistry (HC). Suppose then that all four teach honors
chemistry (HC) every year thereafter. To keep the example simple, suppose further that the gains from each
of the components of experience are fully persistent (no depreciation), and that each teacher only teaches
classes in one subject-level per year. Panel A of Table H.23 displays the course assignment paths taken by
each teacher, along with the observed stocks of general, subject-specific, level-specific, and subject-level
specific experience that teachers will possess at the beginning of each of their school years.

Consider a difference-in-difference estimator that compares the change in teacher 1’s average student test
scores between years 2 and 3 with the corresponding change for teacher 2. Since each teacher teaches
the same subject-level (HC) in both year 2 and year 3, focusing on changes over time differences out the
permanent general and context-specific skills of the two teachers (as well as any differences in time-invariant
school quality). Furthermore, comparing across teachers removes the common gains from the second year
of (previous) general experience and the first year of subject-specific and subject-level specific experience.
Because teacher 2 taught at the honors level in her first year, the extent to which teacher 1’s performance
converges to or diverges from teacher 2’s performance between years 2 and 3 will reflect the relative value
of the 2nd year of level-specific experience compared to the 1st year: (dl(2) − dl(1)) − (dl(1) − 0).42 If
instead we compare the change in student performance between years 3 and 4 for the same two teachers
(1 and 2), we recover the relative value of the 3rd year of level-specific experience compared to the 2nd
year: (dl(3) − dl(2)) − (dl(2) − dl(1)). Indeed, conditional on knowing the value of the first year of
level-specific experience, dl(1), we can trace out the entire path of returns to level-specific experience by
comparing the divergence/convergence in the performance of teachers 1 and 2 as they progress through their
careers. If we replace teacher 2 with teacher 3 in the comparisons above, we instead trace out the path of
returns to subject-specific experience. Now that the returns to subject-specific and level-specific experience
have been identified, replacing teacher 3 with teacher 4 identifies the path of returns to subject-level-specific
experience. Finally, the growth path of teacher 4, who never switched subjects or levels, identifies the path
of returns to general experience.

To see how the value of the first year of experience might be identified for each component of experience,
consider a second scenario in which teacher 1 teaches the following sequence of courses in her first four
years: BC → HC → BP → HC. Teacher 2 teaches the same set of courses, but in a different sequence:
BP → HC → BC → HC. Panel B of Table H.23 illustrates the stocks of general and context-specific
experience each teacher possesses at the beginning of each year of teaching. Since both teachers teach honors
chemistry with the same accumulated experience profile in year 4, comparing the performance of the two

42Note that since returns to experience can only be identified relative to other levels of experience, we must normalize one value for
each function. We do so by setting dk(0) = 0 for k ∈ {gen, j, l, lk}.
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teachers identifies the difference in permanent teaching skill between the two teachers (part of which may
be honors-chemistry specific): µ2CH −µ1CH . Once relative permanent skill has been identified, comparing
the same two teachers’ average student residuals in year 2 (when both were teaching honors chemistry)
identifies the return to the 1st year of subject-specific experience, dj(1). Replacing basic chemistry with
honors physics in this example would instead identify the return to the 1st year of level-specific experience
(dl(1)), while replacing it with honors chemistry would identify the return to the 1st year of subject-level
specific experience (djl(1)). The return to the first year of general experience (dt(1)) can then be identified
via the growth in student average residuals from the 1st to the 2nd year from teachers who teach the same
subject-level in each of their first two years.

While the sample histories used in these scenarios are stylized, note that there are many alternative moments
that also provide identifying variation. Indeed, given the frequency with which subject and level switching
occurs, we frequently observe multiple teachers who have taught the same set of subjects and levels over
their careers at the school, but have taught them in different orders, or in different proportions. Since each
different sequence also implies a different pattern of potential depreciation for a given model of depreciation,
such comparisons allow us to simultaneously estimate the rates at which different experience components
depreciate.43

Furthermore, each subject or level switch, regardless of the point in the career, provides a further source of
identifying variation for the various context-specific experience profiles. Consequently, not only are these
experience profiles estimable with reasonable precision (at least for the first several years of experience), but
there are myriad overidentifying tests that can be implemented if one worries that particular sequences may
be likely to occur in conjunction with particular changes in unobserved inputs (in violation of Assumption
1). Indeed, in Section 6 we show that the function linking four-dimensional stocks of general and context-
specific teacher experience to student performance is non-parametrically identified, and we present estimates
from a more flexible (though noisily estimated) specification.

Appendix B. Identification of Permanent Teaching Skill

To illustrate how µ̂srjl can be identified given any of Assumptions 2A-2C paired with 3A-3C, consider a
teacher r′ who teaches subject j′ and level l′ in school s′ during years t1 to t2. Let Zct = Yct − Xctβ
represent the average test score residual in classroom c at time t, after removing the component predictable
based on classroom inputs. Then the average residual performance of students taught by teacher r′ in school-
subject-level combination (s′, j′, l′) is given by:

E[Zct|(s, r, j, l) = (s′, r′, j′, l′)]

= δs′j′l′ + µs′r′j′l′ +

t2∑
t′=t1

wt′ [d
gen(expgenr′t′ ) + dj(expjr′t′) + dl(explr′t′) + djl(expjlr′t′)] (B.1)

where the weight wt′ captures the fraction of all the students teacher r′ taught in combination (s′, j′, l′)
that were taught in year t′. Since the experience profiles dgen(∗), dj(∗), dl(∗), and djl(∗) were identified

43In practice, after some experimentation, we include in our estimated specifications four dummy variables indicating whether the
teacher taught the current subject last year, the current level last year, the current subject-level last year, and whether the teacher taught
any class last year.
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using comparisons of changes in performance across years in Section Appendix A, the average level of
performance of teacher r′ while teaching in school-subject level combination (s′, j′, l′) identifies δs′j′l′ +
µs′r′j′l′ . Under Assumption 2C, δsjl = 0 ∀ (s, j, l), so this moment identifies µs′r′j′l′ directly. Under
Assumption 2A, we can use the fact that the (student weighted) average teacher quality in each school-
subject-level is assumed to be zero. Specifically, the average residual performance of students in a particular
school-subject-level is given by:

E[Zct|(s, j, l) = (s′, j′, l′)]

= δs′j′l′ + E[dgen(expgen) + dj(expj) + dl(expl) + djl(expjl)|(s, j, l) = (s′, j′, l′)], (B.2)

which identifies δs′j′l′ , leaving the teacher-specific average to identify µs′r′j′l′ . To identify δs′ under As-
sumption 2B, we simply average at the school level instead of the school-subject-level level. Thus, µsrjl can
be identified for each combination of school-teacher-subject-level that we actually observe in the data.

Appendix C. Recovering the Latent Variance Decomposition

This section shows how to distill the true decomposition of time-invariant skill into general, subject-specific,
level-specific, and subject-level specific components from the estimated cell fixed effects {µ̂srjl}. We first
assume that each estimated school-teacher-subject-level fixed effect µ̂srjl can be written as the sum of the
teacher’s true context-specific skill and an uncorrelated error component: µ̂srjl = µsrjl + ξsrjl. Let C
and C represent the set of classrooms and the total number of classrooms in the sample, respectively. In
addition, let µsrjl(c) represent the context-specific skill of the teacher that taught classroom c. Then the
(student-weighted) sample variance in estimated context-specific skill can be decomposed as:

1

C

∑
c∈C

wc(µ̂srjl(c))
2 =

1

C

∑
c∈C

wc(µsrjl(c))
2 +

1

C

∑
c∈C

wc(ξsrjl(c))
2 (C.1)

where each wc is a weight capturing the fraction of all student test scores in the sample that were associated
with classroom c.

One would like to estimate the student-weighted variance in true teacher quality as:

ˆV ar(µsrjl) =
1

C

∑
c∈C

wc(µ̂srjl(c))
2 − 1

C

∑
c∈C

wc(ξsrjl(c))
2. (C.2)

The sampling error components {ξsrjl} are not observed, but

1

C

∑
c∈C

wc(ξsrjl(c))
2 ≈ 1

C

∑
c∈C

wcE[(ξsrjl(c))
2] =

1

C

∑
c∈C

wcse(ξsrjl(c))
2, (C.3)

so we estimate the error variance component using the standard error estimates for each school-teacher-
subject-level fixed effect:

ˆV ar(µsrjl) =
1

C

∑
c∈C

wc(µ̂srjl(c))
2 − 1

C

∑
c∈C

wcse(ξsrjl(c))
2. (C.4)
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By using the delta method to estimate standard errors for ˆ̃µsrjl, denoted se(ξ̃srjl), we can estimate ˆV ar(µ̃srjl)

analogously. Then, ˆV ar(µsr) can be estimated via:

ˆV ar(µsr) = ˆV ar(µsrjl)− ˆV ar(µ̃srjl) (C.5)

To prevent teachers who only taught a single subject-level combination from biasing our estimate of ˆV ar(µsr)
downward, when calculating ˆV ar(˜̂µsrjl) we restrict the sample of school-teacher-subject-level combina-
tions to those in which the relevant school-teacher combination was observed in at least two school-teacher-
subject-level combinations.

