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We consider the problem of playing a repeated two-player zero-sum game safely—that is, guaranteeing
at least the value of the game per period in expectation regardless of the strategy used by the opponent.
Playing a stage-game equilibrium strategy at each time step clearly guarantees safety, and prior work has
(incorrectly) stated that it is impossible to simultaneously deviate from a stage-game equilibrium (in hope
of exploiting a suboptimal opponent) and to guarantee safety. We show that such profitable deviations are
indeed possible—specifically, in games where certain types of ‘gift’ strategies exist, which we define formally.
We show that the set of strategies constituting such gifts can be strictly larger than the set of iteratively
weakly-dominated strategies; this disproves another recent assertion which states that all non-iteratively-
weakly-dominated strategies are best responses to each equilibrium strategy of the other player. We present
a full characterization of safe strategies, and develop efficient algorithms for exploiting suboptimal oppo-
nents while guaranteeing safety. We also provide analogous results for extensive-form games of perfect and
imperfect information, and present safe exploitation algorithms and full characterizations of safe strate-
gies for those settings as well. We present experimental results in Kuhn poker, a canonical test problem
for game-theoretic algorithms. Our experiments show that 1) aggressive safe exploitation strategies sig-
nificantly outperform adjusting the exploitation within stage-game equilibrium strategies only and 2) all
the safe exploitation strategies significantly outperform a (non-safe) best response strategy against strong
dynamic opponents.
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1. INTRODUCTION
In repeated interactions against an opponent, an agent must determine how to balance
between exploitation (maximally taking advantage of weak opponents) and exploitabil-
ity (making sure that he himself does not perform too poorly against strong opponents).
In two-player zero-sum games, an agent can play a minimax strategy, which guaran-
tees at least the value of the game in expectation against any opponent. However, doing
so could potentially forego significant profits against suboptimal opponents. Thus, an
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equilibrium strategy has low (zero) exploitability, but achieves low exploitation. On the
other end of the spectrum, agents could attempt to learn the opponent’s strategy and
maximally exploit it; however, doing so runs the risk of being exploited in turn by a de-
ceptive opponent. This is known as the “get taught and exploited problem” [Sandholm
2007]. Such deception is common in games such as poker; for example, a player may
play very aggressively initially, then suddenly switch to a more conservative strategy
to capitalize on the fact that the opponent tries to take advantage of his aggressive “im-
age,” which he now leaves behind. Thus, pure opponent exploitation potentially leads
to a high level of exploitation, but at the expense of exploitability. Respectively, the
game-solving community has, by and large, taken two radically different approaches:
finding game-theoretic solutions and opponent exploitation.

In this paper, we are interested in answering a fundamental question that helps
shed some light on this tradeoff:

Is it possible to exploit the opponent more than any equilibrium
strategy of a stage game would, while simultaneously guaranteeing
at least the value of the full game in expectation in the worst case?

If the answer is no, then fully safe exploitation is not possible, and we must be willing
to accept some increase in worst-case exploitability if we wish to deviate from equilib-
rium in order to exploit suboptimal opponents. However, if the answer is yes, then safe
opponent exploitation would indeed be possible.

Recently it was stated that safe opponent exploitation is not possible [Ganzfried
and Sandholm 2011]. The intuition for that argument was that the opponent could
have been playing an equilibrium all along, and when we deviate from equilibrium to
attempt to exploit him, then we run the risk of being exploitable ourselves. However,
that argument is incorrect. It does not take into account the fact that our opponent
may give us a gift by playing an identifiably suboptimal strategy, such as one that is
strictly dominated.1 If such gift strategies are present in a game, then it turns out
that safe exploitation can be achieved; specifically, we can deviate from equilibrium
to exploit the opponent provided that our worst-case exploitability remains below the
total amount of profit won through gifts (in expectation).

Is it possible to obtain such gifts that do not correspond to strictly-dominated strate-
gies? What about other forms of dominance, such as weak, iterated, and dominance by
mixed strategies? Recently it was claimed that all non-iteratively-weakly-dominated
strategies are best responses to each equilibrium strategy of the other player [Waugh
2009]. This would suggest that such undominated strategies cannot be gifts, and that
gift strategies must therefore be dominated according to some form of dominance. We
disprove this claim and present a game in which a non-iteratively-weakly-dominated
strategy is not a best response to an equilibrium strategy of the other player. Safe
exploitation is possible in the game by taking advantage of that particular strategy.
We define a formal notion of gifts, which is more general than iteratively-weakly-
dominated strategies, and show that safe opponent exploitation is possible specifically
in games in which such gifts exist.

Next, we provide a full characterization of the set of safe exploitation strategies,
and we present several efficient algorithms for converting any opponent exploitation
architecture (that is arbitrarily exploitable) into a fully safe opponent exploitation pro-
cedure. One of our algorithms is similar to a procedure that guarantees safety in the
limit as the number of iterations goes to infinity [McCracken and Bowling 2004]; how-
ever, the algorithms in that paper can be arbitrarily exploitable in the finitely-repeated
game setting, which is what we are interested in. The main idea of our algorithm is

1We thank Vince Conitzer for pointing this out to us.
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to play an ε-safe best response (a best response subject to the constraint of having
exploitability at most ε) at each time step rather than a full best response, where ε
is determined by the total amount of gifts obtained thus far from the opponent. Safe
best responses have also been studied in the context of Texas Hold’em poker [Johanson
et al. 2007], though that work did not use them for online opponent exploitation. We
also present several other safe algorithms which alternate between playing an equilib-
rium and a best response depending on how much has been won so far in expectation.
Algorithms have been developed which guarantee ε-safety against specific classes of
opponents (stationary opponents and opponents with bounded memory) [Powers et al.
2007]; by contrast, our algorithms achieve full safety against all opponents.

It turns out that safe opponent exploitation is also possible in extensive-form games,
though we must redefine what strategies constitute gifts and must make pessimistic
assumptions about the opponent’s play in game states off the path of play. We present
efficient algorithms for safe exploitation in games of both perfect and imperfect infor-
mation, and fully characterize the space of safe strategies in these game models. We
also show when safe exploitation can be performed in the middle of a single iteration
of an extensive-form game. This may be useful when a mistake is observed early on.

We compare our algorithms experimentally on Kuhn poker [Kuhn 1950], a simplified
form of poker which is a canonical problem for testing game-solving algorithms and has
been used as a test problem for opponent-exploitation algorithms [Hoehn et al. 2005].
We observe that our algorithms obtain a significant improvement over the best equi-
librium strategy, while also guaranteeing safety in the worst case. Thus, in addition to
providing theoretical advantages over both minimax and fully-exploitative strategies,
safe opponent exploitation can be effective in practice.

The rest of the paper is organized as follows. In Section 2, we describe several al-
ternative uses of the approach, and its applicability to more general game classes,
such as infinitely-repeated, general-sum, and multi-player games. In Section 3, we
present game theory background. In Section 4, we define safety and present an ex-
ample of a game where safe exploitation is not possible, as well as a game where it
is possible. In Section 5, we give a full characterization of when safe exploitation is
possible, which turns out to coincide with games for which a gift strategy (which we
define) exists for the opponent. In Section 6, we present several new algorithms for
safely exploiting opponents, and show that prior algorithms are either unsafe or un-
exploitative. In Sections 7 and 8, we provide a full characterization of safe strategies
in strategic-form and extensive-form games (of both perfect and imperfect informa-
tion), respectively. In Section 9, we present experiments in an extensive-form game
of imperfect-information that demonstrate that our algorithms safely exploit subopti-
mal opponents significantly more than repeatedly playing the best stage-game Nash
equilibrium. Finally, we conclude and present future research directions in Section 10.

2. USES, APPLICABILITY, AND GENERALITY OF THE APPROACH
In this section we suggest two alternative uses of the approach, as well as discuss its
applicability and generality.

