
IJRECE VOL. 8 ISSUE 4 OCT-DEC. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 29 | P a g e

Salesforce Account Handling with Voice Commands

Using NLP
D. Kartik Yadav1, Prof M. Sampath Kumar2

ANDHRA UNIVERSITY College of Engineering

Abstract—Voice commands are the latest trending

technology today which is very simple and easy to use by

people of any age group. The paper depicts the voice-based

application which is built upon the integration of three major

components which are speech recognition [1], semantic

similarity chatbot modal for NLP, and salesforce API. The

first part is speech recognition handled by the google assistant,

the second part is finding the best response of the speech

which is converted into text by the google assistant using

semantic similarity chatbot and the final part is the integration
of the bundle with the salesforce API for the creation of new

accounts and modification of the existing accounts.

Keywords—Voice assistants, Natural Language

Processing (NLP), Semantic Similarity Chatbot, Salesforce.

I. INTRODUCTION

Nowadays the easily available luxury for people all over the
world is an assistant who always listens for your call, anticipates your
every need, and takes action when necessary. That luxury is now
available to everyone thanks to the evolution of artificial intelligence
assistants, aka voice assistants. Voice assistants come in somewhat

small packages and can perform a variety of actions such as turning
on lights, answering questions, playing music, placing online orders,
etc.

Voice assistants are often mistaken with virtual assistants, which
are people who work remotely and can therefore handle all kinds of
tasks. Rather, voice assistants are technology-based. As voice
assistants become more robust, their utility in both the personal and
business realms will grow as well. A voice assistant is a digital
assistant that uses voice recognition, speech synthesis, and natural
language processing (NLP) to provide a service through a particular
application on any mobile phone, personal computer or a tablet PC.

The training dataset which we look up for the response for the
user is a large corpus of 3 million sentences. The sentence embedding

of the corpus is generated by a model named BERT-base-nil-mean-
tokens. The model uses the concept of sentence transformers to
generate the sentence embeddings. BERT stands for Bidirectional
Encoder Representations from Transformers is research papers
published by the AI researchers at Google. The main reason behind
using BERT base model is the size of the corpus we have in the
dataset. If we use large and extra-large BERT models, we have a
problem of overfitting. The usage of the BERT model depends upon
the amount of data handled by an application.

The internal mechanism for finding the nearest sentence for a
given voice command by the user is found out by the Semantic

Similarity Chatbot[3]. The organization of this paper is as follows.
Section-3 describes the proposed algorithm. Section-4 describes the

detailed algorithm. Section-5 describes the conclusion of the research
paper.

II. RELATED WORK

The basic idea of voice recognition has been originated by the

conversion of speech to text. Many algorithms are there for the

evaluation of polynomials at a large number of values.

[1] Ayushi Trivedi, Navya Pant, Pinal Shah, Simran Sonik,
and Supriya Agrawal, ”Speech to text and text to speech

recognition systems-Areview”[2] Google Cloud Speech to text

conversion,https://cloud.google.com/speech-to-

text/docs/streaming-recognize[3] Tatwadarshi P. Nagarhalli,

Vinod Vaze, N. K. Rana, "A Review of Current Trends in the

Development of Chatbot Systems", Advanced Computing and

Communication Systems (ICACCS) 2020 6th International

Conference on, pp.706-710, 2020.[4] Jasmina Đ. Novakovic,

Alempije Veljovic, Sinisa S. Ilic, MilosPapic “Experimental

Study Of Using The K-Nearest Neighbour Classifier With

Filter Methods ”[5] Enhancing Customer Experience with
Salesforce Chatbot Integration,https://medium.com/voice-

tech-podcast/enhancing-customer-experience-with-salesforce-

chatbot-integration-3f56361a2fe3

III. THE PROPOSED ALGORITHM

This section presents an outline of the proposed algorithm.
Each step is explained as procuring more formally in the next
section.

1. Voice Recognition by Google Assistant

Step 1: The Google Assistant is launched by the user and a
command “Talk to my salesforce” is used to start the
salesforce service which is used.

Step 2: All the available options on the screen are voiced
out by the Google Assistant [2]and the response is awaited.

Step 3: A voice command is given by the user to select
from the voiced-out options.

Step 4: The given voice command is converted into text by
the Google Assistant.

2. Response of the Semantic Similarity Chatbot

Step 1: The Google Assistant gives the text form of the
voice command input to the semantic similarity chatbot.

Step 2: Finding the nearest sentences from the corpus
trained.