Further use of the delta method allows the same procedure to be applied in recovering the true variance of
subject-specific, level-specific, and subject-level-specific teacher talent. 44

Appendix D. Testing the Additive Separability of Context-Specific Ex-
perience Profiles

Appendix D.1. Smoothing the Nonparametric Experience Contribution Function

To address the volatility of our experience cell fixed effect estimates, we assume that the true structural func-
tion d(∗, ∗, ∗, ∗) is differentiable everywhere, and smooth our estimates using a kernel function featuring the
normal PDF with zero mean and standard deviation 0.5 (denoted φ despite the non-unity standard deviation):

d̃(exp) =

∑
exp′∈EX wexp′φ(|exp′ − exp|)d̂(exp′)∑

exp′∈EX wexp′φ(|exp′ − exp|)
, (D.1)

where d̂(exp′) is the estimate on the given experience profile from equation (13). The argument to the
normal density |exp′−exp| is the L1 norm or taxicab distance between the two experience profiles: |exp′−
exp| = |expgen′ − expgen| + |expj′ − expj | + |expl′ − expl| + |expjl′ − expjl|. The weight wexp′
represents the fraction of observations in the sample in which the experience profile exp′ is observed. Thus,
the impact of d̂(1, 1, 1, 1) on d̃(1, 1, 1, 0) will be greater than that of d̂(1, 1, 0, 0), despite equal L1 distances,
because d̂(1, 1, 1, 1) is much more precisely estimated than d̂(1, 1, 0, 0). The chosen bandwidth yields a
four-dimensional function d̃(∗, ∗, ∗, ∗) that is smooth enough to remove considerable sampling error, yet is
still flexible enough to reveal true complementarities where they may occur.

44Specifically, we calculate the true variances as follows. First, consider the alternative decomposition µ̃srjl = µ̃srj + (µ̃srjl −
µ̃srj). We estimate the true variance of the second component by first using the delta method to calculate standard errors for

̂(µ̃srjl − µ̃srj) and then applying the same method as above. We then obtain the variance in subject-specific teaching talent,
ˆV ar(µ̃srj), via ˆV ar(µ̃srj) = ˆV ar(˜̂µsrjl) − ˆV ar((µ̃srjl − µ̃srj)). The variance in level-specific teaching talent, ˆV ar(µ̃srl),

can be calculated using an identical approach. Finally, we estimate the variance in subject-level-specific teaching talent using:
ˆV ar(µ̃srjl − µ̃srj − µ̃srl) = ˆV ar(˜̂µsrjl)− ˆV ar(µ̃srj)− ˆV ar(µ̃srl).
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Appendix E. Marginal Effects Example

This subsection shows how we estimate profiles of returns to single dimensions of experience from the
smoothed nonparametric experience cell estimates. These profiles can then be compared with the corre-
sponding dimension-specific profiles from our additively-separable baseline specification. For each initial
value v of each component of experience, we approximate the average partial derivative of the experience
production function at v (E[∂d(exp

gen,expj ,expl,expsl)
∂expdim

|expdim = v] for dim ∈ {gen, j, l, sl}) by calculating
a weighted average marginal effect of an extra year of the chosen component of experience (holding the
other experience components fixed). The weighted average is taken over all combinations of the other three
experience dimensions that are observed among experience cells that feature the chosen initial value v in the
chosen dimension dim ∈ {gen, j, l, sl}.

For example, let Qj,v denote the set of experience cells at which a partial derivative for subject-specific
experience at initial value v may be calculated:

Qj,v = {(expt, expj , expl, expsl) :
expj = v, (expt, expj , expl, expsl) ∈ D, (expt, expj + 1, expl, expsl) ∈ D}.

Then the average marginal effect of subject-specific experience among cells featuring expj = v can be
calculated via:

∂d(expt, v, expl, expsl)

∂expj
=∑

k∈Qj,v

wk[d̂(exp
t
k, v + 1, explk, exp

sl
k )− d̂(exptk, v, explk, expslk )]

The weight wk is composed of the product of two sub-weights associated with the two experience cells
included in the partial derivative estimate. Each sub-weight represents the fraction of all teacher-school-
subject-level-year cells that feature the chosen experience combination. The wk are then re-scaled to sum to
1.

Appendix F. Methodology for Measuring Forecast Bias

This appendix describes the implementation of the test for forecast bias in our estimates of teacher talent
discussed in Section 6.3. The intuition for the test is that if the estimated fixed effects {µ̂srjl} properly
capture the true talent contributions {µsrjl}, then differences in fixed effects among teachers in a chosen
context estimated from one partition of our data should predict differences in mean residual achievement in
the same context in a second, left out partition. Our methodology closely mirrors that of Chetty et al. (2014).

The first step is to construct an appropriate sample of school-teacher-subject-level (hereafter SRJL) combi-
nations. Two conditions must be met for a given SRJL combination to enter the test sample. First, the teacher
must have taught at least three classes in the chosen school-subject-level (hereafter SJL). At least one class
must be available for the forecasted partition, and at least two classes must be available for the partition
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that forms the basis for the forecast (so that a valid standard error for the estimate µ̂srjl can be formed).45

Second, the SJL context associated with the chosen SRJL combination must be shared by at least one other
teacher. This ensures that persistent school inputs that are specific to (or differentially important in) the
chosen course-level can be differenced out. 2,285 out of an original 18,257 SRJL combinations satisfy these
two restrictions.

Let ZFct ≡ Yct −Xctβ̂jl − d̂gen(expgenrt ) − d̂j(expjrt) − d̂l(explrt) − d̂jl(exp
jl
rt) represent classroom level

residuals, where the values β̂jl, d̂gen, d̂j , d̂l, and d̂jl are used to form the residuals represent the estimated
coefficients on the student demographics, year dummies, and context-specific experience profiles from our
restricted specification (3).

We randomly select one classroom from each eligible SRJL to form the forecasted partition (Partition 2), and
assign the remaining classrooms to Partition 1. Let ZFct ≡ [Z1F

ct , Z
2F
ct ] capture the corresponding partition

of classroom-level residuals. We fit the following model to the class-level achievement data from Partition
1:

Z1
ct = µFsrjl + εFct (F.1)

Since the estimated fixed effects from this model, µ̂Fsrjl, still contain the contributions of school-subject-level
inputs δsjl, we choose a teacher r′ from each SJL environment and subtract this teacher’s context-specific
fixed effect from those of the other teachers in the SJL environment to form the differences µ̂Fsrjl − µ̂Fsr′jl.

Because these differences still contain sampling error, the coefficient in a regression of differences in
residuals Z2F

c(s,r,j,l)t − Z2F
c(s,r′,j,l)t from the forecasted partition on the estimated fixed effect differences

(µ̂Fsrjl − µ̂Fsr′jl) will be attenuated toward zero even when these fixed effect differences are unbiased esti-
mates of true differences in task-specific talent. Still following Chetty et al. (2014), we therefore shrink the
estimated fixed effect differences by a pair-specific reliability ratio to form empirical-Bayes difference esti-
mates: DiffEBsrjl = (

ˆV ar(µsrcl)
ˆV ar(µsrcl)+(σ̂F

srjl)
2
)(µ̂Fsrjl− µ̂Fsr′jl), where (σ̂Fsrjl)

2 is the squared standard error of the

estimated fixed effect difference (obtained from the component fixed effect estimates via the delta method),
and ˆV ar(µsrjl) is the estimated true variance in teacher talent contributions across classrooms (.154) from
our lower bound decomposition presented in Section 5.1.

We then regress the vector of differences in mean classroom residuals in the forecasted sample (Partition 2)
on the shrunken fixed effect differences DiffEBsrjl:

Z2F
c(s,r,j,l)t − Z

2F
c(s,r′,j,l)t = βFDiffEBsrjl + e2Fct (F.2)

If the estimates of both the true variance in teacher talent contributions across classrooms (the “signal”)
and the standard errors of the fixed effect differences (the “noise”) are correct, the coefficient βF should
converge in probability to 1, so that the talent estimates are “forecast unbiased” (Chetty et al. (2014)).

While this test captures the ability of our specification to consistently estimate the combined general and
context-specific talent of a given teacher teaching in a given context, the ability to choose teachers’ classroom

45If only one class is available for given SRJL combination for the partition within which production function is estimated, the
estimated value µ̂srjl will be chosen to perfectly fit the classroom mean test score residual, and there will be no regression error with
which to form heteroskedasticity-robust standard errors. While other approaches to estimating standard errors (estimating at the test
score level, imposing homoskedastic standard errors) would not require this second classroom in the forecasting partition, we want the
method for constructing standard errors in the model used for the forecast test to mimic as closely as possible the one employed for our
main estimates.
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assignments in a way that maximizes achievement contributions depends critically on the ability to isolate
and consistently estimate only the context-specific components of teacher fixed contributions to achievement.
Thus, we also construct two additional forecast tests that capture the degree to which our estimates of subject-
specific and level-specific talent can forecast out-of-sample subject-specific and level-specific comparative
advantages, respectively.

