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Odds Are, It’s Wrong: 
The Misuse of Math in Science, Medicine and the Media  
 
Abstract: A lot of science is not properly done, and even when properly done it is often 
misreported or misinterpreted — sometimes by the media, sometimes by scientists 
themselves. At the root of this problem are conventions for drawing conclusions based on 
inferences from statistical analysis, using statistical methods that are, in essence, bogus. As 
a consequence, the modern system of media coverage of science news from journals has 
created conditions that almost guarantee that the scientific studies most likely to be 
reported in the mass media are also the most likely to be wrong. These problems are 
especially egregious in medicine, most notably in clinical trials — touted as the “gold 
standard” for medical research but actually deeply flawed. 
 
 
 
 A few years ago, a paper appeared in the journal PLoS Medicine with a rather 
provocative title: “Why Most Published Research Claims are False.” It was written by 
John P.A. Ioannidis, an epidemiologist with joint appointments at a medical school in 
Greece and at Tufts University School of Medicine in Boston. At first glance it seemed 
like a headline from that satirical 
newspaper the Onion. But Ioannidis was 
clearly serious. I called Donald Berry, a 
respected biostatistician at the 
University of Texas M.D. Anderson 
Cancer Center in Houston, to ask what 
he thought of the Ioannidis paper. “He 
took a somewhat extreme view,” Berry 
told me. “But the bottom line is, he’s 
right.” 
 In his paper, Ioannidis outlined a 
wide spectrum of statistical disorders 
that plague research in scientific fields 
ranging from social psychology to 
molecular biology. He contended that 
the standard methods of applying math 
to scientific data rendered any single scientific study’s conclusion likely to be incorrect.  
 “There is increasing concern that in modern research, false findings may be the 
majority or even the vast majority of published research claims,” Ioannidis declared. 
 For science journalists, who have all been taught that the first thing you ask 
about a research result is whether it is “statistically significant,” this revelation would 
come as something of a shock. But it shouldn’t. Weaknesses in the standard statistical 
approach have been described in the scientific literature for decades. In fact, if you 
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believe what you read in the scientific literature, you shouldn’t believe what you read in 
the scientific literature. 
 This problem has widespread ramifications, for science and for medicine and 
public health and all sorts of public policy. Problems with statistical methodology are 
behind a lot of the problems in medical policy making today, for example, and they 
explain why so many media reports 
are often confusing — why a coffee is 
bad in one study but OK in the next, 
why certain therapeutic drugs were 
approved but then turned out to be 
deadly. Bad statistics are behind some 
very bad medical decisions, as one 
recent Onion headline made very clear.   
 Now, I’m not saying that all 
science is wrong or that scientific 
research never produces reliable knowledge. It does. The last impression I want to 
leave is that science is worthless and should be casually disregarded. But arriving at 
reliable knowledge is more complicated than usually represented. And that complexity 
is almost always off the radar for most journalists. And so the science you read about in 
the news is especially susceptible to being misleading, precisely because of these 
statistical issues. In fact, the criteria used by journalists, including science journalists, to 
evaluate newsworthiness almost guarantee that the research results most likely to be 
reported in the media are also the results most likely to be false. 
 
 This situation poses a very serious problem for science journalism, a problem 
that is not widely recognized. The presumption seems to be that if scientists publish a 
finding in a peer-reviewed journal then it should be reported as though it were an 
addition to accepted knowledge, if it otherwise meets the criteria for news. But the 
criteria for news are almost exactly the criteria you would choose to select false 
findings, not true ones. That’s because false studies are very likely to exhibit one or 
more of three most common features that science journalists seize on when deciding 
what stories to write. The first of these is the very idea of “first.” If a study is the “first” 
to find or report something, that makes it more likely to be news. It is also likely to be 
wrong. A second news criterion is reader interest, which translates into particular 
journalistic interest in hot research fields, where even incremental “advances” are likely 
to become news. Such “hot field” advances are, it turns out, also among the most likely 
to be wrong. The third flag that captures journalists’ attention is “contrary to previous 
belief.” A report that contradicts conventional wisdom is likely to make news. It is also 
likely to be wrong. 
 If that is all obvious to you, I hope the tickets to this talk were all free. But I 
seriously do hope that you now wonder, How can this be? That’s what I’m going to try 
to explain. 
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 My plan is to briefly outline the basic ideas of using statistics to analyze 
experimental data and draw inferences or conclusions, and then to describe some ways 
that these numbers are commonly misreported and misinterpreted. Then I’ll discuss 
some examples that show why these methods, while possibly sound in theory, don’t 
work very well in practice, as in studies linking genes to disease or clinical trials for 
testing new medicines. And then I’ll say something about why the situation isn’t 
completely hopeless, and how science and science journalism can deal with the 
deficiencies in currently common practices. 
 
Statistics Basics 
 First of all, let me emphasize that statistics is an extremely sophisticated and 
complex branch of mathematics. Nothing I say should be taken as trivializing it, and you 
should be warned up front that there’s a lot more to statistics than what I will present. 
I’ll be talking about statistics in simplified terms for purposes of illustration, so please 
promise to remember that everything is actually much more complicated than I say it is. 
 Fortunately, there is a good everyday example of statistics in action that can be 
used to illustrate the principles involved: public opinion polls. When you read that a 
poll result has a margin of error of 3 percentage points, that means that in theory you’d 
get a result in that range 95 percent of the time. But where does that margin of error 
come from? It is based on the number of people that the pollsters sample, and is 
computed with the help of some relatively simple math. Here it is: 
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 This is the formula that pollsters use to compute a 95 percent-confidence margin 
of error. (P is the percentage of people in the sample who give the answer you’re 
interested in; n is the number of people you poll, N is the number of people in the entire 
population that you are sampling from.)  
 This equation shows that you don’t need to poll everybody to get a good idea of 
what most people think. If you sample some of the people, chosen at random, the 
answers they give will pretty much reflect the answers you’d get from asking everybody 
— IF you have a big enough sample and if it is truly randomly chosen from among all 
the people in the population. When that’s the case you can use this simpler formula. 
 