Step 3: Choosing the response of the sentence which is
nearest to the input voice command.

https://cloud.google.com/speech-to-text/docs/streaming-recognize
https://cloud.google.com/speech-to-text/docs/streaming-recognize
https://medium.com/voice-tech-podcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3
https://medium.com/voice-tech-podcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3
https://medium.com/voice-tech-podcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3

IJRECE VOL. 8 ISSUE 4 OCT-DEC. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 30 | P a g e

Step 4: The nearest response is given for the input sentence
to trigger the salesforce action.

3. Integration with Salesforce

Step 1: According to the given response from the semantic
similarity chatbot the Salesforce action is triggered.

Step 2: Confirmation of the user is taken when necessary.

Step 3: After the completion of the triggered action the
Google Assistant voices out the action performed.

Step 4: After the completion of the account creation or
modification the account details are displayed on the screen
and voiced out.

IV. DETAILED ALGORITHM

In this section, a detailed account of the Voice Recognition by
Google Assistant, semantic similarity chatbot creation and
Triggering Salesforce action is explained

1. Voice Recognition by Google Assistant:

The procedure below tells us about performing streaming
speech recognition on an audio stream received from a
microphone:

1. The voice command is received by the microphone of the
mobile yielding the audio chunks.

2. The audio stream is run asynchronously to fill the buffer
object.

3. Signal the generator to terminate so that the client
streaming recognize method will not block the process
termination.

4. The responses passed is a generator that will block until a
response is provided by the server

5. Each response may contain multiple results, and each
result may contain multiple alternatives.

6. In this case, responses are provided for interim results as
well. If the response is an interim one, print

a line feed at the end of it, to allow the next result to
overwrite it, until the response is a final one.

from __future__ import division

import re

import sys

from google.cloud import speech

from google.cloud.speech import enums

from google.cloud.speech import types

import pyaudio

from six.moves import queue

Audio recording parameters

RATE = 16000

CHUNK = int(RATE / 10) # 100ms

class MicrophoneStream(object):

 """Opens a recording stream as a generator yielding
the audio chunks."""

def __init__(self, rate, chunk):

 self._rate = rate

 self._chunk = chunk

 self._buff = queue.Queue()

 self.closed = True

def __enter__(self):

self._audio_interface = pyaudio.PyAudio()

self._audio_stream = self._audio_interface.open(

format=pyaudio.paInt16,

channels=1, rate=self._rate,

input=True, frames_per_buffer=self._chunk,

stream_callback=self._fill_buffer,

)

self.closed = False

return self

def __exit__(self, type, value, traceback):

self._audio_stream.stop_stream()

self._audio_stream.close()

self.closed = True

self._buff.put(None)

self._audio_interface.terminate()

def _fill_buffer(self, in_data, frame_count, time_info,
status_flags):

"""Continuously collect data from the audio stream,
into the buffer."""

self._buff.put(in_data)

return None, pyaudio.paContinue

def generator(self):

while not self.closed:

chunk = self._buff.get()

if chunk is None:

 return

data = [chunk]

while True:

 try:

chunk = self._buff.get(block=False)

IJRECE VOL. 8 ISSUE 4 OCT-DEC. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 31 | P a g e

if chunk is None:

 return

 data.append(chunk)

 except queue.Empty:

 break

yield b''.join(data)

def listen_print_loop(responses):

 """Iterates through server responses and prints them."""

 num_chars_printed = 0

 for response in responses:

 if not response.results:

 continue

 result = response.results[0]

 if not result.alternatives:

 continue

 transcript = result.alternatives[0].transcript

 overwrite_chars = '' * (num_chars_printed -
len(transcript))

 if not result.is_final:

 sys.stdout.write(transcript + overwrite_chars + '\r')

 sys.stdout.flush()

 num_chars_printed = len(transcript)

 else:

 print(transcript + overwrite_chars)

 if re.search(r'\b(exit|quit)\b', transcript, re.I):

 print('Exiting..')

 break

 num_chars_printed = 0

def main():

language_code = 'en-US'

client = speech.SpeechClient()

config = types.RecognitionConfig(

encoding=enums.RecognitionConfig.AudioEncoding.LI
NEAR16,

sample_rate_hertz=RATE,

language_code=language_code)

streaming_config = types.StreamingRecognitionConfig(

config=config,interim_results=True)

with MicrophoneStream(RATE, CHUNK) as stream:

 audio_generator = stream.generator()

requests=(types.StreamingRecognizeRequest(audio_c
ontent=content)

 for content in audio_generator)

 responses=client.streaming_recognize(streaming_conf
ig,requests)

 listen_print_loop(responses)

if __name__ == '__main__':

 main()

2. Response of the Semantic Similarity Chatbot:

The procedure below tells us about performing streaming
speech recognition on an audio stream received from a
microphone:

1. The chatbot[3] has been developed in the Google Colab
environment which is like a jupyter notebook, we can use
any basic PC with a good internet connection. The
resources such as RAM, GPU, HDD are taken care of by
google with customizable configuration.