Unfortunately, unlike our tests of the consistency of our combined talent estimates, which could be per-
formed using differences among teachers who taught in the same SJL context, testing the consistency of
comparative advantage estimates requires evaluating the degree to which difference-in-differences between
teachers who taught the same two courses at the same school can be forecast. Thus, a given SRJL combina-
tion only enters the subject (level) forecast sample if (1) the teacher taught at least three classrooms in both
the chosen SJL and a second course that shares the same school-level (school-subject) environment, and (2)
there exists a second teacher who also taught at least three classrooms in the same two school-subject-level
contexts. These criteria are far more stringent. Much of the variation that identified the estimated true vari-
ances in subject-specific and level-specific talent came from difference-in-differences in which at least one
of the teachers taught fewer than three subjects in at least one of the school-subject-level contexts. Indeed,
applying these criteria leaves us with 205 and 289 difference-in-differences on which to perform the forecast
test for subject-specific and level-specific talent estimates, respectively.

The methodology for the context-specific forecast tests is otherwise perfectly analogous to the forecast test
for combined teacher talent. Difference-in-differences in residual mean test scores from among the left-out
classrooms in Partition 2 across teachers and either subjects or levels (conditioning on the same school-level
or school-course environment as appropriate) are regressed on empirical Bayes estimates of difference-in-
differences in teacher context-specific talent from the forecasting sample:

(Z2F
c(s,r,j,l)t − Z

2F
c(s,r,j′,l)t)− (Z2F

c(s,r′,j,l)t − Z
2F
c(s,r′,j′,l)t) = βFDiff in DiffEBsrjl + eF,jct

(Z2F
c(s,r,j,l)t − Z

2F
c(s,r,j,l′)t)− (Z2F

c(s,r′,j,l)t − Z
2F
c(s,r′,j,l′)t) = βFDiff in DiffEBsrjl + eF,lct (F.3)

The results of the test for forecast bias the combined talent estimates as well as the corresponding tests for
the subject-specific and level-specific talent estimates are presented in Table H.6.

Appendix G. Formulation of the Counterfactual Simulation

To formulate the static problem, first let J represent the set of subjects offered within a given school-
field combination. Similarly, let L represent the set of levels, and let JL represent the set of subject-level
combinations. Let Cjl represent the number of classes to be staffed in subject-level combination jl ∈ JL,
with Nc =

∑
jl∈JL Cjl denoting the total number of classes to be staffed. Let R represent the set of

teachers, with R elements. As before, expgenr captures the number of prior years in which teacher r has
taught any classroom, and expjr, exp

l
r, and expjlr capture the number of prior years in which teacher r has

taught at least one classroom in subject j, level l, and subject-level combination jl, respectively. Student and
classroom contributions Xctβjl can be ignored, since they are assumed to be constant across counterfactual
reallocations (and are assumed to be additively separable from teacher inputs).

Using the estimated smoothed non-parametric experience production function from the “full” specification
(13) introduced in Section 6.4, we can predict the contribution of context-specific experience to the counter-
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factual performance of teacher r in classroom c in a given year t via:

Ŷ
c

rt = d̂(expgenrt , exp
j(c)
rt , exp

l(c)
rt , exp

jl(c)
rt ) (G.1)

For simulations in which we incorporate principal beliefs about teachers’ task-specific talent, teacher r’s
predicted contribution to test scores in classroom c in school s in year t becomes:

Ŷ
c

rt = µEBsrj(c)l(c) + d̂(expgenrt , exp
j(c)
rt , exp

l(c)
rt , exp

jl(c)
rt ) (G.2)

where µEBsrj(c)l(c) is an empirical Bayes estimated posterior belief about teacher r’s context-specific talent for
increasing test scores in school s in subject-level combination (j(c), l(c)). 46

The goal is to choose the mapping f : C → R from classrooms to teachers that maximizes the sum of
student test scores, subject to the constraints that each teacher can only teach as many classrooms as they
were observed teaching at time t (denotedCr), and every classroom must be taught by exactly one teacher47:

max
f :C→R

∑
c∈C

Ŷ
c

f(c)

s.t.
∑
r

1(f(c) = r) = 1 ∀ c

s.t.
∑
c

1(f(c) = r) = Cr ∀ r (G.4)

where 1(f(c) = r) indicates that teacher r is assigned to classroom c.

This optimization problem can be recast as a binary integer programming problem:

max
x

a ∗ x

s.t. Mc ∗ x = 1 ∀ c
s.t. Nr ∗ x = Cr ∀ r
s.t. x ∈ {0, 1} (G.5)

46µEB
srj(c)l(c)

is calculated by shrinking the fixed effect estimate µ̂srj(c)l(c) toward zero (the global mean contribution) by multi-
plying it by the reliability ratio:

µEBsrjl = (µ̂srjl)(
V ar(µsrjl − µsr)

σ̂2
µ̂srjl

+ V ar(µsrjl − µsr)
). (G.3)

V ar(µsrjl − µsr) is the estimated true variance in subject-level deviations from school-teacher general talent taken from Row 3
of Column 1 of Table 4. σ̂2

µ̂srjl
is the estimated squared standard error from the fixed effect estimate µ̂srjl, which captures the

contribution of noise (sampling error) to the variance in the school-teacher-subject-level fixed effect estimates {µsrjl}. We set µEBsrjl =
0 for school-teacher-subject-level combinations that are feasible in the simulated assignment but are never observed in our sample.

47We suppress dependence on the year (t) in what follows.
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a consists of a 1×(C∗R) row vector of predicted student performances for each potential teacher-classroom
combination:

a =
(
Ŷ

1

1 . . . Ŷ
C

1 Ŷ
1

2 . . . Ŷ
C

2 . . . Ŷ
1

R . . . Ŷ
C

R

)
x consists of a (C ∗R)× 1 vector of potential teacher assignments:

x =



x11
...
xC1
x12
...
xC2
...
x1R
...
xCR


where xcr = 1(f(c) = r) is an indicator for whether teacher r is assigned to classroom c.

Mc consists of a 1× C ∗R row vector capturing the number of teachers assigned to classroom c (restricted
to be 1 ∀ c):

Mc =

 c−1︷ ︸︸ ︷
0 . . . 0 1

C−c︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

repeated R times

. . .

c−1︷ ︸︸ ︷
0 . . . 0 1

C−c︷ ︸︸ ︷
0 . . . 0


Nr consists of a 1×C ∗R row vector capturing the number of classrooms taught by teacher r (restricted to
be equal to Cr, the number taught in the sample):

Nr =

(r−1)∗C︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

C

(R−r)∗C︷ ︸︸ ︷
0 . . . 0

 .

We solve this binary integer programming problem for each school-field combination in the first year of
the sample. We then update each teacher’s context-specific experience profile for the second year given the
experience they gained under the optimal assignment in the first year.48 We repeat this process until the
end of the sample so as to reap the long-run rewards associated with accumulating high levels of relevant

48Since non-tested subjects are not reallocated, any general or level-specific experience teachers accumulated in those subjects under
the true allocation is also included in the update.
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context-specific experience. The “static” version of the simulation does not update each teacher’s context-
specific experience profile for the next year after allocating teachers in a given year, but instead treats every
year in the sample as if it were the first year.

Some of our simulations exploit the full sample of teachers, rather than restricting attention to those teachers
with fully observed teaching histories. For teachers who begin teaching after 1995, when our sample begins,
we impute their teaching history as of 1995 by randomly assigning them the teaching history of a full history
teacher who 1) was observed (later in the sample) at the 1995 general experience level of the imputed teacher,
and 2) who shares the same most commonly taught subject-level across all the years of our sample as the
imputed teacher. Some teachers are sufficiently experienced in 1995 so that there is no teacher with a fully
observed teaching history who is ever observed at such a high level of general experience in our sample.
These teachers are randomly assigned a 1995 teaching history from among the full history teachers who
are observed at 12+ years of general experience who share the same most commonly taught subject-level.
Once a 1995 teaching history has been imputed for all teachers with missing histories, we accumulate their
post-1995 stocks of general and context-specific experience as it existed in the data (if constructing actual
stocks) or as it was optimally assigned (if constructing simulated stocks).