2.1. Two alternative uses of the methodology
We can view safe exploitation as a meta-algorithm that enforces the safety of any oppo-
nent exploitation procedure by ensuring that it does not risk too much at any point. An
opponent exploitation architecture consists of two components: 1) an opponent model-
ing algorithm, which takes as input the observations of both players’ actions (to the
extent that they are observable) and constructs a model of the opponent’s strategy,
and 2) a strategy selection algorithm, which takes the opponent model and the obser-
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vations as input and outputs an exploitative strategy. This strategy may not be safe in
general.

The first way to use our safe exploitation methodology is to obtain safety by cur-
tailing the strategies that the architecture may propose. This is depicted in Figure 1.

Opponent 
Modeling 
Algorithm 

Strategy 
Selection 
Algorithm 

Safety Enforcer 

Strategy Observations 

Fig. 1. Our safe exploitation methodology used as a meta-algorithm which makes any opponent exploitation
architecture safe. An opponent exploitation architecture consists of two components: an opponent modeling
algorithm and a strategy selection algorithm.

The second way to use the methodology is to view our safe exploitation algorithms
as alternatives to standard exploitation algorithms within the opponent exploitation
paradigm. Our safe algorithms still work with any opponent modeling algorithm to
construct an opponent model, but replace a potentially unsafe strategy selection al-
gorithm with a new algorithm that guarantees safety. This is depicted in Figure 2.

2.2. Bounds suffice for using the methodology
We expect our algorithms to be useful in practice in many real-world domains, for ex-
ample, in (cyber)security games. It has been observed that human adversaries in such
domains often behave irrationally, and there can be significant benefits to exploiting
their mistakes [Blythe et al. 2011; Pita et al. 2010, 2012]. However, the cost of mak-
ing a mistake ourselves is extremely high in such domains, for example, since human
lives could be at stake. Algorithms that can exploit irrational opponents while still
guaranteeing safety would be very desirable.

Furthermore, perhaps the main criticism of security games to date is that the nu-
meric payoffs for the attacker and defender are questionable. Our approach does not
require an exact model of the game. We only need a lower bound on the gifts (mistakes)
that the opponent has given us and an upper bound on the loss from our exploitation.
This would be especially useful in security games, since it guarantees robustness even
when the game models are not accurate. (Another advantage is that our approach ap-
plies also to multi-step games, which are a richer, more powerful framework than the
security game models used to date—Stackelberg games—where the defender moves
once and then the attacker moves once.)
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Opponent 
Modeling 
Algorithm 

Strategy 
Selection 
Algorithm 

Strategy 

Safe  
Strategy 
Selection 
Algorithm 

Observations 

Strategy 

Fig. 2. Our safe exploitation methodology used to replace the strategy selection component while retaining
the opponent modeling component of any opponent exploitation architecture.

2.3. The methodology also applies to infinitely repeated, general-sum, and multiplayer
games

Our methodology also applies straightforwardly to two-player zero-sum infinitely re-
peated games. While some of our algorithms specifically depend on the finite time
horizon and will not extend to the infinite setting, several of them do not, and will ap-
ply straightforwardly. In particular, the algorithm that is most aggressive (among safe
algorithms) and performed best in the experiments does not rely on a finite horizon.

For general-sum and multiplayer games, our methodology applies straightforwardly
if we replace the minimax value with the maximin value (i.e., maximizing our expected
payoff minimized over the other’s strategies) in our algorithms. In two-player zero-sum
games, these two values coincide, and any equilibrium strategy guarantees at least
this value in expectation in the worst case. In general-sum and multiplayer games,
these properties do not hold; however, in many settings it could be very desirable to
exploit opponents’ mistakes while still guaranteeing the maximin value. For example,
this could be extremely useful in security domains, which are often modeled as non-
zero-sum games [Korzhyk et al. 2011]—since safety is of high importance.

2.4. Safe exploitation can be viewed as selection among equilibria of the repeated game
As we discuss in Section 4, in repeated games, the set of safe strategies is the same as
the set of maximin strategies in the repeated game (and therefore, the set of Nash equi-
libria in the case where the repeated game is a two-player zero-sum game). Thus, one
can view our safe exploitation algorithms as procedures for selecting among equilibria
of the repeated game. In the context of non-repeated games, our work can be viewed as
equilibrium selection in the non-repeated game. However, in both repeated and non-
repeated games, as we will discuss in Section 8.3, our equilibrium refinement differs
from subgame perfection [Selten 1965], and thus also from all the usual equilibrium
refinements, which are further refinements of subgame perfection.

3. GAME THEORY BACKGROUND
In this section, we briefly review relevant definitions and prior results from game the-
ory and game solving.
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3.1. Strategic-form games
The most basic game representation, and the standard representation for simul-
taneous-move games, is the strategic form. A strategic-form game (aka matrix game
aka normal-form game) consists of a finite set of players N, a space of pure strategies
Si for each player, and a utility function ui : ×Si → R for each player. Here ×Si denotes
the space of strategy profiles—vectors of pure strategies, one for each player.

The set of mixed strategies of player i is the space of probability distributions over
his pure strategy space Si. We will denote this space by Σi. Define the support of a
mixed strategy to be the set of pure strategies played with nonzero probability. If the
sum of the payoffs of all players equals zero at every strategy profile, then the game
is called zero sum. In this paper, we will be primarily concerned with two-player zero-
sum games. If the players are following strategy profile σ, we let σ−i denote the strat-
egy taken by player i’s opponent, and we let Σ−i denote the opponent’s entire mixed
strategy space. Two-player zero-sum strategic-form games are often represented as a
matrix, where the element in row m column n corresponds to player 1’s payoff when
he plays his m-th pure strategy and player 2 plays his n-th pure strategy.

3.2. Extensive-form games
An extensive-form game is a general model of multiagent decision making with poten-
tially sequential and simultaneous actions and imperfect information. As with perfect-
information games, extensive-form games consist primarily of a game tree; each non-
terminal node has an associated player (possibly chance) that makes the decision at
that node, and each terminal node has associated utilities for the players. Additionally,
game states are partitioned into information sets, where the player whose turn it is to
move cannot distinguish among the states in the same information set. Therefore, in
any given information set, a player must choose actions with the same distribution at
each state contained in the information set. If no player forgets information that he
previously knew, we say that the game has perfect recall. A (behavioral) strategy for
player i, σi ∈ Σi, is a function that assigns a probability distribution over all actions at
each information set belonging to i.

3.3. Nash equilibria
Player i’s best response to σ−i is any strategy in

arg max
σ′
i
∈Σi

ui(σ
′
i, σ−i).

A Nash equilibrium is a strategy profile σ such that σi is a best response to σ−i for all i.
An ε-equilibrium is a strategy profile in which each player achieves a payoff of within
ε of his best response.

In two player zero-sum games, we have the following result, which is known as the
minimax theorem [von Neumann 1928; Osborne and Rubinstein 1994]:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

We refer to v∗ as the value of the game to player 1. Sometimes we will write vi as the
value of the game to player i. Any equilibrium strategy for a player will guarantee an
expected payoff of at least the value of the game to that player.

Define the exploitability of σi to be the difference between the value of the game and
the performance of σi against its nemesis, formally:

expl(σi) = vi −min
σ′−i

ui(σi, σ
′
−i).
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Since there always exists a nemesis that is a pure strategy, this expression is equal to
vi−mins−i∈S−i ui(σi, s−i). For any ε ≥ 0, define SAFE(ε) ⊆ Σi to be the set of strategies
with exploitability at most ε. The set SAFE(ε) is defined by linear constraints: σi ∈
SAFE(ε) if and only if ui(σi, s−i) ≥ vi− ε for all s−i ∈ S−i. Define an ε-safe best response
of player i to σ−i to be any strategy in

argmaxσi∈ SAFE(ε)ui(σi, σ−i).