 
 
 It tells you what range of answers you’d get if you sampled the population over and 
over again — the results would be within that range 95 percent of the time. (In theory, 
of course. In real life all sorts of practical problems conspire to make the margin of 
error bigger.) 
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 Now the key thing here is — you can do the calculation yourself or you can just 
believe me — is that it doesn’t really matter how big the population is. What matters is 
just the size of the sample, pretty much regardless of how big a population you took it 
from. 
 We know the idea behind this math is correct because when you apply it to 
simple, easily controlled situations, it gives the right answers. Such a simple controlled 
situation would be flipping coins. If you take a penny and toss it 10 times and count the 
number of heads, you’ll probably get more than one head but fewer than 10. And if you 
keep doing these 10-flip sessions over and over again, you’ll find that most of the time 
you get from 3 to 7 heads. Over a long time, on average, you will get roughly half heads 
and half tails, unless there is something fishy about your penny. 
 The neat thing about this math is it will tell you not only that you get roughly half 
heads and half tails in the long run, but also how often you should expect to get any 
particular number of heads. It tells you what percentage of the time that you’ll get 0 or 1 
or 4 or 9. So you can test whether your penny is fishy by doing this experiment, and the 
result will tell you how confident you can be that your penny is fair. 
 Here’s the chart. If you do the 
10 flips and get fewer than 3 heads, 
that would be a result you should 
expect to happen only 5.5 percent of 
the time (summing the chances of 
getting 0, 1, or 2). 
 As I mentioned, in real 
science the math gets much more 
complicated. But the core ideas 
behind the math applied to polls and 
pennies still apply when doing 
statistical inference in almost any 
kind of study done using samples, which is just about anything. 
 
P values 
 Until less than a century ago, scientists didn’t really know much about this stuff 
or apply it systematically to experimental comparisons (although it had long been used 
in estimating the size of random measurement errors). The modern era began with the 
British mathematician Ronald Fisher, who devised something called the P value 
approach. 
 P values, textbooks will tell you, are a measure of the likelihood that 
experimental results indicating an apparent effect are due to chance. A P value of 0.05 
means that the measured magnitude of an effect would be expected to occur by chance 
5 percent of the time (or 1 time in 20). A P value of 0.01 means that the measured 
magnitude of an effect would be expected to occur by chance 1 percent of the time (1 
time in 100). 



6 
 

Tom Siegfried   Hill Lecture   March 31, 2009 

 Fisher believed that the right way to do science was to set up experiments that 
could be analyzed with statistics by computing a P value. Suppose you wanted to see if 
fertilizer made corn ears bigger. (Fisher actually looked at crop yields, but I think it’s 
easier to illustrate the idea with corn ears.) You would plant some corn, some fertilized 
and some not, and then measure the size of the ears for each group.  
 Because corn ear size varies anyway, no doubt that average ear size of the 
fertilized corn would come out a little different from the average for unfertilized corn. 
The question is whether that difference is really because of the fertilizer, or just the 
usual random variations. Fisher proposed to address that question this way: First, 
assume that the fertilizer had no influence on ear size. (That is what he called the “null 
hypothesis.”)  Then, using the formulas of statistics, calculate how likely it was that you 
would see a difference as large or larger than what you actually measured. If you’d 
expect to see a difference that big fewer than one time in 20 trials, Fisher said you 
should reject the null hypothesis, and conclude that fertilizer did increase the size of the 
corn ears. 
 Just in case that went by too quickly, I’ll summarize it again: 
 

Null hypothesis: Fertilizer does not work. 
 
Compare: Average ear size+variation for fertilized corn 
    Average ear size+variation for unfertilized corn 
 
Apply formula to compute probability of seeing a difference that big or bigger 
   
If that probability is less than 5 percent, then reject the null hypothesis, and 
conclude that fertilizer does work. 

 
 Fisher realized, of course, that the no-effect hypothesis might actually still be 
right — that maybe your experimental results were just an unusual fluke— but 
nevertheless if you got a result to be expected less than 5 percent of the time you ought 
to bet that the no-effect hypothesis was wrong, and conclude that fertilizer works. And 
that’s what most scientists still believe today. 
 While Fisher’s approach became very influential, it didn’t satisfy everybody. In 
particular, Jerzy Neyman and Egon Pearson came along and said they had a better idea 
— not to test a null hypothesis, but to test two competing hypotheses. Their approach, 
by a more elaborate mathematical route, also produced a P value. Their P value refers to 
the likelihood of a false positive (concluding an effect is real when it actually isn’t) or 
false negative (concluding that there is no effect when in fact there actually is). 
 All this was going on in the 1920s and ’30s. What eventually emerged was a 
hybrid mix of these two mutually inconsistent approaches, which has left the 
interpretation of standard textbooks statistics terribly muddled. In fact, this whole 
system, while widely used, really does not work very well. 
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 In actual fact — and Fisher, Neyman and Pearson realized this — when you do 
statistical analyses of this sort you can’t actually be sure of anything. If you flip a penny 
10 times and get only one head, maybe the penny is rigged, or maybe it was just one of 
those rare events that happen. Maybe fertilizer works, Fisher would say, or maybe you 
just witnessed an unusual set of data. All you can say that the result is or is not 
“statistically significant,” based on whatever degree of probability you’d like to 
arbitrarily select—usually 5 percent (but much lower in some fields). In other words, if 
the chance of getting certain data is less than 5 percent, that result is considered to be 
statistically significant (at the 5 percent level). 
 What I’m here to say is that there are huge problems with how such results are 
interpreted and presented, especially by journalists in news accounts but also often by 
scientists themselves.  
 