Finally, some of our simulation results tables use a random allocation of teachers to classrooms as a baseline
rather than the actual allocation of teachers. To enure that the random allocations are feasible, we construct
them by selecting, for each school-field, a random permutation of the allocation identified as the solution to
the binary assignment problem.
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Appendix H. Appendix Tables

Table H.1: The Distribution of Years of Experience among Classes Taught by 2nd and 3rd Year Teachers

Panel A: Second-Year Teachers

General Subject Level Subj.-Lvl %
1 1 1 1 70.8%
1 1 1 0 2.7%
1 1 0 0 4.5%
1 0 1 0 19.4%
1 0 0 0 2.5%

Panel B: Third-Year Teachers

General Subject Level Subj.-Lvl %
2 2 2 2 54.9%
2 2 2 1 3.0%
2 2 2 0 0.6%
2 2 1 1 4.1%
2 2 1 0 0.6%
2 2 0 0 2.2%
2 1 2 1 17.7%
2 1 2 0 1.0%
2 1 1 1 1.7%
2 1 1 0 0.8%
2 1 0 0 1.1%
2 0 2 0 10.5%
2 0 1 0 0.8%
2 0 0 0 1.1%

Notes: The table presents the classroom-weighted distribution of four-
dimensional experience stocks among 2nd and 3rd year teachers in our final sam-
ple. 10,270 and 8,665 total classes were taught by 2nd-year and third-year teach-
ers respectively. Note that multiple subject-level combinations can be taught in a
year.
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Table H.2: Coefficient Estimates Associated with Control Variables Capturing Teacher Workload,
Depreciation of Experience Capital, and Productivity Declines in the Last Year Teaching Any Class or
Teaching a Class in the Chosen Subject, Level, or Subject-Level Combination (Baseline Specification)

(1)
# of Concurrent Classes Taught 0.000

[0.000]

# of Concurrent Subject-Level Combinations Taught 0.000
[0.002]

1(Did Not Teach Last Year) 0.004
[0.020]

1(Did Not Teach Subject Last Year) -0.003
[0.013]

1(Did Not Teach Level Last Year) 0.006
[0.015]

1(Did Not Teach Subject-Level Last Year) -0.001
[0.012]

1(Did Not Teach in Last 2 Years) -0.006
[0.036]

1(Did Not Teach Subject in Last 2 Years) -0.014
[0.026]

1(Did Not Teach Level in Last 2 Years) 0.003
[0.028]

1(Did Not Teach Subject-Level in Last 2 Years) 0.002
[0.022]

1(Final Year Teaching) -0.005
[0.019]

1(Final Year Teaching Subject) 0.001
[0.012]

1(Final Year Teaching Level) -0.004
[0.018]

1(Final Year Teaching Subject-Level) -0.010
[0.011]

Notes: Regression also contains a full set of school-subject-level and school-teacher-
subject-level fixed effects, calendar year effects, a set of observable classroom covariates,
and a set of four additively separable flexibly parameterized profiles capturing productiv-
ity gains from years of general, subject-specific, level-specific, and subject-level-specific
experience. See Table 5 for estimates of these experience profiles. Standard errors (in
brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10% levels
are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.3: Coefficient Estimates Associated with Control Variables Capturing Teacher Workload,
Depreciation of Experience Capital, and Productivity Declines in the Last Year Teaching Any Class or

Teaching a Class in the Chosen Subject, Level, or Subject-Level Combination (Restricted Specification)

(1)
# of Concurrent Classes Taught -0.000

[0.000]

# of Concurrent Subject-Level Combinations Taught -0.004*
[0.002]

1(Did Not Teach Last Year) 0.014
[0.017]

1(Did Not Teach Subject Last Year) -0.020*
[0.011]

1(Did Not Teach Level Last Year) 0.004
[0.012]

1(Did Not Teach Subject-Level Last Year) 0.005
[0.010]

1(Did Not Teach in Last 2 Years) 0.005
[0.031]

1(Did Not Teach Subject in Last 2 Years) -0.014
[0.019]

1(Did Not Teach Level in Last 2 Years) -0.001
[0.022]

1(Did Not Teach Subject-Level in Last 2 Years) 0.000
[0.017]

1(Final Year Teaching) -0.004
[0.014]

1(Final Year Teaching Subject) -0.029***
[0.008]

1(Final Year Teaching Level) 0.008
[0.012]

1(Final Year Teaching Subject-Level) -0.017**
[0.007]

Notes: Regression also contains a full set of school-subject-level and school-teacher fixed
effects, calendar year effects, a set of observable classroom covariates, and a set of four ad-
ditively separable flexibly parameterized profiles capturing productivity gains from years
of general, subject-specific, level-specific, and subject-level-specific experience. See Ta-
ble 6 for estimates of these experience profiles. Standard errors (in brackets) are clustered
at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***,
**, and * respectively. See Section 2 for methodological details.
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Table H.4: Tests for Dynamic Course Assignment Responses to Unobserved Time-Varying Endogenous Inputs

Year Relative
to Change

Permanent Teacher Changes Temporary Teacher Changes
General Subject Level SL General Subject Level SL

(1) (2) (3) (4) (5) (6) (7) (8)

t− 1 0.010 0.005 0.039** -0.016 -0.000 -0.001 0.000 0.001
[0.008] [0.007] [0.022] [0.016] [0.001] [0.001] [0.001] [0.001]

t− 2 -0.012 -0.016* -0.021 0.022 0.001 0.003* 0.001 0.002
[0.012] [0.011] [0.017] [0.019] [0.002] [0.002] [0.002] [0.002]

t− 3 -0.003 0.032** 0.037** 0.035* 0.005** 0.003 -0.001 -0.001
[0.012] [0.016] [0.016] [0.024] [0.003] [0.003] [0.003] [0.003]

t− 4 0.017* -0.010 0.014 -0.009 0.002 0.001 0.006* 0.004
[0.013] [0.014] [0.038] [0.017] [0.004] [0.003] [0.004] [0.004]

t− 5 -0.003 -0.014 0.017 0.024 -0.006* -0.002 0.002 0.004
[0.029] [0.013] [0.049] [0.037] [0.005] [0.004] [0.004] [0.005]

t− 6 -0.021 0.002 -0.083*** 0.032 0.008* 0.005 -0.001 0.005
[0.018] [0.019] [0.031] [0.067] [0.006] [0.005] [0.006] [0.006]

t− 7 -0.040 -0.012 -0.182 -0.115** 0.005 -0.001 0.015*** -0.006
[0.038] [0.022] [0.160] [0.055] [0.008] [0.005] [0.006] [0.007]

Notes: Table entries display average school-teacher-year residuals (Columns 1 and 5), school-teacher-subject-year residuals (Columns
2 and 6), school-teacher-level-year residuals (Columns 3 and 7), and school-teacher-subject-level-year residuals (Columns 4 and 8),
respectively, in the years leading up to a change in classroom assignment (using residuals from the Restricted Specification in equation
(3). A permanent change in general course assignment (Column 1) is defined as a teacher-year combination in which the teacher is
not observed teaching any course in a subsequent sample year. A permanent change in subject assignment (Column 2) is defined as a
teacher-subject-year combination in which the teacher teaches the chosen subject, but is not observed teaching the chosen subject again
in subsequent sample years. Permanent changes in level (Column 3) and subject-level (Column 4) assignments are defined analogously
to permanent subject changes. Temporary changes in assignment (Columns 5-8) are defined in a similar manner as permanent course
assignment changes, except the teacher is observed returning to teach (Column 5) or teach in the chosen subject (Column 6), level
(Column 7), or subject-level (Column 8) in a subsequent sample year. Bootstrap standard errors (in brackets) are computed using 1,000
iterations. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively.
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Table H.5: Backcasting Test for Non-Random Student Sorting (Restricted Specification with Classroom
Average 7th Grade Math Scores as the Outcome Variable)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr -0.027*** -0.005 0.024*** 0.002 -0.005*
[0.009] [0.007] [0.009] [0.006] [0.004]

2 yrs -0.014* -0.022*** 0.016** 0.016** -0.004
[0.010] [0.009] [0.010] [0.008] [0.004]

3 yrs -0.026** -0.021** 0.032*** 0.024*** 0.009**
[0.013] [0.011] [0.011] [0.010] [0.005]

4 yrs -0.019* -0.030*** 0.022** 0.025*** -0.002
[0.013] [0.011] [0.012] [0.010] [0.005]

5-6 yrs -0.016 -0.020* 0.020* 0.026** 0.010**
[0.014] [0.013] [0.013] [0.012] [0.005]

7-10 yrs 0.008 -0.028** -0.009 0.039*** 0.011*
[0.015] [0.015] [0.014] [0.014] [0.006]

11-14 yrs 0.007 0.009 -0.011 0.012 0.017*
[0.020] [0.025] [0.020] [0.026] [0.013]

Notes: N = 61, 993 test-score-weighted classroom observations. Results are based on an altered version of the Restricted Specification in
equation (3) in which the actual classroom average of students current test scores from the chosen class are replaced by the classroom average
of the 7th grade math scores of these students. Refer to notes below Table 5 for a full description of the control variables. Experience is
measured as the total number of prior years in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2),
level (Col. 3), or subject-level (Col. 4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined
predicted contribution of all four dimensions of experience capital for the case in which the teacher has taught the course associated with the
classroom observation in every year of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level.
Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.6: Testing for Forecast Bias in Estimates of Time-Invariant Task-Specific Teacher Talent

Outcome (Forecasted Sample)

Diff
(Sch-Tea-Subj-Lvl) Diff-in-Diff (Subj) Diff-in-Diff (Lvl)

Forecasting Sample (1) (2) (3)

DiffEB (Sch-Tea-Subj-Lvl) 0.825
[µ̂srjl − µ̂sr′jl]EB (0.019)

Diff-in-Diff (Subj) 1.013
[(µ̂srjl − µ̂srj′l)− (µ̂sr′jl − µ̂sr′j′l)]EB (0.242)

Diff-in-Diff (Lvl) 0.456
[(µ̂srjl − µ̂srjl′ )− (µ̂sr′jl − µ̂sr′jl′ )]EB (0.333)