All finite games have at least one Nash equilibrium [Nash 1951]. In two-player zero-
sum strategic-form games, a Nash equilibrium can be found efficiently by linear pro-
gramming. In the case of zero-sum extensive-form games with perfect recall, there are
efficient techniques for finding an equilibrium, such as linear programming [Koller
et al. 1994]. An ε-equilibrium can be found in even larger games via algorithms such
as generalizations of the excessive gap technique [Hoda et al. 2010] and counterfactual
regret minimization [Zinkevich et al. 2007]. The latter two algorithms scale to games
with approximately 1012 game tree states, while the most scalable current general-
purpose linear programming technique (CPLEX’s barrier method) scales to games with
around 108 states. By contrast, full best responses can be computed in time linear in
the size of the game tree, while the best known techniques for computing ε-safe best re-
sponses have running times roughly similar to an equilibrium computation [Johanson
et al. 2007].

3.4. Repeated games
In repeated games, the stage game is repeated for a finite number T of iterations. At
each iteration, players can condition their strategies on everything that has been ob-
served so far. In strategic-form games, this generally includes the full mixed strategy
of the agent in all previous iterations, as well as all actions of the opponent (though
not his full strategy). In extensive-form games, generally only the actions of the op-
ponent along the path of play are observed; in games with imperfect information, the
opponent’s private information may also be observed in some situations.

4. SAFETY
One desirable property of a strategy for a repeated game is that it is safe:

Definition 4.1. A safe strategy for a repeated game is a strategy that guarantees a
worst-case payoff of at least vi per period in expectation.

The set of safe strategies is the same as the set of minimax strategies in the full re-
peated game. Clearly playing a (stage-game) minimax strategy at each iteration is
safe, since it guarantees at least vi in each iteration. However, a minimax strategy
may fail to maximally exploit a suboptimal opponent. On the other hand, deviating
from stage-game equilibrium in an attempt to exploit a suboptimal opponent could
lose the guarantee of safety and may result in an expected payoff below the value of
the game against a deceptive opponent (or if the opponent model is incorrect). Thus, a
natural question to consider is whether there exist strategies that are safe, yet deviate
from stage-game equilibrium strategies (in order to exploit an opponent’s mistakes).

4.1. A game in which safe exploitation is not possible
Consider the classic game of Rock-Paper-Scissors (RPS), whose payoff matrix is de-
picted in Figure 3. The unique equilibrium σ∗ is for each player to randomize equally
among all three pure strategies.

Now suppose that our opponent has played Rock in each of the first 10 iterations
(while we have played according to σ∗). We may be tempted to try to exploit him by
playing the pure strategy Paper at the 11th iteration. However, this would not be safe;
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R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

Fig. 3. Payoff matrix of Rock-Paper-Scissors.

it is possible that he has in fact been playing his equilibrium strategy all along, and
that he just played Rock each time by chance (this will happen with probability 1

310 ).
It is also possible that he will play Scissors in the next round (perhaps to exploit the
fact that he thinks we are more likely to play Paper having observed his actions).
Against such a strategy, we would actually have a negative expected total profit—0 in
the first 10 rounds and -1 in the 11th. Thus, our strategy would not be safe. By similar
reasoning, it is easy to see that any deviation from σ∗ will not be safe, and that safe
exploitation is not possible in RPS.

4.2. A game in which safe exploitation is possible
Now consider a variant of RPS in which player 2 has an additional pure strategy T. If
he plays T, then we get a payoff of 4 if we play R, and 3 if we play P or S. The payoff
matrix of this new game RPST is given in Figure 4. Clearly the unique equilibrium
is still for both players to randomize equally between R, P, and S. Now suppose we
play our equilibrium strategy in the first game iteration, and the opponent plays T; no
matter what action we played, we receive a payoff of at least 3. Suppose we play the
pure strategy R in the second round in an attempt to exploit him (since R is our best
response to T). In the worst case, our opponent will exploit us in the second round by
playing P, and we will obtain payoff -1. But combined over both time steps, our payoff
will be positive no matter what the opponent does at the second iteration. Thus, our
strategy constituted a safe deviation from equilibrium. This was possible because of
the existence of a ‘gift’ strategy for the opponent; no such gift strategy is present in
standard RPS.

R P S T
R 0 -1 1 4
P 1 0 -1 3
S -1 1 0 3

Fig. 4. Payoff matrix of RPST.

5. CHARACTERIZING GIFTS
What exactly constitutes a gift? Does it have to be a strictly-dominated pure strat-
egy, like T in the preceding example? What about weakly-dominated strategies? What
about iterated dominance, or dominated mixed strategies? In this section we first pro-
vide some negative results which show that several natural candidate definitions of
gifts strategies are not appropriate. Then we provide a formal definition of gifts and
show that safe exploitation is possible if and only if such gift strategies exist.

Recent work has asserted the following:2

ASSERTION 1. [Waugh 2009] An equilibrium strategy makes an opponent indiffer-
ent to all non-[weakly]-iteratively-dominated strategies. That is, to tie an equilibrium

2This is made as a statement of fact in prior work [Waugh 2009], and not in the form of an assertion.
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strategy in expectation, all one must do is play a non-[weakly]-iteratively-dominated
strategy.

This assertion would seem to imply that gifts correspond to strategies that put
weight on pure strategies that are weakly iteratively dominated. However, consider
the game shown in Figure 5.

L M R
U 3 2 10
D 2 3 0

Fig. 5. A game with a gift strategy that is not weakly iteratively dominated.

It can easily be shown that this game has a unique equilibrium, in which P1 plays
U and D with probability 1

2 , and P2 plays L and M with probability 1
2 . The value

of the game to player 1 is 2.5. If player 1 plays his equilibrium strategy and player
2 plays R, player 1 gets expected payoff of 5, which exceeds his equilibrium payoff;
thus R constitutes a gift, and player 1 can safely deviate from equilibrium to try to
exploit him. But R is not dominated under any form of dominance. This disproves the
assertion, and causes us to rethink our notion of gifts.

PROPOSITION 5.1. It is possible for a strategy that survives iterated weak domi-
nance to obtain expected payoff worse than the value of the game against an equilibrium
strategy.

We might now be tempted to define a gift as a strategy that is not in the support of
any equilibrium strategy.

L R
U 0 0
D -2 1

Fig. 6. Strategy R is not in the support of an equilibrium for player 2, but is also not a gift.

However, the game in Figure 6 shows that it is possible for a strategy to not be in the
support of an equilibrium and also not be a gift (since if P1 plays his only equilibrium
strategy U, he obtains 0 against R, which is the value of the game).

Now that we have ruled out several candidate definitions of gift strategies, we now
present our new definition, which we relate formally to safe exploitation in Proposi-
tion 5.3.

Definition 5.2. A strategy σ−i is a gift strategy if there exists an equilibrium strat-
egy σ∗i for the other player such that σ−i is not a best response to σ∗i .3

3This definition of gift strategies coincides with the strategies for the opponent specified by the third step
of a procedure for selecting a particular equilibrium of a (one-shot) two-player zero-sum game, known as
Dresher’s procedure [Dresher 1961; van Damme 1987]. The procedure assumes the opponent will make
a mistake (i.e., by playing a gift strategy), then selects a strategy that maximizes the minimum gain re-
sulting from a possible mistake of the opponent. It has been shown that the strategies selected by this
procedure coincide with the proper equilibria of the game [van Damme 1987], an equilibrium refinement
concept defined by Myerson [1978]. Thus, proper equilibrium strategies exploit all gift strategies, and one
could equivalently define gift strategies as strategies that are not a best response to a proper equilibrium
strategy of the opponent. One could view proper equilibria, as well as some other equilibrium refinement
concepts (e.g., trembling-hand perfect equilibrium) as approaches for exploiting mistakes of the opponent
in (non-repeated) games—although they are typically thought of as means to prescribe action probabilities
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When such a strategy σ−i exists, player i can win an immediate profit beyond vi against
an opponent who plays σ−i by simply playing the safe strategy σ∗i ; then he can play
a potentially unsafe strategy (that has exploitability below some limit) in future it-
erations in an attempt to exploit perceived weaknesses of the opponent. Using this
definition, RPS and the game depicted in Figure 6 have no gift strategies for either
player, while T is a gift for player 2 in RPST, and R is a gift for player 2 in the game
depicted in Figure 5.