2. We use spaCy an open-source software library for
advanced natural language processing, written in the
programming languages Python.

3. For the training of the chatbot, we use dialog-corpus
provided by Cornell University for general conversations.

4. The pre-processing of the corpus is done by splitting the
lines and adding special characters in between different
lines.

5. All the sentences in the dialog-corpus have been
converted into their respective vector forms.

6. The user query is converted into a vector form and
compared with the sentence vectors in the corpus using the
technique K Near Neighbours[4].

7. The most similar sentence in the corpus has been picked
up from the corpus using the concept mean of vectors.

8. A similar sentence of the query has a corresponding
response which is given in the form of a reply to the user.

! pip install spacy

! python -m spacy download en_core_web_lg

import spacy

nlp = spacy.load('en_core_web_lg')

!curl-L-O
http://www.cs.cornell.edu/~cristian/data/dialogs_corpus.zip

! unzip cornell_movie_dialogs_corpus.zip

dialog_lines = {}

for line in open("dialogs_corpus_lines.txt",

 encoding="latin1"):

IJRECE VOL. 8 ISSUE 4 OCT-DEC. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 32 | P a g e

line = line.strip()

parts = line.split(" +++$+++ ")

 if len(parts) == 5:

 dialog_lines[parts[0]] = parts[4]

 else:

 dialog_lines[parts[0]] = ""

import json

responses = {}

for line in open("dialogs_corpus_lines.txt",

 encoding="latin1"):

line = line.strip()

parts = line.split(" +++$+++ ")

line_ids = json.loads(parts[3].replace("'", '"'))

 for first, second in zip(line_ids[:-1], line_ids[1:]):

 responses[first] = second

import numpy as np

def sentence_mean(nlp, s):

 if s == "":

 s = " "

 doc = nlp(s, disable=['tagger', 'parser'])

 return np.mean(np.array([w.vector for w in doc]),
axis=0)

 sentence_mean(nlp, "This... is a test.").shape

!pip install simpleneighbors

from simpleneighbors import SimpleNeighbors

nns = SimpleNeighbors(300)

for i , line_id in
enumerate(random.sample(list(response.keys()),1000)
#show progress

 if i % 1000 == 0: print(i, line_id, dialog_lines[line_id])

 line_text = dialog_lines[line_id]

 summary_vector = sentence_mean(nlp, line_text)

 if np.any(summary_vector):

 nns.add_one(line_id, summary_vector)

nns.build()

sentence = "I like cooking."

picked = nns.nearest(sentence_mean(nlp, sentence), 5)[0]

response_line_id = responses[picked]

print("Your line:\n\t", sentence)

print("Most similar turn:\n\t", dialog_lines[picked])

print("Response to most similar turn:\n\t",
dialog_lines[response_line_id])

!pip install
https://github.com/aparrish/semanticsimilaritychatbot/archi
ve/master.zip

from semanticsimilaritychatbot import
SemanticSimilarityChatbot

chatbot = SemanticSimilarityChatbot(nlp, 300)

sample_n = 10000

for first_id, second_id in
random.sample(list(responses.items()), sample_n):

 chatbot.add_pair(dialog_lines[first_id],dialog_lines[se
cond_id])

 chatbot.build()

 print(chatbot.response_for("Hello computer!"))

 my_turn = "The weather's nice today, don't you think?"

 for i in range(5, 51, 5):

print("picking from", i, "possible responses:")

print(chatbot.response_for(my_turn, i))

print()

chatbot.save('dialoglines-10k-sample.annoy')

chatbot.save('dialoglines-10k-sample-data.pkl')

chatbot.save('dialoglines-10k-sample-chatbot.pkl')

chatbot = SemanticSimilarityChatbot.load("dialoglines-
10k-sample", nlp)

print(chatbot.response_for("I'm going to go get some
coffee."))

from google.colab import files

files.download('dialoglines-10k-sample.annoy')

files.download('dialoglines-10k-sample-data.pkl')

files.download('dialoglines-10k-sample-chatbot.pkl')

import IPython

from google.colab import output

display(IPython.display.HTML(chatbot_html + \

 "<script>let getResp = colabGetResp;</script>"))

def get_response(val):

resp = chatbot.response_for(val)

return IPython.display.JSON({'result': resp})

output.register_callback('notebook.get_response',
get_response)

IJRECE VOL. 8 ISSUE 4 OCT-DEC. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 33 | P a g e

3. Integration with Salesforce:

The procedure below tells us about performing the chatbot
integration with salesforce[5]:

1. Salesforce chatbot integration enables businesses to
quickly access customer information without hampering the
task being performed.