Observations 7,246 205 289

Notes: The entries in this table are coefficients (with standard errors in brackets) capturing the degree of forecast bias in estimates of combined
(general and task-specific) talent, subject-specific talent, and level-specific talent, respectively, from a set of split sample tests. See Section
6.3 for a detailed description of the methodology. In each specification, the estimator should yield a forecast coefficient that converges in
probability to 1 if our achievement production function is correctly specified. Specifically, the outcome in Column 1 is the difference in
average test score residuals among a pair of classes from the same school-subject-level taught by two different teachers from a partition of our
main sample. The entry in Row (1), Column (1) captures the coefficient on a vector of empirical Bayes forecasts of the expected difference
in achievement among these pairs of teachers based on (appropriately shrunken) estimates of the difference in their combined general and
course-specific productivity from a second, mutually exclusive partition used to construct the forecast. The entries in Column 2 and Column
3 replace these pair-specific differences on both sides of the equation with differences-in-differences among pairs of teachers across common
pairs of courses that differ only in subject (Column 2) or level (Column 3). These coefficients capture the degree of forecast bias in the model’s
ability to estimate subject-specific and level-specific comparative advantages. Heteroskedasticity-robust (White) standard errors (in brackets)
are computed for each coefficient.
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Table H.7: Effect of Number of Courses of General, Subject-Specific, Level-Specific, and
Subject-Level-Specific Experience on Student Test Scores (Restricted Specification)

Course
Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 crs 0.019 0.011 -0.006 0.008 0.031
[0.036] [0.012] [0.012] [0.009] [0.035]

2 crs 0.051** 0.007 0.002 0.002 0.062***
[0.027] [0.011] [0.011] [0.009] [0.025]

3 crs 0.075*** 0.021** -0.005 0.002 0.094***
[0.017] [0.011] [0.012] [0.010] [0.015]

4-5 crs 0.066*** 0.032*** 0.001 0.004 0.104***
[0.013] [0.011] [0.011] [0.010] [0.008]

6-9 crs 0.054*** 0.049*** 0.009 0.002 0.114***
[0.012] [0.012] [0.012] [0.011] [0.006]

10-20 crs 0.070*** 0.062*** 0.005 -0.006 0.131***
[0.014] [0.013] [0.013] [0.013] [0.007]

21+ crs 0.082*** 0.071*** 0.003 -0.009 0.146***
[0.015] [0.015] [0.015] [0.016] [0.010]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the
subject. Restricted Specification refers to equation (3). Refer to notes below Table 5 for a full description of the control variables. Experience
is measured as the number of classes taught in prior years by the classroom’s teacher in total (Col. 1) or in the subject (Col. 2), level (Col.
3), or subject-level (Col. 4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined predicted
contribution of all four dimensions of experience capital for the case in which the teacher has taught the course associated with the classroom
observation in every classroom of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level.
Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.8: True Variances in Fixed Effects (Using Course-Based Measure of Teacher Experience with
the Baseline Specification )

Lower Bound Intermediate Upper Bound

Var. SD Var. SD Var. SD

(1) (2) (3) (4) (5) (6)

Sch-Subj-Lvl-Tch Combos 0.0237 0.154 0.0467 0.216 0.0604 0.246

General Talent 0.0176 0.133 0.0368 0.192 0.0505 0.225
Subj-Lvl Combos 0.0061 0.078 0.0099 0.099 0.0099 0.099

Sch-Lvl-Tch Combos 0.0198 0.141 0.0407 0.202 0.0544 0.233
Subject Talent 0.0039 0.063 0.0060 0.077 0.0060 0.077

Sch-Subj-Tch Combos 0.0216 0.147 0.0433 0.208 0.0569 0.239
Level Talent 0.0021 0.045 0.0034 0.059 0.0034 0.059

Subject-Level Talent 0.0001 0.011 0.0005 0.022 0.0005 0.022

Notes: This variance decomposition is based on a version of the baseline specification (equation 2 in which
experience in each context dimension (general, subject-specific, level-specific, and subject-level-specific) is
measured as the total number of previous classrooms taught in the relevant context. Lower Bound estimates
allocate all of the between school-subject-level variance in residual test scores to school and student inputs
(Assumption 2A). This is implemented by including school-subject-level fixed effects and normalizing the
mean among school-teacher-subject-level fixed effects to be 0 in each school-subject-level. Intermediate
estimates allocate the between school variance in residual test scores to school and student inputs, and the
within-school/between subject-level variance to teachers (Assumption 2B). This is implemented by replac-
ing the school-subject-level fixed effects with school fixed effects only. Upper Bound estimates allocate
all of the between school-subject-level variance in residual test scores to teachers (Assumption 2C). This is
implemented by removing all school-level controls. See Section 3.2 for details. See Section 3.2 for details.
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Table H.9: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification with the Sample Restricted to Classrooms

Featuring Teachers in their First School)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.062*** 0.018** -0.003 0.011 0.088***
[0.012] [0.011] [0.011] [0.009] [0.005]

2 yrs 0.087*** 0.022** -0.011 0.018* 0.117***
[0.016] [0.014] [0.014] [0.012] [0.006]

3 yrs 0.093*** 0.035** -0.016 0.014 0.126***
[0.018] [0.016] [0.016] [0.014] [0.007]

4 yrs 0.105*** 0.035** -0.022 0.012 0.130***
[0.020] [0.017] [0.018] [0.015] [0.008]

5-6 yrs 0.109*** 0.034** -0.019 0.023* 0.147***
[0.021] [0.020] [0.019] [0.017] [0.010]

7-10 yrs 0.116*** 0.020 -0.031* 0.027 0.131***
[0.025] [0.025] [0.023] [0.023] [0.013]

11-14 yrs 0.101*** 0.019 0.016 -0.014 0.122***
[0.034] [0.044] [0.035] [0.049] [0.033]

Notes: N = 51, 773 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the
subject. Restricted Specification refers to equation (3). The sample is restricted to classrooms featuring a teacher that is teaching in his/her
first school (i.e. the teacher’s entire teaching history was acquired at the current school). Refer to notes below Table 5 for a full description of
the control variables. Experience is measured as the total number of prior years in which the classroom’s teacher taught at least one class at
all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col. 4) associated with the current classroom observation. Column 5,
entitled Combined, captures the combined predicted contribution of all four dimensions of experience capital for the case in which the teacher
has taught the course associated with the classroom observation in every year of a career length defined by the row label. Standard errors (in
brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See
Section 2 for methodological details.
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Table H.10: True Variances in Fixed Effects (Using the Baseline Specification with the Year-Based
Measure of Teacher Experience and a Sample Restricted to Classrooms Featuring Teachers in Their

First Schools)

Lower Bound Intermediate Upper Bound

Var. SD Var. SD Var. SD

(1) (2) (3) (4) (5) (6)

Sch-Subj-Lvl-Tch Combos 0.0225 0.150 0.0454 0.213 0.0590 0.243

General Talent 0.0167 0.129 0.0356 0.189 0.0491 0.222
Subj-Lvl Combos 0.0058 0.076 0.0098 0.099 0.0098 0.099

Sch-Lvl-Tch Combos 0.0188 0.137 0.0395 0.199 0.0530 0.230
Subject Talent 0.0037 0.061 0.0060 0.077 0.0060 0.077

Sch-Subj-Tch Combos 0.0205 0.143 0.0421 0.205 0.0556 0.236
Level Talent 0.0019 0.044 0.0033 0.058 0.0033 0.058

Subject-Level Talent 0.0001 0.011 0.0005 0.023 0.0005 0.023

Notes: Lower Bound estimates allocate all of the between school-subject-level variance in residual test
scores to school and student inputs (Assumption 2A). This is implemented by including school-subject-
level fixed effects and normalizing the mean among school-teacher-subject-level fixed effects to be 0 in each
school-subject-level. Intermediate estimates allocate the between school variance in residual test scores to
school and student inputs, and the within-school/between subject-level variance to teachers (Assumption
2B). This is implemented by replacing the school-subject-level fixed effects with school fixed effects only.
Upper Bound estimates allocate all of the between school-subject-level variance in residual test scores to
teachers (Assumption 2C). This is implemented by removing all school-level controls. See Section 3.2 for
details.
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Table H.11: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification with Linear Depreciation)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.066*** 0.013* -0.004 0.015** 0.089***
[0.011] [0.009] [0.010] [0.008] [0.004]

2 yrs 0.086*** 0.023** -0.005 0.014* 0.118***
[0.014] [0.012] [0.012] [0.010] [0.006]

3 yrs 0.095*** 0.036*** -0.006 0.006 0.131***
[0.016] [0.014] [0.014] [0.012] [0.007]

4 yrs 0.103*** 0.040*** -0.009 0.004 0.137***
[0.018] [0.015] [0.016] [0.014] [0.008]

5-6 yrs 0.106*** 0.040** -0.000 0.005 0.151***
[0.019] [0.018] [0.017] [0.015] [0.009]

7-10 yrs 0.117*** 0.025 -0.004 -0.001 0.136***
[0.022] [0.021] [0.020] [0.019] [0.012]

11-14 yrs 0.111*** 0.027 0.031 -0.029 0.140***
[0.028] [0.038] [0.028] [0.041] [0.026]