PROPOSITION 5.3. Assuming we are not in a trivial game in which all of player i’s
strategies are minimax strategies, then non-stage-game-equilibrium safe strategies exist
if and only if there exists at least one gift strategy for the opponent.

PROOF. Suppose some gift strategy σ−i exists for the opponent. Then there exists
an equilibrium strategy σ∗i such that ui(σ∗i , σ−i) > vi. Let ε = ui(σ

∗
i , σ−i)− vi. Let s′i be

a non-equilibrium strategy for player i. Suppose player i plays σ∗i in the first round,
and in the second round does the following: if the opponent did not play σ−i in the
first round, he plays σ∗i in all subsequent rounds. If the opponent did play σ−i in the
first round, then in the second round he plays σ̂i, where σ̂i is a mixture between s′i
and σ∗i that has exploitability in (0, ε) (we can always obtain such a mixture by putting
sufficiently much weight on σ∗i ), and he plays σ∗i in all subsequent rounds. Such a
strategy constitutes a safe strategy that deviates from stage-game equilibrium.

Now suppose no gift strategy exists for the opponent, and suppose we deviate from
equilibrium for the first time in some iteration t′. Suppose the opponent plays a neme-
sis strategy at time step t′ (to the strategy we are playing at time step t′), and plays
an equilibrium strategy at all future time steps. Then we will win less than v∗ in ex-
pectation against his strategy. Therefore, we cannot safely deviate from equilibrium.

The following procedure gives an efficient algorithm, consisting of solving two lin-
ear programs (LPs), to determine whether a gift strategy for the opponent exists in a
two-player zero-sum strategic-form game (and therefore whether safe exploitation is
possible).

(1) Compute an equilibrium by solving the LP; this determines the value of the game
to player i, vi.

(2) Solve the LP that maximizes the expected payoff of player i against the uniform
random strategy of the opponent, subject to the constraints that player i’s strategy
is an equilibrium (these constraints will use vi). Let v̂ denote the optimal objective
value of this LP.

for information sets that are reached with zero probability in equilibrium. In contrast, our main focus is on
repeated games, although our techniques apply to single-shot games as well. Furthermore, we will show in
Section 8.3 that even in single-shot games, our safe exploitative strategies differ from the strategies pre-
scribed by subgame perfection [Selten 1965], and thus our approach differs from all prior refinements that
are further refinements of subgame perfection. So, our work can be viewed as providing novel equilibrium
selection concepts and procedures. In broad strokes, at every point in the game, prior refinements try to play
as well as possible against an (almost) rational opponent (e.g., one who “trembles” with small probability),
while ours exploits an opponent model (which does not have to be rational in any way) as much as possible
subject to safety. So, our approach can exploit the opponent significantly more than prior equilibrium refine-
ments. (Some of the prior refinements also assume that we will “tremble” with small probability ourselves;
this is not motivated by exploitation, but rather so that we know how to respond to actions further down
the tree at information sets that would otherwise be reached with probability zero.) Another difference is
that in our technique, a safe, maximally exploitative strategy can be computed in polynomial time both in
theory and practice. In contrast, while proper equilibrium strategies can be computed in polynomial time in
theory for both strategic-form and extensive-form games, those polynomial-time algorithms are numerically
unstable in practice [Miltersen and Sørensen 2006, 2008].
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(3) If v̂ > vi, then at least one gift strategy for the opponent exists; otherwise no gift
strategies exist.

PROPOSITION 5.4. The above procedure determines in polynomial time whether a
gift strategy for the opponent exists in a given two-player zero-sum game.

PROOF. Suppose a gift strategy s−i for the opponent exists. Then there exists an
equilibrium strategy σ∗i such that ui(σ∗i , s−i) > vi. For every other strategy t−i for
the opponent, we have ui(σ∗i , t−i) ≥ vi. Thus, player i’s expected payoff of playing σ∗i
against the uniform random strategy will strictly exceed vi, and v̂ > vi.

Now suppose no gift strategies exist. Then for all equilibrium strategies σ∗i and all
strategies s−i for the opponent, we have ui(σ∗i , s−i) = vi. Thus, all equilibrium strate-
gies will obtain expected payoff vi against the uniform random strategy, and we have
v̂ = vi.

The procedure is polynomial time since it consists of solving LPs of polynomial size
(the LP formulations for computing a best response as well as the equilibrium con-
straints are described by, for example, Koller et al. [1994]).

6. SAFETY ANALYSIS OF SOME NATURAL EXPLOITATION ALGORITHMS
Now that we know it is possible to safely deviate from equilibrium in certain games,
can we construct efficient procedures for implementing such safe exploitative strate-
gies? In this section we analyze the safety of several natural exploitation algorithms.
In short, we will show that all prior algorithms and natural other candidate algo-
rithms are either unsafe or unexploitative. We introduce algorithms that are safe and
exploitative.

6.1. Risk What You’ve Won (RWYW)
The “Risk What You’ve Won” algorithm (RWYW) is quite simple and natural; essen-
tially, at each iteration it risks only the amount of profit won so far. More specifically,
at each iteration t, RWYW plays an ε-safe best response to a model of the opponent’s
strategy (according to some opponent modeling algorithm M ), where ε is our current
cumulative payoff minus (t− 1)v∗. Pseudocode is given in Algorithm 1.

Algorithm 1 Risk What You’ve Won (RWYW)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(max{kt,0})M(π)

Play action ati according to πt
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(a

t
i, a

t
−i)− v∗

end for

PROPOSITION 6.1. RWYW is not safe.

PROOF. Consider RPS, and assume our opponent modeling algorithm M says that
the opponent will play according to his distribution of actions observed so far. Since
initially k1 = 0, we must play our equilibrium strategy σ∗ at the first iteration, since
it is the only strategy with exploitability of 0. Without loss of generality, assume the
opponent plays R in the first iteration. Our expected payoff in the first iteration is 0,
since σ∗ has expected payoff of 0 against R (or any strategy). Suppose we had played R

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January 2015.



A:12 S. Ganzfried and T. Sandholm

ourselves in the first iteration. Then we would have obtained an actual payoff of 0, and
would set k2 = 0. Thus we will be forced to play σ∗ at the second iteration as well. If we
had played P in the first round, we would have obtained a payoff of 1, and set k2 = 1.
We would then set π2 to be the pure strategy P, since our opponent model dictates the
opponent will play R again, and P is the unique k2-safe best response to R. Finally, if
we had played S in the first round, we would have obtained an actual payoff of -1, and
would set k2 = −1; this would require us to set π2 equal to σ∗.

Now, suppose the opponent had actually played according to his equilibrium strategy
in iteration 1, plays the pure strategy S in the second round, then plays the equilibrium
in all subsequent rounds. As discussed above, our expected payoff at the first iteration
is zero. Against this strategy, we will actually obtain an expected payoff of -1 in the
second iteration if the opponent happened to play R in the first round, while we will
obtain an expected of 0 in the second round otherwise. So our expected payoff in the
second round will be 1

3 · (−1) + 2
3 · 0 = − 1

3 . In all subsequent rounds our expected payoff
will be zero. Thus our overall expected payoff will be − 1

3 , which is less than the value
of the game; so RWYW is not safe.

RWYW is not safe because it does not adequately differentiate between whether
profits were due to skill (i.e., from gifts) or to luck.

6.2. Risk What You’ve Won in Expectation (RWYWE)
A better approach than RWYW would be to risk the amount won so far in expectation.
Ideally we would like to do the expectation over both our randomization and our oppo-
nent’s, but this is not possible in general since we only observe the opponent’s action,
not his full strategy. However, it would be possible to do the expectation only over our
randomization. For example, suppose we play according to the equilibrium σ∗ at one
iteration of RPS, and end up selecting action R, while the opponent selects action P;
then our actual payoff is -1, but our expected payoff (over our own randomization) is
0. It turns out that we can indeed achieve safety using this procedure, which we call
RWYWE. Pseudocode is given in Algorithm 2. Here ui(πti , at−i) denotes our expected
payoff of playing our mixed strategy πti against the opponent’s observed action at−i.
The difference between RWYWE and RWYW is in the step for updating kt: RWYW
uses ui(ati, at−i) while RWYWE uses ui(πti , at−i).