Statistical significance 
 These issues all revolve around a high degree of confusion about the meaning of 
the phrase “statistical significance.” Basically, there are three main points to make: 
 
 1. A statistically significant effect is not the same thing as a significant effect. 
 
 2. Lack of statistical significance does not mean there is no effect. 
 
 3. Statistical significance says nothing about the likelihood that an effect is true. 
 
 First, I cannot emphasize too much that statistical significance is not the same 
thing as significance. Often you’ll read in a study that some pollutant significantly 
increased the risk of cancer, or something like that. But most of that time that’s just 
some journalist’s shorthand translation of  “statistically” significant. 
 It very well may be that the effect was also significant in the ordinary usage of 
the word, but not necessarily. Basically there are two ways for an effect to be 
statistically significant — either it is a very big effect, or the study had a very big 
sample. If you have a huge sample size, very small effects will show up as statistically 
significant. A new drug may be statistically significantly better than an old drug, but it 
that might mean that for every thousand people you treat, you get 1 or 2 additional 
cures. That’s not clinically significant. And some studies claim a chemical causes a 
“significantly increased risk of cancer” when it is just statistically significant, but only a 
tiny absolute increase.  
 Here’s a simplified example. Suppose you tested a new a cancer drug on 20,000 
people and compared survival rates to another group of 20,000 people on standard 
treatment. In the standard group, 15,000 people die. In the new drug group, 14,800 
people die. 
 That difference is very small, clinically meaningless, but the math says it is 
statistically significant. Now suppose you tested another new drug on 20 people, 
comparing it to 20 people on standard treatment. In the standard treatment group, 15 
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people die. In the test group, only 10 people die. That doubles the number of survivors. 
But it is not statistically significant, because the sample size is so small. 
 This distinction between statistical and actual significance is almost never made 
in news reports, and it is frequently unclear even in scientific reports. 
 This example also illustrates my second point, which is that lack of statistical 
significance does not necessarily mean that there is no effect. It may just be that the 
study as designed was not capable of detecting a real effect. Typically that is because 
the study is too small, but it could be for other reasons having to do with poor study 
design. In any case, it is wrong to conclude that there is no effect simply on the basis of 
lack of statistical significance. A drug is not proven “safe” if the increase in deaths 
attributed to is not statistically significant, or a new treatment is not worthless just 
because the number of lives it saves does not meet the statistical significance threshold. 
 To illustrate that point it helps to mention the idea of confidence intervals. 
Confidence intervals are just like the margin of error in a poll; they describe the range 
of results that would be expected within the limits of a given P value. Usually the 
confidence interval is computed at the 95 percent level, which means that the results 
within that interval would have a P value of 5 percent or less. 
 In my cancer drug example, the odds of surviving was doubled. But because the 
sample was small, the confidence interval — the margin of error — was huge. The 
range of survival odds at the 95 percent confidence level was 0.8 to 11.5. So lack of 
statistical significance does not mean the drug 
doesn’t work — it might be 10 times better 
than the old drug. You just don’t have strong 
enough evidence to conclude with confidence 
that it works.  
 Here’s a real-life example. One study of 
this drug showed no statistical significance in 
effectiveness. But other studies showed that it 
really did work. 
 This works the other way around, too. If 
a food additive is causing cancer, a study might 
measure an increased risk that is not 
statistically significant. But the confidence 
interval might indicate that it still could be 
dangerous, so you can’t conclude that the 
additive has been shown to be safe simply 
because there is no statistical significance in 
the results.  
 
Rejecting the null hypothesis 
 The good news is that the confusion 
between real significance and statistical 
significance is widely recognized and easily 
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corrected. Another problem with the standard statistical approach is not so simple and 
is a continuing source of misunderstanding. And that involves how to interpret the P 
value that tells you whether you have a statistically significant result. 
 Say you get a result that is likely to occur less than 5 percent of the time if the 
null (no-effect) hypothesis is correct. The common temptation is to conclude that 
therefore it is 95 percent certain that the no-effect hypothesis is wrong, and that you 
can conclude with 95 percent confidence that the effect is real. 
 That reasoning is very common, even among scientists. But it is wrong, wrong, 
wrong, 95 times wrong. 
 For one thing, that likelihood was based on the assumption that the no-effect 
hypothesis is correct. If it isn’t, then you can no longer say that the likelihood of getting 
that data was only 5 percent. 
 
 But apart from that, it’s just not a proper logical conclusion. It’s a subtle point, so 
I’ve tried to come up with an example to illustrate the problem. 
 
 Here’s the usual logic:  
 

If the no-effect hypothesis is true, I am unlikely to get this result. 
 
I got this result. 
 
Therefore the no-effect hypothesis is probably wrong, so there probably is an 
effect. 
 
But now look at the same logic in a different illustration: 
 
If it is winter, I am unlikely to be swimming. 
 
I am swimming. 
 
Therefore, it is unlikely to be winter. 

 
 That conclusion is not sound. Its validity depends on other information not 
included in the analysis. Suppose, for instance, that I am in Hawaii. The fact that I am 
swimming, then, does not imply that it is not winter. It may just so happen that I spend 
four days each winter in Hawaii (about 5 percent of the winter). And so it is true that if 
it is winter I am unlikely to be swimming, as I’m only in Hawaii 5 percent of the time in 
the winter. Nevertheless, the fact that I am swimming is more likely evidence that I am 
in Hawaii than it is evidence that it isn’t winter. 
 The point here is that statistical inference based on the results of an experiment 
tell you nothing on its own about how likely it is that the effect is real or not. To make a 
conclusion like that, you need to know other things. 
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 In this example, for instance, you would need to know not only how much time I 
spend in Hawaii, but also how much time I swim in the summer! If I swim every day in 
the summer and only a few days in the winter, the fact that I am swimming does indeed 
suggest that it’s probably not winter. But if I never swim in the summer and only swim a 
few days each winter in Hawaii, then the fact that I am swimming suggests that it is 
probably winter — even though I truly am unlikely to be swimming in the winter (as I 
spend most of the winter in Washington). 
 Similar considerations apply to science, in much more complicated and less easy 
to see ways. It’s not that nobody realizes this. The scientific literature is full of papers 
pointing out such flaws of interpretation and other problems with the application of 
statistical methods. That’s especially the case in medicine, but the problem applies 
across the whole spectrum of the sciences. It’s exactly the problem that Ioannidis was 
calling attention to. But many others have made similar points. 
 

Some examples: 
 
“… despite the awesome pre-eminence this method has attained in our 
experimental journals and textbooks of applied statistics, it is based upon a 
fundamental misunderstanding of the nature of rational inference, and is seldom 
if ever appropriate to the aims of scientific research.”  

— William Rozeboom, Psychological Bulletin, 1960 
 
“Many biologists remain confused about appropriate statistical techniques, or 
unaware of the limitations of the techniques that they use.” 