Notes: Regression specification mimics the Restricted Specification (see Equation (3) and the notes to Table 6), except that the indicator sets
for whether the teacher failed to teach a course in each of the relevant dimensions of context (general, subject, level, and subject-level) last
year or in the last two years are replaced by linear controls for the number of years since the teacher taught any course and since the teacher
taught in the subject, level, and subject-level associated with the classroom observation. Experience is measured as the total number of prior
years in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col.
4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined predicted contribution of all four
dimensions of experience capital for the case in which the teacher has taught the course associated with the classroom observation in every
classroom of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level. Significance at the 1%,
5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.12: Coefficient Estimates Associated with Control Variables Capturing Teacher Workload,
Depreciation of Experience Capital, and Productivity Declines in the Last Year Teaching Any Class or
Teaching a Class in the Chosen Subject, Level, or Subject-Level Combination (Restricted Specification

with Linear Depreciation)

(1)

# of Concurrent Classes Taught -0.000
[0.000]

# of Concurrent Subject-Level Combinations Taught -0.003
[0.002]

# of Years Since Last Taught 0.004
[0.006]

# of Years Since Last Taught Subject -0.005
[0.004]

# of Years Since Last Taught Level 0.001
[0.004]

# of Years Since Last Taught Subject-Level -0.005
[0.004]

1(Final Year Teaching) -0.005
[0.014]

1(Final Year Teaching Subject) -0.028***
[0.008]

1(Final Year Teaching Level) 0.008
[0.012]

1(Final Year Teaching Subject-Level) -0.018**
[0.007]

Notes: Regression specification mimics the Restricted Specification (see Equation (3) and
the notes to Table 6), except that the indicator sets for whether the teacher failed to teach a
course in each of the relevant dimensions of context (general, subject, level, and subject-
level) last year or in the last two years are replaced by linear controls for the number of
years since the teacher taught any course and since the teacher taught in the subject, level,
and subject-level associated with the classroom observation. Regression also contains a
full set of school-subject-level and school-teacher fixed effects, calendar year effects, a
set of observable classroom covariates, and a set of four additively separable flexibly pa-
rameterized profiles capturing productivity gains from years of general, subject-specific,
level-specific, and subject-level-specific experience. See Table H.11 for estimates of these
experience profiles. Standard errors (in brackets) are clustered at the teacher level. Sig-
nificance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively.
See Section 2 for methodological details.
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Table H.13: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification with 7th Grade Math and Reading Test

Scores Added as Controls)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.069*** 0.014* -0.007 0.014** 0.090***
[0.011] [0.009] [0.010] [0.008] [0.004]

2 yrs 0.088*** 0.025** -0.007 0.013* 0.119***
[0.014] [0.012] [0.012] [0.010] [0.006]

3 yrs 0.099*** 0.037*** -0.013 0.007 0.131***
[0.016] [0.014] [0.014] [0.012] [0.007]

4 yrs 0.106*** 0.042*** -0.016 0.005 0.138***
[0.018] [0.015] [0.015] [0.014] [0.008]

5-6 yrs 0.108*** 0.042*** -0.006 0.007 0.151***
[0.019] [0.017] [0.017] [0.015] [0.009]

7-10 yrs 0.115*** 0.026 -0.009 0.002 0.135***
[0.022] [0.021] [0.019] [0.019] [0.011]

11-14 yrs 0.108*** 0.018 0.025 -0.014 0.137***
[0.028] [0.037] [0.028] [0.041] [0.026]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in
the subject. Restricted Specification refers to equation (3). Refer to notes below Table 5 for a full description of the control variables. This
regression also includes 7th grade math and reading standardized test scores as additional controls. Experience is measured as the total number
of prior years in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level
(Col. 4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined predicted contribution of all
four dimensions of experience capital for the case in which the teacher has taught the course associated with the classroom observation in every
classroom of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level. Significance at the 1%,
5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.14: Heterogeneity across Subject Fields in the Effects of Years of General and Subject-Specific Experience on Student Test Scores
(Restricted Specification with Level and Subject-Level Experience Additionally Constrained to 0)

Years Exp. Math Science Social Studies English

General Subject General Subject General Subject General Subject

(1) (2) (3) (4) (5) (6) (7) (8)

1 yr 0.072*** 0.021** 0.070*** 0.046*** 0.072*** 0.017 0.020 0.013
[0.012] [0.010] [0.013] [0.011] [0.014] [0.012] [0.016] [0.015]

2 yrs 0.090*** 0.038*** 0.098*** 0.047*** 0.091*** 0.027* 0.017 0.035*
[0.014] [0.012] [0.017] [0.015] [0.017] [0.015] [0.022] [0.021]

3 yrs 0.102*** 0.048*** 0.101*** 0.062*** 0.091*** 0.032* 0.020 0.036
[0.016] [0.014] [0.019] [0.018] [0.018] [0.017] [0.026] [0.026]

4 yrs 0.095*** 0.053*** 0.089*** 0.078*** 0.119*** 0.026 0.036 0.022
[0.017] [0.015] [0.022] [0.021] [0.020] [0.019] [0.031] [0.031]

5-6 yrs 0.120*** 0.057*** 0.089*** 0.075*** 0.119*** 0.042** 0.023 0.025
[0.018] [0.017] [0.025] [0.024] [0.021] [0.022] [0.037] [0.037]

7-10 yrs 0.134*** 0.038* 0.062** 0.075** 0.133*** 0.005 0.038 0.009
[0.020] [0.020] [0.032] [0.031] [0.022] [0.026] [0.045] [0.045]

11-14 yrs 0.154*** 0.008 0.073 0.097* 0.125*** -0.081 0.066 0.042
[0.028] [0.042] [0.047] [0.051] [0.036] [0.058] [0.055] [0.058]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the subject. Results
are based on an altered version of the Restricted Specification in equation (3) in which 1) we impose the additional restrictions that gains from level-specific
and subject-level-specific experience are constrained to be 0: dl(exp) = 0 and djl(exp) = 0 ∀ exp, and 2) we generalize the gains from years of general
and subject-specific experience to be field-specific: dgen(exp)→ dgenfield(exp), dj(exp)→ djfield(exp), field ∈ {Math, Science, Social Studies,English}.
Refer to notes below Table 5 for a full description of the control variables. Experience is measured as the total number of prior years in which the classroom’s
teacher taught at least one class at all (odd Columns) or in the subject (even Columns) associated with the current classroom observation. Standard errors (in
brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for
methodological details.
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Table H.15: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification with Full Set of Indicator Variables for

Each Observed Years of Experience)

Years Experience General Subject Level Subj.-Level Combined

(1) (2) (3) (4) (5)

1 yr 0.064*** 0.013* -0.002 0.013** 0.089***
[0.011] [0.009] [0.010] [0.008] [0.004]

2 yrs 0.084*** 0.021** -0.003 0.016* 0.118***
[0.014] [0.012] [0.012] [0.010] [0.006]

3 yrs 0.093*** 0.033*** -0.005 0.010 0.131***
[0.016] [0.014] [0.014] [0.012] [0.007]

4 yrs 0.100*** 0.036*** -0.008 0.010 0.137***
[0.018] [0.015] [0.016] [0.014] [0.008]

5 yrs 0.101*** 0.041*** 0.003 0.012 0.156***
[0.019] [0.017] [0.017] [0.016] [0.009]

6 yrs 0.101*** 0.021 -0.001 0.026* 0.146***
[0.021] [0.019] [0.018] [0.018] [0.011]

7 yrs 0.117*** 0.018 -0.017 0.019 0.137***
[0.023] [0.022] [0.020] [0.020] [0.012]

8 yrs 0.110*** -0.017 0.002 0.028 0.123***
[0.026] [0.026] [0.023] [0.024] [0.014]

9 yrs 0.120*** -0.001 0.002 0.027 0.148***
[0.028] [0.031] [0.026] [0.029] [0.017]

10 yrs 0.120*** -0.020 0.006 0.021 0.127***
[0.032] [0.036] [0.029] [0.037] [0.022]

11 yrs 0.104*** 0.006 0.056** -0.025 0.140***
[0.035] [0.047] [0.032] [0.050] [0.029]

12 yrs 0.153*** -0.086* -0.014 0.147** 0.199***
[0.044] [0.062] [0.042] [0.065] [0.039]

13 yrs 0.087* -0.063 0.010 0.176* 0.210***
[0.053] [0.105] [0.055] [0.113] [0.044]

14 yrs 0.127** -0.156 -0.041 0.231* 0.162
[0.060] [0.131] [0.065] [0.163] [0.141]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student standardized test scores in the
subject. Refer to notes below Table 5 for a full description of the control variables. Results are based on an altered version of the Restricted
Specification from equation (3) in which bins for years of experience 5-6, 7-11, and 11+, respectively, are replaced by indicator variables for
each individual year of experience (general, subject, level, and subject-level combination). Experience is measured as the total number of prior
years in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col.
4) associated with the current classroom observation. Column 5, entitled Combined, captures the combined predicted contribution of all four
dimensions of experience capital for the case in which the teacher has taught the course associated with the classroom observation in every year
of a career length defined by the row label. Standard errors (in brackets) are clustered at the teacher level. Significance at the 1%, 5%, and 10%
levels are represented by ***, **, and * respectively. See Section 2 for methodological details.
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Table H.16: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification Featuring Quartics in Each Dimension of