Algorithm 2 Risk What You’ve Won in Expectation (RWYWE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

LEMMA 6.2. Let π be updated according to RWYWE, and suppose the opponent
plays according to π−i. Then for all n ≥ 0,

E[kn+1] =

n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.
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PROOF. Since k1 = 0, the statement holds for n = 0. Now suppose the statement
holds for all t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , an+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , an+1

−i )]− E[v∗]

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , an+1

−i )]− v∗

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=

n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

LEMMA 6.3. Let π be updated according to RWYWE. Then for all t ≥ 1, kt ≥ 0.

PROOF. By definition, k1 = 0. Now suppose kt ≥ 0 for some t ≥ 1. By construction,
πt has exploitability at most kt. Thus, we must have

ui(π
t
i , a

t
−i) ≥ v∗ − kt.

Thus kt+1 ≥ 0 and we are done.

PROPOSITION 6.4. RWYWE is safe.

PROOF. By Lemma 6.2,
T∑
t=1

ui(π
t
i , π

t
−i) = E[kT+1] + Tv∗.

By Lemma 6.3, kT+1 ≥ 0, and therefore E[kT+1] ≥ 0. So
T∑
t=1

ui(π
t
i , π

t
−i) ≥ Tv∗,

and RWYWE is safe.

RWYWE is similar to the Safe Policy Selection Algorithm (SPS) [McCracken and
Bowling 2004]. The main difference is that SPS uses an additional decay function
f : N→ R setting k1 ← f(1) and using the update step

kt+1 ← kt + f(t+ 1) + ui(π
t, at−i)− v∗.

They require f to satisfy the following properties

(1) f(t) > 0 for all t

(2) limT→∞

∑T

t=1
f(t)

T = 0

In particular, they obtained good experimental results using f(t) = β
t . They are able to

show that SPS is safe in the limit as T → ∞;4 however SPS is arbitrarily exploitable

4We recently discovered a mistake in their proof of safety in the limit; however, the result is still correct. A
corrected proof is available at http://webdocs.cs.ualberta.ca/∼bowling/papers/04aaai-fallsymp-errata.pdf.

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January 2015.



A:14 S. Ganzfried and T. Sandholm

in finitely repeated games. Furthermore, even in infinitely repeated games, SPS can
lose a significant amount; it is merely the average loss that approaches zero. We can
think of RWYWE as SPS but using f(t) = 0 for all t.

6.3. Best equilibrium strategy
Given an opponent modeling algorithm M , we could play the best Nash equilibrium
according to M at each time step:

πt = argmaxπ∈ SAFE(0)M(π).

This would clearly be safe, but can only exploit the opponent as much as the best
equilibrium can, and potentially leaves a lot of exploitation on the table.

6.4. Regret minimization between an equilibrium and an opponent exploitation algorithm
We could use a no-regret algorithm (e.g., Exp3 [Auer et al. 2002]) to select between
an equilibrium and an (unsafe) opponent exploitation algorithm at each iteration. As
prior work has pointed out [McCracken and Bowling 2004], this would be safe in the
limit as T → ∞. However, this would not be safe in finitely-repeated games. Even in
the infinitely-repeated case, no-regret algorithms only guarantee that average regret
goes to 0 in the limit; in fact, total regret can still grow arbitrarily large.

6.5. Regret minimization in the space of equilibria
Regret minimization in the space of equilibria is safe, but again would potentially
miss out on a lot of exploitation against suboptimal opponents. This procedure was
previously used to exploit opponents in Kuhn poker [Hoehn et al. 2005].

6.6. Best equilibrium followed by full exploitation (BEFFE)
The BEFFE algorithm works as follows. We start off playing the best equilibrium strat-
egy according to some opponent model M . Then we switch to playing a full best re-
sponse for all future iterations if we know that doing so will keep our strategy safe in
the full game (in other words, if we know we have accrued enough gifts to support full
exploitation in the remaining iterations). Specifically, we play a full best response at
time step t if the amount of gifts we have accumulated, kt, is at least (T − t+ 1)(v∗− ε),
where ε is the exploitability of a full best response. Otherwise, we play the best equi-
librium. Pseudocode is given in Algorithm 3.

This algorithm is similar to the DBBR algorithm [Ganzfried and Sandholm 2011],
which plays an equilibrium for some fixed number of iterations, then switches to full
exploitation. However, BEFFE automatically detects when this switch should occur,
which has several advantages. First, it is one fewer parameter required by the algo-
rithm. More importantly, it enables the algorithm to guarantee safety.

PROPOSITION 6.5. BEFFE is safe.

PROOF. Follows by same reasoning as proof of safety of RWYWE, since we are play-
ing a strategy with exploitability at most kt at each iteration.

One possible advantage of BEFFE over RWYWE is that it potentially saves up ex-
ploitability until the end of the game, when it has the most accurate information on
the opponent’s strategy (while RWYWE does exploitation from the start when the op-
ponent model has noisier data). On the other hand, BEFFE possibly misses out on
additional rounds of exploitation by waiting until the end, since it may accumulate ad-
ditional gifts in the exploitation phase that it did not take into account. Furthermore,
by waiting longer before turning on exploitation, one’s experience of the opponent can
be from the wrong part of the space; that is, the space that is reached when playing
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Algorithm 3 Best Equilibrium Followed by Full Exploitation (BEFFE)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if kt >= (T − t+ 1)(v∗ − ε) then
πt ← πtBR

else
πt ← argmaxπ∈ SAFE(0)M(π)

end if
Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

equilibrium but not when exploiting. Consequently, the exploitation might not be as
effective because it may be based on less data about the opponent in the pertinent part
of the space. This issue has been observed in opponent exploitation in Heads-Up Texas
Hold’em poker [Ganzfried and Sandholm 2011].

6.7. Best equilibrium and full exploitation when possible (BEFEWP)
BEFEWP is similar to BEFFE, but rather than waiting until the end of the game, we
play a full best response at each iteration where its exploitability is below kt; otherwise
we play the best equilibrium. Pseudocode is given in Algorithm 4.

Algorithm 4 Best Equilibrium and Full Exploitation When Possible (BEFEWP)
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πtBR ← argmaxπM(π)
ε← v∗ −minπ−i

ui(π
t
BR, π−i)

if ε <= kt then
πt ← πtBR

else
πt ← argmaxπ∈ SAFE(0)M(π)

end if
Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
kt+1 ← kt + ui(π

t
i , a

t
−i)− v∗

end for

Like RWYWE, BEFEWP will continue to exploit a suboptimal opponent throughout
the match provided the opponent keeps giving us gifts. It also guarantees safety, since
we are still playing a strategy with exploitability at most kt at each iteration. However,
playing a full best response rather than a safe best response early in the match may
not be the greatest idea, since our data on the opponent is still quite noisy.
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PROPOSITION 6.6. BEFEWP is safe.

7. A FULL CHARACTERIZATION OF SAFE STRATEGIES IN STRATEGIC-FORM GAMES
In the previous section we saw a variety of opponent exploitation algorithms, some
which are safe and some which are unsafe. In this section, we fully characterize the
space of safe algorithms. Informally, it turns out that an algorithm will be safe if at
each time step it selects a strategy with exploitability at most kt, where k is updated
according to the RWYWE procedure. This does not mean that RWYWE is the only safe
algorithm, or that safe algorithms must explicitly use the given update rule for kt; it
just means that the exploitability at each time step must be bounded by the particular
value kt, assuming that k had hypothetically been updated according to the RWYWE
rule.5

Definition 7.1. An algorithm for selecting strategies is expected-profit-safe if it sat-
isfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the rule
kt+1 ← kt + ui(π

t, at−i)− v∗.

PROPOSITION 7.2. A strategy π (for the full game, not the stage game) is safe if and
only if it is expected-profit-safe.

PROOF. If π is expected-profit-safe, then it follows that π is safe by similar reasoning
to the proof of Proposition 6.4.