 — Philip A. Stephens et al, 2007 
 
“The methods of statistical inference in current use … have contributed to a 
widespread misperception ... that absent any consideration of biological 
plausibility and prior evidence, statistical methods can provide a number that by 
itself reflects a probability of reaching erroneous conclusions. This belief has 
damaged the quality of scientific reasoning and discourse....” 

 — Steven Goodman, 1999 
 
“Too many reports of associations between genetic variants and common cancer 
sites and other complex diseases are false positives. A major reason for this 
unfortunate situation is the strategy of declaring statistical significance based on 
a P value alone....”     — Sholom Wacholder et al,  2004 
  
“Many investigators do not know what our most cherished, and ubiquitous, 
research desideratum — ‘statistical significance’ — really means. This . . . signals 
an educational failure of the first order.” 
    — Raymond Hubbard and J. Scott Armstrong, 2006 
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What used to be called judgment is now called prejudice, and what used to be 
called prejudice is now called a null hypothesis. . . . [I]t is dangerous nonsense 
(dressed up as the ‘scientific method’) and will cause much trouble before it is 
widely appreciated as such.     — A. W. F. Edwards, 1972 

 
Misleading media 
 So after assessing all the evidence and the critiques of statistical methodology 
that experts have articulated, it is quite clear that the provocative title of Ioannidis’ 
paper was actually right on target. And so therefore much of what you read in the media 
about scientific results is wrong. 
 Now, it isn’t exactly a news bulletin that the media often get science wrong. But 
I’m saying something much more striking than that. Even when the journalists get the 
story right, what you read is likely to be wrong. In other words, even if the reporter 
quotes the scientist correctly and in context, faithfully presents the conclusions of the 
scientific paper and represents the meaning of the findings for science just as the 
scientists do, odds still are that it’s wrong. 
 That would be the case, if we accept Ioannidis’ analysis, simply because most 
scientific papers are wrong to begin with. But with what you read in the news, it’s even 
worse. Because, as I mentioned earlier, the qualities of a scientific paper that make it 
newsworthy are precisely those that make it even more likely to be wrong. 
 As I mentioned before, journalists are eager to write about a paper when it’s the 
first report of such a finding, or when it’s a development of any sort in a hot research 
field (and therefore of wide interest), and when it contradicts previous belief. These 
criteria for news are a recipe for reporting the results most likely to be bogus. 
 First of all, consider first reports. Although there is some disagreement on this 
point in the literature, there are good arguments that first reports are the most likely to 
be wrong. In any case it seems clear that first reports are likely to overstate the 
magnitude of an effect if there is one. And it may be that first reports are likely to be 
wrong more in some fields than others. 
 Genetic association studies are one example. One observer writes that “…the 
initial published report often overestimates the true genetic effect size ... indicating that 
results from an initial study must be viewed with great caution and may merely be the 
result of chance, bias, flaws in analysis/interpretation, or publication practices” 
(Sullivan 2007). 
 To see why that is, let’s suppose, for example, that a new disease arises with no 
known cure. We’ll call it twittering. 
 Scientists in this simple example world think that some drug already in their 
arsenal could cure twittering. And their arsenal has 100 drugs. Let’s say one of these 
drugs actually does cure twittering, the other 99 are worthless. But scientists don’t 
know which one will work, so they start testing all 100. 
 Using that P value of 5 percent as the criterion for statistical significance, we 
should expect just by chance that five of the drugs will appear to work, even if none of 
them do. So if only one drug actually works, chances are 5 out of 6 that the first report 



12 
 

Tom Siegfried   Hill Lecture   March 31, 2009 

of a drug that works will be 
bogus. This is the same as 
saying that if you take one 
of a pair of dice, you’d have 
to get a 6 on the very first 
roll for the first report to be 
correct. Yet it is the first 
report of a drug to cure 
twittering that would 
certainly get the news 
coverage.  
 Now when do news reporters tend to write more than just the first report of a 
result? When it is in a hot research field, like cloning or cancer research or genetics. In 
hot research fields, lots of labs around the world are all racing to do something or 
discover something or find evidence of something. So if the race is on to cure twittering, 
maybe 1,000 labs will be on the job. Over the course of a year maybe 50 papers might 
be published reporting statistically significant results about drugs or therapies or 
whatever that reduce death rate from twittering. Of course, the other 950 labs didn’t get 
any results worth publishing. Those 50 papers represent 1 lab in 20 — exactly the 5 
percent of the time that the fluke data would expect to appear significant when you set 
your standard for rejecting the null hypothesis at P = 0.05. News reports on all those 
stories might give the impression that there are lots of cures for twittering, when there 
is no good reason to believe any of those results. 
 Finally, another sure way to get a reporter to write about a study is for the press 
release announcing it to start out by saying “contrary to previous scientific belief . . . .” 
 But here again, these are precisely the results that are least likely to stand up. 
 Presumably (although of course, not always), previous scientific belief is based 
on previous scientific data. If new data doesn’t correspond to the old data, it is most 
likely that the new data is the statistical outlier. Remember the illustration of 
confidence intervals, when one study contradicted all the others. Had it been the last 
study done, it still would have been wrong. There is usually no reason to believe that 
one new study is right and all previous studies are wrong (although there are cases 
when that might not be right — if the new data comes from a technologically advanced 
instrument with higher resolution or something). But ordinarily, contrary to previous 
belief should be a warning flag that the result being reported is likely to be wrong. 
Instead it is usually a green light to go with the story. 
 