Context-Specific Experience)

Years
Experience General Subject Level Subj.-Level

(1) (2) (3) (4)

Year Exp. 0.063*** 0.019* 0.006 0.007
[0.012] [0.011] [0.010] [0.010]

(Year Exp.)2 -0.014*** -0.003 -0.004 -0.001
[0.004] [0.004] [0.003] [0.004]

(Year Exp.)3 0.001*** 0.000 0.001 -0.000
[0.000] [0.001] [0.000] [0.001]

(Year Exp.)4 -0.000*** -0.000 -0.000 0.000
[0.000] [0.000] [0.000] [0.000]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student
standardized test scores in the subject. Restricted Specification refers to equation (3). Refer to notes below Table
5 for a full description of the control variables. Experience profiles in this regression are generated by replacing
year-of-experience dummy variables from the restricted specification with a quartic in each of the four dimensions
of experience (general, subject, level, and subject-level). Experience is measured as the total number of prior years
in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or
subject-level (Col. 4) associated with the current classroom observation. Standard errors (in brackets) are clustered
at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See
Section 2 for methodological details.
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Table H.17: Effect of Years of General, Subject-Specific, Level-Specific, and Subject-Level-Specific
Experience on Student Test Scores (Restricted Specification Featuring Quartics in Each Dimension of

Context-Specific Experience: Predicted Values for First 10 Years of Experience)

Years
Experience General Subject Level Subj.-Level

(1) (2) (3) (4)

Pred. Exp. in Years 1 0.050*** 0.016** 0.003 0.007
[0.009] [0.008] [0.008] [0.007]

Pred. Exp. in Years 2 0.078*** 0.027** 0.001 0.011
[0.013] [0.011] [0.012] [0.010]

Pred. Exp. in Years 3 0.092*** 0.032** -0.002 0.014
[0.016] [0.013] [0.014] [0.011]

Pred. Exp. in Years 4 0.098*** 0.034** -0.005 0.015
[0.017] [0.015] [0.015] [0.013]

Pred. Exp. in Years 5 0.099*** 0.032* -0.006 0.014
[0.018] [0.016] [0.016] [0.014]

Pred. Exp. in Years 6 0.100*** 0.027 -0.005 0.013
[0.020] [0.018] [0.017] [0.016]

Pred. Exp. in Years 7 0.101*** 0.019 -0.002 0.013
[0.022] [0.021] [0.019] [0.019]

Pred. Exp. in Years 8 0.105*** 0.009 0.004 0.014
[0.024] [0.025] [0.021] [0.022]

Pred. Exp. in Years 9 0.110*** -0.004 0.010 0.019
[0.027] [0.029] [0.024] [0.027]

Pred. Exp. in Years 10 0.116*** -0.018 0.016 0.030
[0.030] [0.034] [0.027] [0.032]

Notes: N = 61, 993 test-score-weighted classroom observations. The outcome is the class average of student
standardized test scores in the subject. Restricted Specification refers to equation (3). Refer to notes below Table 5
for a full description of the control variables. Experience profiles in this regression are generated by replacing year-
of-experience dummy variables from the restricted specification with a quartic in each of the four dimensions of
experience (general, subject, level, and subject-level). Predicted values are used for the first 10 years of experience
in each dimension. Experience is measured as the total number of prior years in which the classroom’s teacher
taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col. 3), or subject-level (Col. 4) associated
with the current classroom observation. Standard errors (in brackets) are calculated by applying the delta method to
the cluster-robust standard errors for the experience estimates from Table H.16, which were clustered at the teacher
level. Significance at the 1%, 5%, and 10% levels are represented by ***, **, and * respectively. See Section 2 for
methodological details.
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Table H.18: Average Accumulated Marginal Effects Derived from Non-Parametric Experience
Production Function (Full Specification with Year-Based Definition of Experience)

Years
Experience General Subject Level Subj.-Level

(1) (2) (3) (4)

1 yr 0.021*** 0.024** 0.006 0.014**
[0.007] [0.013] [0.012] [0.007]

2 yrs 0.073** 0.043** 0.006 0.016*
[0.033] [0.019] [0.018] [0.012]

3 yrs 0.076** 0.080*** 0.016 0.016
[0.044] [0.026] [0.023] [0.017]

4 yrs 0.073** 0.094*** 0.030 0.019
[0.044] [0.032] [0.028] [0.021]

5-6 yrs 0.097** 0.098*** 0.051** 0.018
[0.047] [0.039] [0.031] [0.024]

7-10 yrs 0.114** 0.117*** 0.035 0.016
[0.050] [0.049] [0.034] [0.028]

11-14 yrs 0.128*** 0.135*** 0.072** 0.007
[0.053] [0.056] [0.041] [0.037]

Notes: Refer to the notes below Table 5 for a full description of the control variables. Experience profiles are
generated by integrating partial derivatives of extra experience in each experience dimension, evaluated at each level
of experience, over all the levels of experience. These partial derivatives are derived from a smoothed version of
the non-parametrically estimated production function for experience gains described in equation (13). Experience is
measured as the total number of prior years in which the classroom’s teacher taught at least one class at all (Col. 1)
or in the subject (Col. 2), level (Col. 3), or subject-level (Col. 4) associated with the current classroom observation.
Standard errors (in brackets) are calculated by applying the delta method to the cluster-robust standard errors for the
experience-cell fixed effects, which were clustered at the teacher level. Significance at the 1%, 5%, and 10% levels
are represented by ***, **, and * respectively. See Appendix E for methodological details.
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Table H.19: Average Accumulated Marginal Effects Derived from Non-Parametric Experience
Production Function (Restricted Specification with Year-Based Definition of Experience)

Years
Experience General Subject Level Subj.-Level

(1) (2) (3) (4)

1 yr 0.017*** 0.029*** 0.020*** 0.013***
[0.004] [0.007] [0.006] [0.004]

2 yrs 0.062*** 0.035*** 0.029*** 0.017***
[0.016] [0.010] [0.009] [0.005]

3 yrs 0.052** 0.058*** 0.025** 0.015**
[0.027] [0.013] [0.011] [0.008]

4 yrs 0.041* 0.067*** 0.020** 0.014*
[0.027] [0.016] [0.012] [0.010]

5-6 yrs 0.096*** 0.065*** 0.025** 0.015*
[0.027] [0.020] [0.014] [0.011]

7-10 yrs 0.092*** 0.065*** 0.011 0.011
[0.031] [0.025] [0.016] [0.014]

11-14 yrs 0.116*** 0.069** 0.059*** 0.005
[0.036] [0.031] [0.020] [0.027]

Notes: Refer to the notes below Table 6 for a full description of the control variables. Experience profiles are
generated by integrating partial derivatives of extra experience in each experience dimension, evaluated at each level
of experience, over all the levels of experience. These partial derivatives are derived from a smoothed version of
the non-parametrically estimated production function for experience gains described in equation (13), but where the
school-teacher-subject-level fixed effects µsrjl are restricted to be common across subject-levels within a school-
teacher combination: µsrjl = µ̄st ∀ (j, l) and (s, r). Experience is measured as the total number of prior years
in which the classroom’s teacher taught at least one class at all (Col. 1) or in the subject (Col. 2), level (Col.
3), or subject-level (Col. 4) associated with the current classroom observation. Standard errors (in brackets) are
calculated by applying the delta method to the cluster-robust standard errors for the experience-cell fixed effects,
which were clustered at the teacher level. Significance at the 1%, 5%, and 10% levels are represented by ***, **,
and * respectively. See Appendix E for methodological details.
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Table H.20: Counterfactual Simulations: Achievement Gains from Optimal Allocation Relative to Actual and Random Allocations Separately by
Field (Year-Based Measure of Experience, Excluding Teachers Without Full Histories)

Math Science Social Studies
Eligible
Teach.

Static Dynamic Static Dynamic Static Dynamic
Actual Random Actual Random Actual Random Actual Random Actual Random Actual Random

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

2
Total .015 .018 .016 .021 .017 .026 .017 .028 .018 .027 .019 .028

Talent .015 .015 .015 .017 .019 .021 .020 .022 .020 .022 .020 .022
Exper. -.000 .003 .000 .004 -.002 .005 -.003 .005 -.002 .004 -.001 .005

3
Total .029 .035 .030 .041 .024 .040 .026 .041 .025 .034 .027 .038

Talent .029 .031 .030 .034 .026 .033 .027 .033 .026 .029 .027 .029
Exper. -.000 .004 .000 .007 -.002 .006 -.001 .008 -.001 .005 .000 .008

4
Total .033 .043 .035 .045 .030 .043 .032 .044 .031 .038 .033 .044

Talent .034 .039 .034 .036 .032 .034 .032 .033 .032 .032 .032 .034
Exper. -.001 .004 .001 .009 -.002 .009 -.000 .011 -.001 .006 .001 .010

5-6
Total .041 .049 .043 .051 .034 .050 .037 .052 .038 .046 .040 .053

Talent .041 .044 .041 .042 .036 .039 .037 .039 .038 .039 .038 .042
Exper. -.000 .005 .002 .009 -.002 .011 .000 .013 -.000 .007 .002 .011