Now suppose π is safe, but at some iteration t′ selects πt
′

with exploitability exceed-
ing kt

′
, as defined in Definition 7.1 (assume t′ is the first such iteration); let e′ denote

the exploitability of πt
′
. Suppose the opponent had been playing the pure strategy that

selects action at−i with probability 1 at each iteration t for all t < t′, and suppose he
plays his nemesis strategy to πt

′
at time step t′ (and follows a minimax strategy at all

future iterations). Then our expected payoff in the first t′ iterations is
t′−1∑
t=1

ui(π
t, at−i) + v∗ − e′

<

t′−1∑
t=1

ui(π
t, at−i) + v∗ − kt

′

=

t′−1∑
t=1

ui(π
t, at−i) + v∗ −

t′−1∑
t=1

ui(π
t, at−i)− (t′ − 1)v∗

 (1)

= t′v∗.

In Equation 1, we use Lemma 6.2 and the fact that E[kt
′
] = kt

′
, since the opponent

played a deterministic strategy in the first t′ − 1 rounds. We will obtain payoff at most

5We could generalize the approaches to play strategies in SAFE(f(kt)) at each time step rather than
SAFE(kt), where f(kt) ≤ kt is an arbitrary function that is a potentially lower upper bound on the ex-

ploitability. This would result in a larger worst-case payoff guarantee when f(kt) < kt, but potentially at
the expense of exploitation (since we are now restricting our space of strategies to a smaller set). In the op-
posite direction, we could also select strategies in SAFE(kt + δ) for δ > 0; this would lead to strategies that
are approximately safe (within an additive factor δ), and potentially achieve higher levels of exploitation.
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v∗ at each future iteration, since the opponent is playing a minimax strategy. So π is
not safe and we have a contradiction; therefore π must be expected-profit-safe, and we
are done.

8. SAFE EXPLOITATION IN EXTENSIVE-FORM GAMES
In extensive-form games, we cannot immediately apply RWYWE (or the other safe
algorithms that deviate from equilibrium), since we do not know what the opponent
would have done at game states off the path of play (and thus cannot evaluate the
expected payoff of our mixed strategy).

8.1. Extensive-form games of perfect information
In extensive-form games of perfect information, it turns out that to guarantee safety
we must assume pessimistically that the opponent is playing a nemesis off the path of
play (while playing his observed action on the path of play). This pessimism potentially
limits our amount of exploitation when the opponent is not playing a nemesis, but is
needed to guarantee safety. We present an extensive-form version of RWYWE below as
Algorithm 5. As in the strategic-form case, the time step t refers to the iteration of the
repeated game (not to the depth of the tree within a single iteration); the strategies
refer to behavioral strategies for a single iteration of the full extensive-form game.

Algorithm 5 Extensive-Form RWYWE
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i according to unobserved distribution πt−i
Update M with opponent’s actions, at−i
τ t−i ← strategy for the opponent that plays at−i on the path of play, and plays a best
response to πt off the path of play
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

LEMMA 8.1. Let π be updated according to Extensive-Form RWYWE, and suppose
the opponent plays according to π−i. Then for all n ≥ 0,

E[kn+1] ≤
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.

PROOF. Since k1 = 0, the statement holds for t = 0. Now suppose the statement
holds for all t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , τn+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , τn+1

−i )]− E[v∗]

≤

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , τn+1

−i )]− v∗
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≤

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=

n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

LEMMA 8.2. Let π be updated according to Extensive-Form RWYWE. Then for all
t ≥ 1, kt ≥ 0.

PROOF. By definition, k1 = 0. Now suppose kt ≥ 0 for some t ≥ 1. By construction,
πt has exploitability at most kt. Thus, we must have

ui(π
t
i , τ

t
−i) ≥ v∗ − kt.

Thus kt+1 ≥ 0 and we are done.

PROPOSITION 8.3. Extensive-Form RWYWE is safe.

PROOF. By Lemma 8.1,
T∑
t=1

ui(π
t
i , π

t
−i) ≥ E[kT+1] + Tv∗.

By Lemma 8.2, kT+1 ≥ 0, and therefore E[kT+1] ≥ 0. So
T∑
t=1

ui(π
t
i , π

t
−i) ≥ Tv∗,

and Extensive-Form RWYWE is safe.

We now provide a full characterization of safe exploitation algorithms in extensive-
form games—similarly to what we did for strategic-form games earlier in the paper.

Definition 8.4. An algorithm for selecting strategies in extensive-form games of per-
fect information is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same
rule as Extensive-Form RWYWE.

LEMMA 8.5. Let π be updated according to Extensive-Form RWYWE, and suppose
the opponent plays according to π−i = τ−i, where τ−i is defined in Algorithm 5. Then
for all n ≥ 0,

E[kn+1] =

n∑
t=1

ui(π
t
i , π

t
−i)− nv∗.

PROOF. Since k1 = 0, the statement holds for t = 0. Now suppose the statement
holds for all t ≤ n, for some n ≥ 0. Then

E[kn+2] = E[kn+1 + ui(π
n+1
i , τn+1

−i )− v∗]
= E[kn+1] + E[ui(π

n+1
i , τn+1

−i )]− E[v∗]
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=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ E[ui(π

n+1
i , τn+1

−i )]− v∗

=

[
n∑
t=1

ui(π
t
i , π

t
−i)− nv∗

]
+ ui(π

n+1
i , πn+1

−i )− v∗

=

n+1∑
t=1

ui(π
t
i , π

t
−i)− (n+ 1)v∗

PROPOSITION 8.6. A strategy π in an extensive-form game of perfect information is
safe if and only if it is expected-profit-safe.

PROOF. If π is expected-profit-safe, then it follows that π is safe by similar reasoning
to the proof of Proposition 8.3.

Now suppose π is safe, but at some iteration t′ selects πt
′

with exploitability exceed-
ing kt

′
, as defined in Definition 8.4; let e′ denote the exploitability of πt

′
. Suppose the

opponent had been playing the pure strategy that selects action at−i with probability 1
at each iteration t for all t < t′, and suppose he plays his nemesis strategy at time step
t′ (and follows a minimax strategy at all future iterations). Then our expected payoff is

t′−1∑
t=1

ui(π
t, at−i) + v∗ − e′

<

t′−1∑
t=1

ui(π
t, at−i) + v∗ − kt

′

=

t′−1∑
t=1

ui(π
t, at−i) + v∗ −

t′−1∑
t=1

ui(π
t, at−i)− (t′ − 1)v∗


= t′v∗.

In Equation 2, we use Lemma 8.5 and the fact that E[kt
′
] = kt

′
, since the opponent

played a deterministic strategy in the first t′ − 1 rounds. We will obtain payoff at most
v∗ at each future iteration, since the opponent is playing a minimax strategy. So π is
not safe and we have a contradiction; therefore π must be profit-safe, and we are done.

8.2. Extensive-form games of imperfect information
In extensive-form games of imperfect information, not only do we not see the oppo-
nent’s action off of the path of play, but sometimes we do not even see his private
information. For example, in an auction we may not see the opponent’s valuation, and
in a poker hand we will not see the opponent’s private cards if he folds (while we will
see them if neither player folds during the hand). The extent to which his private in-
formation is revealed will in general depend on the rules and information structure of
the game. We consider the two cases—when his private information is observed and
unobserved—separately.

8.2.1. Setting where the opponent’s private information is observed at the end of the game. When
the opponent’s private information is observed at the end of each game iteration, we
can play a procedure similar to Extensive-Form RWYWE. Here, we must pessimisti-
cally assume that the opponent would have played a nemesis at every information set
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off of the path of play (though we do not make any assumptions regarding his play
along the path of play other than that he played action at−i with observed private in-
formation θt−i). Pseudocode for this procedure is given in Algorithm 6.