Real life errors 
 So far the examples I’ve given are simplified and artificial. But there are plenty of 
real life examples. 
 Take studies linking genes to disease, for instance. You couldn’t count all the 
news stories over the last 25 years or so that have reported something like “Gene Y is 
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(statistically) linked to Disease X.” Whether those reports hold up might make a good 
test of whether these statistical methods really work. 
 Not long ago some researchers did that test. They identified all the papers they 
could find linking various genes to acute coronary syndrome, a cluster of heart 
problems. The researchers found 85 genetic variants in 70 different genes that had 
been linked to increased susceptibility to that syndrome, ACS. Next they identified 811 
patients that had been diagnosed with ACS over a period of time at university-affiliated 
hospitals in Kansas City. If any of those 85 genetic variants are in fact linked to ACS, 
they ought to show up more in that group of patients than in a control group of people 
without ACS. So the researchers found 650 controls (matched for sex and age) and did 
genetic testing on both groups. 
 Guess how many of the 85 suspect gene variants turned up more often in the 
people with ACS? Zero. None. Nada. Well, actually one did, but that would be expected 
just by chance. 
 “Our null results provide no support for the hypothesis that any of the 85 genetic 
variants tested is a susceptibility factor for ACS,” the researchers reported in the Journal 
of the American Medical Association. 
 Of course, the search for disease genes grows ever more sophisticated. 
Nowadays a popular method of testing for genetic links to disease is the use of a 
microarray, which is basically a computer chip coated with molecules that can sense the 
presence of chemicals indicating the amount of activity of various genes. Researchers 
use microarrays to compare gene activity in healthy cells with gene activity in sick cells. 
It’s a way to see which genes are working abnormally in a particular disease. 
 The problem is that in most diseases, many, many genes are behaving 
abnormally. And a microarray can test more than 20,000 genes at once. So that raises 
the immediate issue of how to tell whether a gene is really abnormal or that its activity 
is just varying within normal limits. You want to know if there is a statistically 
significant difference, in other words. But if your test for statistical significance is at the 
5 percent level, and you test 20,000 genes, then 1,000 genes are likely to appear to be 
abnormal just by chance! 
 Setting a higher threshold of statistical significance will eliminate some of those 
flukes, but only at the cost of also eliminating some truly changed genes from the list as 
well. 
 That’s a particularly bad problem if you’re studying a metabolic disease such as 
diabetes, when a large number of genes show altered activity but the change in activity 
is small. When you apply standard statistical approaches, many of these changes fail to 
reach statistical significance, because the standard tests are weighted to weed out the 
false positives. Real changes are chalked up as mere fluctuations. So even though 
hundreds of genes might actually be altered in diabetes, standard stats might indicate 
only one. 
 On the other hand, making sure to include the truly changing genes comes at the 
cost of including many false positives. For metabolic diseases, snaring 80 percent of the 
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true culprits would probably produce a list of more than 13,000 genes — of which more 
than 12,000 are actually innocent. 
 People who do these microarray studies have gradually been realizing that 
standard statistics are not their friend. More sophisticated statistical methods have 
been developed, and in particular an approach called genome-wide association studies 
have been used in attempt to deal with some of these issues. It’s a step in the right 
direction, although some problems nevertheless remain. 
  
Clinical Trials 
 There is another, much bigger and more serious problem with all these issues 
about statistics, and that is their use in clinical trials. The double-blind, randomized 
controlled clinical trial is supposed to be the gold standard for testing new medicines to 
see whether they are good or bad, and drug approvals and doctor decisions and 
insurance payments all depend on what these trials find. But clinical trials are fraught 
with problems. I’m only going to discuss two main points here. 
 One is the problem of basing conclusions on averages. The other is the myth that 
that problem is solved by randomization. 
 When clinical trials are reported, the results are typically given as averages. To 
give just a crude example, suppose we tested our drug to cure twittering on 1,000 
people and compared the results to 1,000 people on placebo. And suppose the drug 
seemed to cure about 200 people. If about 200 people were also cured in the placebo 
group, the conclusion would be that there is no statistically significant effect of the drug. 
 But suppose you look more closely and find that in the drug group, the cure 
worked on all of the people over age 50. In the placebo group only a few of the over-50s 
were cured. Because there weren’t a lot of over-50 people in the study, they didn’t affect 
the overall average very much. So on average, the drug did not appear to work, so it is 
not approved, and those poor over-50 people are denied a drug that could alleviate 
their suffering. 
 Now you might just say well, let’s look at all the subgroups. But that is 
statistically bogus. By chance, some subgroups will differ. (That’s why you sometimes 
see dumb stories like “Leos are more likely to get in car accidents.”) You would have to 
know in advance which subgroup to look at. Even looking at predetermined subgroups 
is only a partial solution if it is a solution at all. Because, as I’ll discuss in a moment, you 
will often have no idea what subgroups even exist. 
 Another example, one of my favorites, involves antidepressants. 
 A lot of people like to claim that antidepressants really don’t work any better 
than placebos, citing clinical trial results that show there isn’t much difference in 
effectiveness. In fact, most trials seem to show that on average, drugs do work better 
than placebos, just not by very much. One study published in 2002 analyzed dozens of 
tests by drug companies seeking that measured depression with a standard 
questionnaire, with higher scores indicating greater depression. In most trials drugs 
lowered depression scores more than placebos, but only by an average of about 2 
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points. The researchers concluded that the difference was small and therefore the 
clinical significance of antidepressants was dubious. 
 Of course, the researchers acknowledged that their conclusion hinged on the 
belief that a drug’s true effect is simply the difference between the drug response and 
placebo response, and that assumes placebos have no effect at all, which is surely 
wrong. And even if the placebo effect is nil, the notion that drugs aren’t worth much 
remains deeply flawed, because the small reported difference between placebo and 
drug responses is an average. Every doctor knows that some people may respond to 
one drug but not to others. Averaging the results may show a small effect only because 
the large responses for some patients are balanced out by small or no responses from 
others. 
 So reporting results as averages is the standard practice, it’s what regulators 
looks at, it’s what journalists write about. But it is DUMB. Averages are frequently next 
to meaningless. A very good piece appeared in American Scientist in 2007 that explored 
this issue in some detail, emphasizing that individual differences are critical in 
healthcare, not just group differences.  
 “Reporting a single number 
gives the misleading impression that 
the treatment-effect is a property of 
the drug rather than of the 
interaction between the drug and the 
complex risk-benefit profile of a 
particular group of patients,” the 
authors wrote. “Determining the 
best treatment for a particular 
patient is fundamentally different 
from determining which treatment is best on average.”  
 Now, the standard response to all this is not to worry, the trials are randomized, 
so individual differences are averaged out. The control group is comparable to the drug 
group because there are just as many men as women in each, or the same percentages 
of different races, or ages, and in any case we can control for those things 
mathematically if we look and see that they are different. And that’s true. You can 
control for things you know about. But you can’t control for the things that you don’t 
know about. And you don’t know a lot. 
 So suppose, first of all, that you only had one thing you didn’t know about. When 
you assign people to two groups, you flip a coin, and so that’s the same as assuming 
you’ll have a roughly equal number of heads and tails. If you do one big trial, that will 
probably be the case. But remember the pennies. Most of the time you get close to the 
same number of heads as tails. But if you do enough trials, sometimes you’ll get that one 
difference distributed not so evenly.  
 Here’s a little example, trials flipping a coin 100 times. Most of the time the 
results are close, but you can see here and here and here a split of greater 60-40 or 
greater. In clinical trials, it’s the same way. Even if you have to randomize only one 
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unknown thing, sometimes it would 
not work. And there are 20,000 
clinical trials going on, so you know 
some of them won’t be well 
randomized. AND THAT’S JUST FOR 
ONE UNKNOWN THING.  
 How many unknown things 
are there, really? Well, something 
like 3 million — 3 million places 
where individuals vary by one of the 
letters in the genetic catalog, the 
genome. Sure, most of those 
differences probably don’t matter 
for any given drug or disease. But 
let’s say that just 1 percent of them mattered. That’s 30,000 differences to randomize. 
Or maybe it’s only 0.1 percent or 3,000. You won’t successfully randomize 3,000 things 
when you assign people at random to groups in a clinical trial. Some things won’t be 
randomized. And you have no idea what things weren’t randomized or which trial was 
well randomized for those things and which trial wasn’t. The whole foundation of the 
clinical trial system is BOGUS. 
 Let me be sure to be clear about one thing here. This can work both ways. It 
means some bad drugs will get approved, it also means some good drugs will not get 
approved. This is not about any pharmaceutical company conspiracies. It’s about how 
the math works that is commonly used to do scientific inferences about whether drugs 
work or not. 
 To be fair, it’s not true that nobody realizes this. Some experts would say that of 
course, randomization doesn’t distribute every characteristic equally between the two 
groups. The idea seems to be, though, that those unbalanced features will work both 
directions, some enhancing the effect of the drug, for example, and others impairing it, 
so it will all balance out. Well, even in an ideal world, the best you could say is 
sometimes that might happen and sometimes it might not, and you can’t know which 
times are which. But it’s also important to remember that the world is not ideal. 
Protocols are not always followed precisely. Several studies suggest that despite alleged 
“blindness,” clinicians conducting trials sometimes manipulate which patients get the 
drug. These and other factor can create “selection biases” that distort the findings. 
“Some of the benefits ascribed to randomization, for example that it eliminates all 
selection bias, can better be described as fantasy than reality,” write Vance Berger and 
Sherri Weinstein in the journal Controlled Clinical Trials (2004).  “Selection bias can … 
cause substantial, systematic and reproducible baseline imbalances … and offer a 
plausible alternative explanation for observed post-treatment between-group 
differences.” 
 Furthermore, there are many other problems that afflict clinical trials, such as 
who is getting randomized to begin with. The people who enter clinical trials may not 
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be representative of all patients, so the results may not be applicable to the population 
at large. “The randomization process can serve as a basis of inference,” write Lu Zheng 
and Marvin Zelen of the Harvard School of Public Health. “However, the inference 
requires that subjects entering a trial constitute a random sample of subjects from a 
well defined population. Unfortunately this is rare. Subjects entering a trial are not a 
random sample of patients.” The way that results from different centers in a trial 
conducted at multiple locations also can influence in the conclusions, they point out. 
 