7-10
Total .039 .049 .042 .054 .041 .051 .044 .057 .037 .046 .038 .050

Talent .039 .042 .039 .043 .043 .040 .044 .042 .036 .038 .036 .038
Exper. .000 .007 .003 .012 -.002 .011 .000 .015 .001 .009 .002 .012

11+
Total .042 .053 .045 .064 — — — — .039 .052 .038 .045

Talent .039 .044 .039 .048 — — — — .037 .039 .037 .029
Exper. .003 .009 .005 .016 — — — — .003 .013 .001 .017

Notes: Each cell presents simulated achievement gains from the optimal allocation of teachers to classrooms relative to either the observed allocation (in columns labeled “Actual”) or a randomly
selected feasible allocation (columns labeled “Random”) among all school-year-field combinations with the number of eligible teachers specified by the row label in the field specified by the
column label. The top entry in each cell displays the total achievement gains, while the middle and bottom entries display the components of the gains attributable to task-specific experience and
task-specific talent, respectively. Static refers to simulations in which teacher experience stocks are held fixed as they were in the actual sample through year t− 1 prior to simulated reassignment
in year t. Dynamic refers to simulations in which teacher experience stocks used as the basis for simulated reassignment in year t are based on simulated assignments from 1995 through year
t− 1. See Section 7.1 and Appendix Section Appendix G for further detail about simulation methodology. A teacher is eligible for reassignment if their full teaching history is observed in the data.
Estimates of gains from task-specific experience and of teachers’ task-specific talent are derived from the Full Specification (equation (13)). The principal incorporates information from empirical
Bayes posterior beliefs about each teacher’s task-specific talent based on our school-teacher-subject-level fixed effect estimates for any school-teacher-subject-level combination that is observed in
our sample. We assign task-specific productivities of 0 for any school-teacher-subject-level combination that we do not observe.
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Table H.21: Counterfactual Simulations: Fraction of Classrooms Reallocated (Year-Based Measure of Experience, Excluding Teachers Without
Full Histories)

Math Science Social Studies

Eligible
Teachers

Static Dynamic Static Dynamic Static Dynamic
(1) (2) (3) (4) (5) (6)

2 0.253 0.303 0.230 0.329 0.267 0.317
3 0.331 0.391 0.337 0.412 0.370 0.444
4 0.404 0.449 0.410 0.482 0.422 0.479
5-6 0.428 0.469 0.434 0.505 0.463 0.518
7-10 0.427 0.469 0.484 0.574 0.488 0.542
11+ 0.456 0.519 0.000 0.000 0.500 0.540

Notes: Each cell presents the fraction of classroom assignments in which a reallocation takes place (i.e. the simulated teacher assignment does not
match the actual teacher assignment) among all school-year-field combinations with the number of eligible teachers specified by the row label in the
field specified by the column label. Static refers to simulations in which teacher experience stocks are held fixed as they were in the actual sample
through year t − 1 prior to simulated reassignment in year t. Dynamic refers simulations in which teacher experience stocks used as the basis for
simulated reassignment in year t are based on simulated assignments from 1995 through year t − 1. See Section 7.1 and Appendix Section Appendix
G for further detail about simulation methodology. A teacher is eligible for reassignment if their full teaching history is observed in the data.
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Table H.22: Counterfactual Simulations: Achievement Gains from Optimal Allocation Relative to Actual and
Random Allocations (Year-Based Measure of Experience, Including Teachers Without Full Histories)

Eligible
Teach.

Static Dynamic

Actual Random Actual Random
(1) (2) (3) (4)

2
Total .005 .010 .005 .011

Talent .004 .005 .004 .005
Exper. .001 .005 .000 .006

3
Total .011 .018 .011 .021

Talent .010 .010 .011 .011
Exper. .001 .008 .001 .010

4
Total .014 .023 .014 .027

Talent .012 .014 .012 .014
Exper. .001 .010 .001 .013

5-6
Total .018 .030 .019 .034

Talent .017 .018 .017 .018
Exper. .001 .011 .002 .016

7-10
Total .022 .034 .023 .040

Talent .020 .021 .020 .021
Exper. .002 .013 .003 .019

11+
Total .023 .035 .025 .042

Talent .020 .021 .020 .021
Exper. .003 .014 .004 .021

Notes: Each cell presents simulated achievement gains from the optimal allocation of teachers to classrooms relative to either the observed allocation (in
columns labeled “Actual”) or a randomly selected feasible allocation (columns labeled “Random”) among all school-year-field combinations with the number
of eligible teachers specified by the row label. Classroom-level gains are pooled across the three fields (math, science, and social studies). The top entry in each
cell displays the total achievement gains, while the middle and bottom entries display the contribution to this total of gains from task-specific experience and
task-specific talent, respectively. Static refers to simulations in which teacher experience stocks are held fixed as they were in the actual sample through year
t− 1 prior to simulated reassignment in year t. Dynamic refers to simulations in which teacher experience stocks used as the basis for simulated reassignment
in year t are based on simulated assignments from 1995 through year t − 1. See Section 7.1 and Appendix Section Appendix G for further detail about
simulation methodology. Eligible teachers consist of teachers who taught a test subject in the chosen school-year-field. Teachers who begin teaching prior
to 1995 for whom full teaching histories were not observed are assigned imputed teaching histories as of 1995. See Section Appendix G for a description
of the imputation procedure. Estimates of gains from task-specific experience and of teachers’ task-specific talent are derived from the Full Specification
(presented in equation (13)). The principal incorporates information from empirical Bayes posterior beliefs about each teacher’s task-specific talent based on
our school-teacher-subject-level fixed effect estimates for any school-teacher-subject-level combination that is observed in our sample. We assign task-specific
productivities of 0 for any school-teacher-subject-level combination that we do not observe.
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Table H.23: Identification Example: Experience Stocks for Hypothetical Teachers in
Each Year

Panel A: Identifying Variation for Experience Profiles, Example 1

Teacher 1: New Subj/Lvl Teacher 2: New Subj Only
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BP 0 0 0 0 HP 0 0 0 0
2 HC 1 0 0 0 HC 1 0 1 0
3 HC 2 1 1 1 HC 2 1 2 1
4 HC 3 2 2 2 HC 3 2 3 2
5 HC 4 3 3 3 HC 4 3 4 3

Teacher 3: New Lvl Only Teacher 4: Same Subj/Lvl
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BC 0 0 0 0 HC 0 0 0 0
2 HC 1 1 0 0 HC 1 1 1 1
3 HC 2 2 1 1 HC 2 2 2 2
4 HC 3 3 2 2 HC 3 3 3 3
5 HC 4 4 3 3 HC 4 4 4 4

Panel B: Identifying Variation for Experience Profiles, Example 2

Teacher 1 Teacher 2
Year Crs. Gen. Subj. Lvl. Subj.-Lvl. Crs. Gen. Subj. Lvl. Subj.-Lvl.

1 BC 0 0 0 0 BP 0 0 0 0
2 HC 1 1 0 0 HC 1 0 0 0
3 BP 2 0 1 0 BC 2 1 1 0
4 HC 3 2 1 1 HC 3 2 1 1

Notes: This table provides the path of experience stocks for each teacher in each of the two examples
illustrating experience profile identification that occur in Appendix A. Each entry provides the level of
general or task-specific experience in the dimension indicated by the column heading at the beginning
of the year associated with the row. “B”-Basic, “H”-Honors, “P”-Physics, “C”-Chemistry.
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Figure H.1: Tests for Dynamic Course Assignment Responses to Unobserved Time-Varying Endogenous Inputs

(a) Temporary Break from Teaching
(General)

(b) Temporary Break from Teaching
Subject

(c) Temporary Break from Teaching
Level

(d) Temporary Break from Teaching
Subject-Level

(e) Last Year of Teaching (General) (f) Last Year Teaching Subject (g) Last Year Teaching Level
(h) Last Year Teaching

Subject-Level

Notes: Figures display average school-teacher-year residuals (Figures H.1a and H.1e), school-teacher-subject-year residuals (Figures H.1b and H.1f), school-teacher-level-year residuals (Figures H.1c and
H.1g), and school-teacher-subject-level-year residuals (Figures H.1d and H.1h), respectively, in the years leading up to a change in classroom assignment (using residuals from the Restricted Specification).
Restricted Specification refers to a specification in which the school-teacher-subject-level fixed effects µsrjl from Equation (2) are restricted to be common across subject-levels within a school-teacher
combination: µsrjl = µ̄st ∀ (j, l) and (s, r). A permanent change in general course assignment (H.1e) is defined as a teacher-year combination in which the teacher is not observed teaching any course in
a subsequent sample year. A permanent change in subject assignment (H.1f) is defined as a teacher-subject-year combination in which the teacher teaches the chosen subject, but is not observed teaching
the chosen subject again in subsequent sample years. Permanent changes in level (H.1g) and subject-level (H.1h) assignments are defined analogously to permanent subject changes. Temporary changes
in assignment are defined in a similar manner as permanent course assignment changes, except the teacher is observed returning to teach (H.1a) or teach in the chosen subject (H.1b), level (H.1c), or
subject-level (H.1d) in a subsequent sample year. Bootstrap standard errors (in brackets) are computed using 1,000 iterations.
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