2. The features of a bot toolkit are as follows:

 I. Bot Handler: A bot command is functioned to create
a mapping between expressions to understand the pattern of
the user’s questions. Also, an Apex class is featured to
provide the logic to the generated response. For instance,
The Bot toolkit and Apex handler classes have a series of
standard bot commands. Also, users can add their bot
commands and provide mappings between Apex handlers
and regular expressions.

 II. Apex Classes: The bot toolkit is facilitated with a
series of Apex classes. The Bot controller is coordinating
the conversation using the submit method to lodge a
response. The submit method is the area where the bot
controller tries to match the expression that the user has
typed. In case a match is found, the bot controlled will use a
handler method in a corresponding handler class. The
handler class will then utilize a series of utility classes to
select the appropriate format for a message response and
send it to the user including bot record, bot item, bot
message, bot field, and bot response.

 III. Stateful Conversations: The Bot Toolkit will
support straight question/answer interactions using a
session object that will represent the state of the
conversation. Also, the session object will be passed back
and forth between the server and the client.

 IV. Message Formatting: A Bot response consists of
optional and bot-message objects. Bot messages can be in
the form of simple text messages, records, post back
buttons, lists of items, and images. The bot components
format the message in various ways and respond with the
most suitable content of each message.

3. When a user gives a voice commands like ‘ABC
Industries’, the bot toolkit will pass the command to Apex
handler ‘new customer’, where the name of the person will
be identified as a parameter, ‘611 Avenue’ is identified as a
parameter ‘address’ etc.

4. The commands ‘Connecticut’ will be identified as
parameter ‘state’ and ‘11058’ is identified as parameter
‘zipcode’. For parameters like address and zip code
reconfirmation is asked to the user. After completion of the
account creation or modification, details are provided for
the user on-screen and also voiced out.

V. CONCLUSION

The Salesforce service is a voice-based application which can
perform email account handling through voice. Any
smartphone, personal computer, or tablet which satisfies the
specified hardware and software requirements can be used
There is no need for large memory or high-speed processor for
this project. This application can change a basic smartphone,
PC, or tablet into a voice-based assistant without any hardware
or software additions. The main purpose of the application is to
make voice-based assistants available to people of all economic
classes. The only need is a good high-speed internet connection
which changes the way of the usage of the website.

VI. REFERENCES

[1]. Ayushi Trivedi, Navya Pant, Pinal Shah, Simran Sonik, and
Supriya Agrawal,” Speech to text and text to speech recognition
systems-Areview”, IOSR Journal of Computer Engineering

(IOSR-JCE) e-ISSN: 2278-0661,p-ISSN:2278-8727, Volume 20,
Issue 2, Ver. I (Mar.- Apr. 2018), PP 36-43

[2]. Google Cloud Speech to text conversion,
“https://cloud.google.com/speech-to-text/docs/streaming-
recognize ”

[3]. Tatwadarshi P. Nagarhalli, Vinod Vaze, N. K. Rana, "A Review
of Current Trends in the Development of Chatbot Systems",
Advanced Computing and Communication Systems (ICACCS)

2020 6th International Conference on, pp. 706-710, 2020.
[4]. Jasmina Đ. Novakovic, Alempije Veljovic, Sinisa S. Ilic,

MilosPapic “Experimental Study Of Using The K-Nearest
Neighbour Classifier With Filter Methods”,

[5]. Enhancing Customer Experience with Salesforce
ChatbotIntegration,https://medium.com/voicetechpodcast/enhanc
ing-customer-experience-with-salesforce-chatbot-integration-
3f56361a2fe3

D. Kartik Yadav is an MTech student at Andhra University

College of Engineering with specialization in Artificial

Intelligence and Robotics. He is interested in the research of

the field Natural Language Processing which is a rapidly

growing technology.

https://medium.com/voicetechpodcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3
https://medium.com/voicetechpodcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3
https://medium.com/voicetechpodcast/enhancing-customer-experience-with-salesforce-chatbot-integration-3f56361a2fe3