Meta-analysis  
    Now, the standard response to all this is that you don’t rely on one trial alone. 
You should combine trials to get a bigger sample and get better statistics. This approach 
is called a meta-analysis. And guess what. It’s also bogus. 
 In principle, meta-analysis is a good idea. The premise is that if an effect is small 
(but important, as a fatal side effect in some small percentage of patients), standard 
statistics will not regard it as significant unless your trial size is very large. 
 Here’s an example. Let’s suppose that someone believes aspirin is deadly for a 
small number of people in the population, causing them to die from twittering.  A study 
is done on two groups of 100 people each. One group is given a daily aspirin, the other 
group gets a placebo. After an appropriate period of time, we count up the deaths from 
twittering and find: 

 
Aspirin group, 4 die from twittering. 
Placebo group, 2 die. 
Relative risk of aspirin = 2.0 (aspirin doubles the risk) 

 
 BUT a statistical significance test finds that the relative risk at the 95 percent 
confidence interval ranges from 0.37 – 10.7, so this increase is not statistically 
significant.  And it is a small risk. If 2 percent of the population dies from twittering 
anyway, then only 2 percent more die if they take aspirin. But because so many people 
twitter, and so many take aspirin, that 2 percent could add up to a lot of deaths. So this 
is a case where a small effect could be significant, even if not statistically significant. 
And in this case, for an increase that small to be statistically significant, you’d  need 
about 600 people in each group. 
 So if all the evidence you have is from small trials, none of them would be likely 
to find a statistically significant effect. 
  By combining several small trials, though, the sample size could become big 
enough to detect the effect. But is it valid to combine trials together like that? Will the 
mathematics that make statistical tests possible still apply? Yes, if some criteria are met: 
     
 1. You have to find ALL the trials that have been done on this issue. 
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     2. They all need to have been done using the same protocols, same definitions of 
terms, involving the same kinds of people and same kinds of controls, with outcomes 
measured in the same way. 
 