Algorithm 6 Safe exploitation algorithm for extensive-form games of imperfect infor-
mation where opponent’s private information is observed at the end of the game
v∗ ← value of the game to player i
k1 ← 0
for t = 1 to T do
πt ← argmaxπ∈ SAFE(kt)M(π)

Play action ati according to πt
The opponent plays action at−i with observed private information θt−i, according to
unobserved distribution πt−i
Update M with opponent’s actions, at−i, and his private information, θt−i
τ t−i ← strategy for the opponent that plays a best response to πt subject to the
constraint that it plays at−i on the path of play with private information θt−i
kt+1 ← kt + ui(π

t
i , τ

t
−i)− v∗

end for

PROPOSITION 8.7. Algorithm 6 is safe.

PROOF. Follows by identical reasoning to the proof of Proposition 8.3, using the new
definition of τ .

Definition 8.8. An algorithm for selecting strategies in extensive-form games of im-
perfect information is expected-profit-safe if it satisfies the rule

πt ∈ SAFE(kt)

at each time step t from 1 to T , where initially k1 = 0 and k is updated using the same
rule as Algorithm 6.

PROPOSITION 8.9. A strategy π in an extensive-form game of imperfect information
is safe if and only if it is expected-profit-safe.

PROOF. Follows by similar reasoning to the proof of Proposition 8.6, using the new
definition of τ .

8.2.2. Setting where the opponent’s private information is not observed. Unfortunately we
must be extremely pessimistic if the opponent’s private information is not observed,
though it can still be possible to detect gifts in some cases. We can only be sure we
have received a gift if the opponent’s observed action would have been a gift for any
possible private information he may have. Thus we can run an algorithm similar to
Algorithm 6, where we redefine τ t−i to be the opponent’s best response subject to the
constraint that he plays at−i with some private information.

The approaches from this subsection and the previous subsection can be combined if
we observe some of the opponent’s private information afterwards but not all. Again,
we must be pessimistic an assume he plays a nemesis subject to the restriction that
we plays the observed actions with the observed part of his private information.
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8.3. Gift detection and exploitation within a game iteration
In some situations, we can detect gift actions early in the game that enable us to do safe
exploitation even in the middle of a single game iteration. For example, an opponent
may make a bet size known to be suboptimal early in a poker hand.

As a second, concrete example, consider the extensive-form game where players play
the game depicted in Figure 7 followed by the game depicted in Figure 8. (The second
game is the first game with all payoffs doubled, so the extensive-form game is not
quite the same as just repeating the first stage game twice.) The unique stage-game
equilibrium for both rounds is for P1 to play up (U and u) and for P2 to play left (L and
`). Down is strictly dominated for P1, and is therefore a gift. P2 can exploit this gift
by playing r in the second round if he observes that player 1 has played D in the first
round (since r outperforms ` against d). If P1 does in fact play D in the first round, P2
gains at least 3, and P2 will risk at most 2 by playing r in the second round; so this
exploitation would be safe. The extensive-form representation is given in Figure 9.
All subgame perfect equilibrium strategies [Selten 1965] for P2 involve him playing `
(`1/`2/`3/`4), while there exist safe exploitative strategies that put positive weight on r3
and r4. Since subgame perfect equilibrium is the coarsest of the traditional equilibrium
refinements, this example demonstrates that our approach provides a new equilibrium
refinement that differs from all the traditional ones.

L R
U 4 5
D 1 0

Fig. 7. Payoff matrix for first stage game of extensive-form game where we can detect and exploit a gift
within a game iteration.

` r
u 8 10
d 2 0

Fig. 8. Payoff matrix for second stage game of extensive-form game where we can detect and exploit a gift
within a game iteration.

In general, one can use a variant of the Extensive-Form RWYWE update rule to
detect gifts during a game iteration, where we redefine τ t−i to be the opponent’s best
response to πti subject to the constraint that he has taken the observed actions along
the path of play thus far. This allows us to safely deviate from equilibrium to exploit
him even during a game iteration.

9. EXPERIMENTS
We ran experiments using the extensive-form imperfect-information variants of sev-
eral of the safe algorithms presented in Section 6. The domain we consider is Kuhn
poker [Kuhn 1950], a simplified form of poker which has been frequently used as a test
problem for game-theoretic algorithms [Ganzfried and Sandholm 2010; Gordon 2005;
Hawkin et al. 2011; Hoehn et al. 2005; Koller and Pfeffer 1997].
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Fig. 9. Extensive-form representation of a game where we can detect and exploit a gift within a game itera-
tion. X:Y denotes the Yth information set of Player X. Dotted lines tie together nodes within an information
set. At leaves of the game tree, the payoff of Player 1 is listed first, followed by the payoff of Player 2.

9.1. Kuhn poker
Kuhn poker is a two-person zero-sum poker game, consisting of a three-card deck and
a single round of betting. Here are the full rules:

— Two players: P1 and P2
— Both players ante $1
— Deck containing three cards: K, Q, and J
— Each player is dealt one card uniformly at random
— P1 acts first and can either bet $1 or check

— If P1 bets, P2 can call or fold
— If P1 bets and P2 calls, then whoever has the higher card wins the $4 pot
— If P1 bets and P2 folds, then P1 wins the entire $3 pot

— If P1 checks, P2 can bet $1 or check.
— If P1 checks and P2 bets, then P1 can call or fold.
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— If P1 checks, P2 bets, and P1 calls, then whoever has the higher card wins
the $4 pot

— If P1 checks, P2 bets, and P1 folds, then B wins the $3 pot
— If P1 checks and P2 checks, then whoever has the higher card wins the $2 pot

The value of the game to player 1 is − 1
18 ≈ −0.0556. For any 0 ≤ α ≤ 1 the following

strategy profile is an equilibrium (and these are all the equilibria) [Kuhn 1950].

— P1 bets with a J in the first round with probability α
3

— P1 always checks with a Q in the first round
— P1 bets with a K in the first round with probability α
— If P1 bets in the first round, then:

— P2 always folds with a J
— P2 calls with a Q with probability 1

3
— P2 always calls with a K

— If P1 checks in the first round, then:
— P2 bets with a J with probability 1

3
— P2 always checks with a Q
— P2 always bets with a K

— If P1 checks and P2 bets, then:
— P1 always folds with a J
— P1 calls with a Q with probability α

3 + 1
3

— P1 always calls with a K

Note that player 2 has a unique equilibrium strategy, while player 1 has infinitely
many equilibrium strategies parameterized by a single value (α). In our experiments,
we play the role of player 1 while the opponent plays the role of player 2.

Player 2 has four actions that are played with probability zero in his equilibrium
strategy. These actions are 1) calling a bet with a J, 2) folding to a bet with a K, 3)
checking a K if player 1 checks, and 4) betting a Q if player 1 checks. The first three of
these are dominated, while the fourth is iteratively dominated. In this game, it turns
out that the gift strategies for player 2 are exactly the strategies that play at least one
of these four actions with positive probability.

9.2. Experimental setup
We experimented using several of the safe strategies described in Section 6—RWYWE,
Best Equilibrium, BEFFE, and BEFEWP. For all algorithms, we used a natural oppo-
nent modeling algorithm similar to prior work [Ganzfried and Sandholm 2011; Hoehn
et al. 2005]. We also compare our algorithms to a full best response using the same
opponent modeling algorithm. This strategy is not safe and is highly exploitable in the
worst case, but it provides a useful metric for comparison.

Our opponent model assumes the opponent plays according to his observed frequen-
cies so far, where we assume that we observe his hand at the end of each game iteration
as prior work on exploitation in Kuhn poker has done [Hoehn et al. 2005]. We initialize
our model by assuming a Dirichlet prior of 5 fictitious hands at each information set at
which the opponent has played according to his unique equilibrium strategy, as prior
work in Texas Hold’em has done [Ganzfried and Sandholm 2011].

We adapted all five algorithms to the imperfect-information setting by using the
pessimistic update rule described in Algorithm 6. To compute ε-safe best responses,
which is a subroutine in several of the algorithms, we used the procedure described in
Section 9.3. We ran the algorithms against four general classes of opponents.

— The first class of opponent chooses a mixed strategy in advance that selects an ac-
tion uniformly at random at each information set, then follows this strategy for all
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game iterations. (Similar random opponents were used also in prior work when ex-
perimenting on Kuhn poker [Hoehn et al. 2005]).