 The trouble is, these criteria are rarely met 
 A couple of years ago a meta-analysis of echinacea indicated that it was effective 
at treating the common cold. A newspaper account of that report included the following 
comment from an outside expert, Dr. Bruce P. Barrett of the University of Wisconsin. “If 
you’re testing the same intervention on the same population using the same outcome 
measures, then meta-analysis is a very good technique,” Dr. Barrett said. “But here 
every one of those things fails.” 
 In other words, this meta-analysis was bogus. And these requirements 
frequently aren’t met in other meta-analyses either. 
 I’ll mention two other examples of bogus meta-analysis just to show you how 
serious this problem can be. One involves Avandia, a drug for treating diabetes. The 
other involves the risk of suicide for kids given antidepressants. 
  A paper in 2007 in the New England Journal of Medicine claimed that Avandia 
“significantly increased the risk of heart attacks,” one newspaper reported. 
“Researchers also found that the drug boosted the chances of dying of heart disease by 
64%,” wrote another. Those writers did not, however, appear to have much of a clue 
about the evidence underlying their statements – a good example of the confusion 
between “significance” and “statistical significance.” 
 In fact, the reported increase in deaths was NOT statistically significant (at the 5 
percent level). The increased heart attack risk was statistically significant, but just 
barely. 
 One newspaper report even went so far as to provide the raw data, noting that 
86 heart attacks occurred among 15,560 patients who took Avandia, while only 72 
heart attacks were recorded among the 12,283 given a placebo or some other drug. 
That makes it sound like many more heart attacks occurred with Avandia. But if you 
pause to do a little elementary math, you would notice that Avandia was taken by more 
people. A proper comparison would point out that 59 people per 10,000 had heart 
attacks without Avandia, and only 55 people in 10,000 had heart attacks when using 
Avandia.  
 So that makes it look like Avandia is a good thing. But that was before the 
statistical analysis began. These numbers came from a combination of dozens of clinical 
trials, most of them small, with only a few hundred patients. To do a meta-analysis of 
many trials, you don’t just add the numbers up. You have to follow the statistical rules 
for how to combine the studies. It's a technical process, involving several mathematical 
manipulations for combining the studies and deciding how much weight to give to each 
of them. At the end of that process, the numbers suggested that Avandia actually 
increased the risk. 
 It’s certainly possible that even though the raw numbers show a benefit, proper 
statistical analysis may reveal an actual risk. But for those statistical manipulations to 
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be valid, the criteria for doing a meta-analysis must be met. All the studies ever done 
must be included, unpublished as well as published. And all studies must use the same 
methods, the same definitions and procedures.  
 Many unpublished studies were in fact included in the Avandia meta-analysis. 
But they were not all conducted according to the same rules. In some cases, Avandia 
was given along with other drugs. Sometimes the non-Avandia group got placebo pills, 
while in other trials that group received another drug. And there were no common 
definitions. 
 “Across the trials, there was no standard method for identifying or validating 
outcomes; events . . . may have been missed or misclassified,” Drs. Bruce Psaty and Curt 
Furberg wrote in an editorial accompanying the New England Journal report. “A few 
events either way might have changed the findings…. In this setting, the possibility that 
the findings were due to chance cannot be excluded.”  
 Unfortunately, you can’t 
conclude that chance IS to blame, 
either. It may be that Avandia really 
does raise the risk of heart attack, and 
even if the risk is small — a few extra 
attacks per thousand people or so — 
the consequences are serious when a 
million people are taking the drug. 
But this meta-analysis does not 
establish the risk very convincingly 
(as a paper appearing soon after the 
original meta-analysis made clear).  
 Very similar issues arose with studies claiming to show that drugs for treating 
depression called SSRI’s cause kids to commit suicide. About five years ago now the 
Food and Drug Administration concluded from a meta-analysis that it was necessary to 
require a “black box” warning of the drugs’ dangers. Actually, the evidence for that 
conclusion was probably the shoddiest example of statistical reasoning I have ever 
seen, and I’ve seen some shoddy ones. And media coverage of the issue was about as 
reliable as AIG’s TV commercials. 
 Now it may very well be that in some children, SSRIs do cause a tragic bad 
reaction that induces suicide, and it is prudent to warn of that possibility. Another 
danger, though, is that such warnings may become so shrill that seriously sick youth 
forgo the best treatment available to help them. And untreated depression, there is no 
doubt at all, often does end in suicide. And in fact, after years of declining, the suicide 
rate in adolescents did begin to rise again after that black box warnings were imposed. 
 The problem in this case is that people with depression sometimes contemplate 
suicide whether taking medication or not. The issue is whether taking medication 
makes suicidal behavior more likely than it would otherwise be. 
 As it turns out, in all the studies the FDA analyzed (more than 20 studies of drugs 
for treating depression in youth ages 6-18), for all the drugs and all the disorders, the 
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number of suicides reported was precisely zero. The conclusion of danger was based on 
suicide attempts or plans or reports of suicidal thoughts. For instance, in three clinical 
trials of Prozac for depression, 17 cases of such suicidal behavior or thinking were 
recorded (out of 355 patients in the trials). But of those 17 cases, only eight were 
among patients given Prozac. Among those given placebos, nine such incidents were 
recorded. 
 For some other antidepressants, suicidal incidents were reported more often for 
patients taking the drug than for those on placebo. But in each study the difference was 
again too small to be statistically significant. But of course, lack of statistical significance 
does not mean there is no effect; it could be that the effect is just too small to detect. 
That’s why the FDA lumped all the studies together, weighing some more heavily than 
others based on the number of patients and the number of incidents. 
 But when the studies of SSRIs for treating serious depression were lumped 
together, there was still no statistical significance. The only way the report reached a 
conclusion of statistical significance was to add in studies of NON-SSRIs, and then to add 
in studies using SSRIs for diagnoses other than depression. Adding all those studies 
together, in a certain way, it appeared that, just barely, the drugs might cause a slight 
increase in suicidal thoughts or behavior in youth beyond that expected by chance. But 
for the SSRIs alone, when used for depression, the excess of incidents with drug over 
placebo was not statistically significant.  
 Still, for some of the SSRIs, the number of incidents was a little higher with the 
drug than the placebo. Those SSRIs show what the FDA calls a “signal” — an excess, 
possibly meaningful, but small enough to be possibly due to chance. With Paxil, for 
example, trials recorded more than twice the rate of incidents on the drug than on 
placebo. For Prozac, the signal is negative, with more suicidal incidents on the placebo 
than the drug. So it looks like Paxil is worse than Prozac.  
 But guess what. The rate of suicidal incidents was higher with Prozac. (In the 
Paxil/depression trials, 3.2 of every hundred patients on the drug reported suicidal 
incidents; for Prozac, it was 4.5 per 100.) The apparent safety advantage of Prozac over 
Paxil was due not to the behavior of kids on the drug, but to kids on placebo — fewer 
kids on placebo in the Paxil trials reported incidents than in the Prozac trials. It just 
goes to show how slippery statistics can be, and shows how foolish it is to base policy 
on data so disturbingly dubious.  
 
All is not wrong 
 So, the situation is indeed grave. But I don’t want to leave the impression that all 
science is worthless, or that we actually know nothing about anything.  
 After all, in many scientific studies the results have a very high level of statistical 
significance. If a result is statistically significant at the 0.00001 level, it’s much less 
likely to be spurious than those results at the 5 percent level. The cautions still apply, 
but the prospect for serious misinterpretation is lessened. In fields like particle physics, 
for instance, researchers insist on that sort of confidence — they yawn when shown a 
result at the 5 percent level and would ridicule anybody who tried to publish it. 
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 Furthermore, when a result from one study is replicated, and replicated again, 
the statistical confidence in the result grows dramatically. Scientists know that, and 
they often warn that results have to be replicated to be accepted. And journalists even 
sometimes mention that in their stories. But they write the stories nonetheless as 
though the new finding is ready for the textbooks. 
 Scientists studying gene links to disease have recognized this and that is why the 
method called genome-wide association that I mentioned earlier has become popular. It 
builds in an internal replication process to help indentify disease-linked genes more 
effectively. 
 Finally, there is one other major cause for hope, and that is the renaissance of 
another approach to statistics that addresses many of the shortcomings of the standard 
approach. I’m talking about Bayesian statistics. 
 
Bayesian statistics 
 The statistical philosophy I’ve been talking about so far is called the frequentist 
approach. Bayesian and frequentist methods have historically been in conflict. Bayesian 
methods stem from a posthumously published paper in 1763 by the English clergyman 
Thomas Bayes. In a Bayesian analysis, probability calculations require a prior value for 
the likelihood of an association, which is then modified after data are collected. When 
the prior probability isn’t known, it must be estimated, leading to criticisms that 
subjective guesses must often be incorporated into what ought to be an objective 
scientific analysis. 
 Let me offer a simple example of Bayesian reasoning at work. 
 Suppose the test for steroids is 95 percent accurate (that is, it correctly identifies 
steroid users 95 percent of the time, and identifies non-users as users 5 percent of the 
time). So it’s the analog of the 5 percent P value for drawing a conclusion. 
 An anonymous player (let’s call him Barry) tests positive. What is the probability 
that he really is using steroids? 
 If you say 95 percent, you are a frequentist, or at least a frequentist sympathizer. 
But remember my point that to draw a sound conclusion, you need to know some facts 
not included in this evidence. In this case, you need to know how many baseball players 
use steroids to begin with. That would be what a Bayesian would call the prior 
probability. 
 Let’s say it has been established that 5 percent of major league baseball players 
use steroids. Now suppose you test 400 players. How many would test positive? 
 
 Out of the 400 players, 20 are users (5%) and 380 are not users. 
 Of the 20 users, 19 would be identified  correctly (95%). 
 Of the 380 non-users, 19 would incorrectly be indicated as users (5%). 
 
 So if you tested 400 players, 38 would test positive; 19 would be guilty users and 
19 would be innocent non-users. 
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 So when you test a player and his test is positive, the chances that he really is a 
user are 50 percent. 
 Now that’s a simple trivial example; nobody cares if baseball players are taking 
steroids. But the same principle applies in serious situations, like medical diagnoses. 
 Suppose you have just tested positive for a rare but always fatal disease that afflicts 1 
person in a million. The test is 99 percent accurate. 
 Should you:  
 
 A. Sell your stock and go skydiving. 
 B. Confess all your sins on your blog. 
 C. Request results of the B sample. 
 
 If you know Bayesian statistics, you won’t worry too much. In this case the prior 
probability of having the disease is 1 chance in a million. For a 99 percent reliable test, 
there will be 10,000 false positives after testing a million people and only one correct 
positive. So the odds that you have the disease are 1 chance in 10,000. 
 Bayesianism’s star has risen and fallen over the past two centuries, and it fell 
mostly out of favor among 20th century biostatisticians after the ascendancy of the 
frequentist approach reflected in statistical tests formalized by Fisher and Neyman and 
Pearson. In recent years, though, Bayesian methods have gained favor among many 
researchers. Berry of M.D. Anderson has been advocating its revival for decades. 
Recently Bayesian methods have become more popular in clinical trials, and have been 
frequently advocated for improving the conclusions reached in gene association studies. 
 Now, it is true that Bayesian statistics has its problems, too. There is no magic 
cure for all the ills of math in science and medicine today. But the situation would be a 
lot better if more scientists, and journalists, understood these ills to begin with and took 
steps to cope with them more intelligently. In particular, journalists need to learn to ask 
questions like how many other labs might be working on a question, what does the 
previous evidence indicate, is there a reason why a newer study is any more reliable 
than an older study. And reporters need to learn how to phrase the meaning of 
statistical results so as not to be trapped in logical or mathematical errors. 
 Finally, I think scientists and journalists alike need to listen to the words of 
Fisher himself. All I am saying here today is that sound judgments require … sound 
judgment, and not the blind devotion to numbers alone that has damaged so much of 
modern life in so many different ways. 
 Fisher said that the wise scientist draws conclusions not by numbers alone, but 
“rather gives his mind to each particular case in the light of the evidence and his ideas.” 
And I think that’s a good idea. 
 
 I’ll end with a couple of observations that others have made that illustrate, I 
think, why all this technical stuff is worth paying attention to, and in particular why 
journalists should be interested in it. One is from a very nice popular book on statistics, 
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which midway through, almost as an aside, offered a comment that scientists ought to 
take note of: 
 “What does probability mean in real life? . . . This problem is still unsolved, and ... 
if it remains unsolved, the whole of the statistical approach to science may come 
crashing down from the weight of its own inconsistencies” (David Salsburg, The Lady 
Tasting Tea). 
 The other is from a statistician whose papers have been making a lot of these 
points, particularly the point that others need to pay attention. 
 “In a world where medical researchers have access to increasingly sophisticated 
statistical software, the statistical complexity of published research is increasing, and 
more clinical care is being driven by the empirical evidence base, a deeper 
understanding of statistics has become too important to leave only to statisticians” 
(Goodman 1999). 
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