— The second opponent class is also static but more sophisticated. At each information
set the opponent selects each action with probability chosen uniformly randomly
within 0.2 of the equilibrium probability (recall that player 2 has a unique equi-
librium strategy). Thus, these opponents play relatively close to optimally, and are
perhaps more indicative of realistic suboptimal opponents. As in the first class, the
strategy is chosen in advance, and played in all iterations.

— The third class of opponents is dynamic. Opponents in this class play the first 100
hands according to a uniform random mixed strategy that is chosen in advance,
then play a true best response (i.e., nemesis strategy) to our player’s strategy for
the remainder of the match. So, after the first 100 hands, we make the opponent
more powerful than any real opponent could be in practice, by assuming that the
opponent knows our mixed strategy for that iteration.

— Finally, the fourth class is the static unique Nash equilibrium strategy of player 2.

We ran all five algorithms against the same 40,000 opponents from each class. (For
the dynamic opponents, this means that we selected 40,000 different choices of the
mixed strategy σ′ that is played for the initial 100 iterations; for each of these choices,
we ran each of the five algorithms against an opponent algorithm that uses σ′ for
the first 100 iterations, followed by a best response to our strategy for the next 900
iterations.) Each match against a single opponent consisted of 1,000 hands, and we
assume that the hands for both players were dealt identically for each of the algorithms
against a given opponent (to reduce variance). For example, suppose algorithm A1 is
dealt a K and opponent O is dealt a Q in the first hand of the match. Then in the runs
of all other algorithms A against O, A is dealt a K and O is dealt a Q in the first hand.
The 95% confidence intervals are reported for all experiments.

9.3. Algorithm for computing safe best responses in extensive-form games
The following LP [Koller et al. 1994] efficiently computes a best response for player
1 to a given strategy y of player 2 in a two-player zero-sum extensive-form game of
imperfect information. This algorithm utilizes the sequence form representation of
strategies and runs in polynomial time.

maximizex xTAy

subject to xTET = eT

x ≥ 0

We modify this procedure as follows to compute an ε-safe best response for player 1
to strategy y of player 2, where v1 is the value of the game to player 1 (and all matrices
and vectors are as defined by Koller et al. [1994]). This new formulation is used as a
subroutine in several of the algorithms in the experiments.

maximizex xTAy

subject to xTET = eT

x ≥ 0

xTA ≥ −qF
q[0] = ε− v1

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January 2015.



Safe Opponent Exploitation A:25

9.4. Experimental results
The results from our experiments are given in Table I. Against random opponents, the
ordering of the performances of the safe algorithms was RWYWE, BEFEWP, BEFFE,
Best Equilibrium (and all of the individual rankings are statistically significant using
95% confidence intervals). Against sophisticated static opponents the rankings of the
algorithms’ performances were identical, and all results are statistically significant
except for the difference between RWYWE and BEFEWP. (Recall that the value of the
game to player 1 is − 1

18 ≈ −0.0556, so a negative win rate is not necessarily indicative
of losing). In summary, against static opponents, our most aggressive safe exploitation
algorithm outperforms the other safe exploitation algorithms that either stay within
equilibrium strategies or use exploitation only when enough gifts have been accrued
to use full exploitation, and furthermore all of our new algorithms outperform Best
Equilibrium (which plays the best stage game equilibrium strategy at each iteration).
Against the dynamic opponents, our algorithms are indeed safe as the theory predicts,
while the best response algorithm does very poorly (and much worse than the value of
the game). As a sanity check, the experiments show that against the equilibrium op-
ponent, all the algorithms obtain approximately the value of the game as they should.

Table I. Win rate in $/hand of the five algorithms against opponents from each class. The ± given is the 95%
confidence interval.

Opponent
Random Sophisticated static Dynamic Equilibrium

RWYWE 0.3636 ± 0.0004 -0.0110 ± 0.0004 -0.02043 ± 0.00044 -0.0556 ± 0.0004
BEFEWP 0.3553 ± 0.0004 -0.0115 ± 0.0004 -0.02138 ± 0.00045 -0.0556 ± 0.0004
BEFFE 0.1995 ± 0.0004 -0.0131 ± 0.0004 -0.03972 ± 0.00044 -0.0556 ± 0.0004

Best Equilibrium 0.1450 ± 0.0004 -0.0148 ± 0.0004 -0.03522 ± 0.00044 -0.0556 ± 0.0004
Best response 0.4700 ± 0.0004 0.0548 ± 0.0004 -0.12094 ± 0.00039 -0.0556 ± 0.0004

In some matches, RWYWE steadily accumulates gifts along the way, and kt increases
throughout the match. An example of the graph of profit and kt for one such opponent
is given in Figure 10. In this situation, the opponent is frequently giving us gifts, and
we quickly start playing (and continue to play) a full best response according to our
opponent model.

In other matches, kt remains very close to 0 throughout the match, despite the fact
that profits are steadily increasing; one such example is given in Figure 11. Against
this opponent, we are frequently playing an equilibrium or an ε-safe best response for
some small ε, and only occasionally playing a full best response. Note that kt falling
to 0 does not necessarily mean that we are losing or giving gifts to the opponent; it
just means that we are not completely sure about our worst-case exploitability, and
are erring on the side of caution to ensure safety.

10. CONCLUSIONS AND FUTURE RESEARCH
We showed that safe opponent exploitation is possible in certain games, disproving a
recent (incorrect) statement. Specifically, profitable deviations from stage-game equi-
librium are possible in games where ‘gift’ strategies exist for the opponent, which we
defined formally and fully characterized. We considered several natural opponent ex-
ploitation algorithms and showed that some guarantee safety while others do not; for
example, risking the amount of profit won so far is not safe in general, while risking the
amount won so far in expectation is safe. We described how some of these algorithms
can be used to convert any opponent exploitation architecture into a safe one. Next
we provided a full characterization of safe algorithms for strategic-form games, which
corresponds to precisely the algorithms that are expected-profit safe. We also provided
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Fig. 10. Profit and kt over the course of a match of RWYWE against a random opponent. Profits are denoted
by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right Y axis.
Against this opponent, both kt and profits steadily increase.

Fig. 11. Profit and kt over the course of a match of RWYWE against a random opponent. Profits are denoted
by the thick blue line using the left Y axis, while kt is denoted by the thin green line and the right Y axis.
Against this opponent, kt stays relatively close to 0 throughout the match, while profit steadily increases.

algorithms and full characterizations of safe strategies in extensive-form games of per-
fect and imperfect information.

In our experiments against static opponents, several safe exploitation algorithms
significantly outperformed an algorithm that selects the best Nash equilibrium strat-
egy; thus we conclude that safe exploitation is feasible and potentially effective in
realistic settings. Our most aggressive safe exploitation algorithm outperformed the
other safe exploitation algorithms that use exploitation only when enough gifts have
been accrued to use full exploitation. In experiments against an overly strong dynamic
opponent that plays a nemesis strategy after 100 iterations, our algorithms are indeed
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safe as the theory predicts, while the best response algorithm does very poorly (and
much worse than the value of the game).

The approach can also be used in settings where we do not have an exact game
model—such as in (cyber)security games—because we only need to lower bound the
gifts that the opponent has given us and upper bound the maximum expected loss
from the exploitative action we are planning to take currently.

Several challenges must be confronted before applying safe exploitation algorithms
to larger extensive-form games of imperfect information, such as Texas Hold’em poker.
First, the best known technique for computing ε-safe best responses involves solving
a linear program on par with performing a full equilibrium computation; performing
such computations in real time, even in a medium-sized abstracted game, is not feasi-
ble in Texas Hold’em. Perhaps the approaches of BEFEWP and BWFEE, which alter-
nate between equilibrium and full best response, would be preferable to RWYWE in
such games, since a full best response can be computed much more efficiently in prac-
tice than an ε-safe best response. In addition, perhaps performance can be improved if
we integrate our algorithms with lower-variance estimators of our winnings due to the
opponent’s mistakes [Bowling et al. 2008; Zinkevich et al. 2006; White and Bowling
2009].
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