Cavitation Detection with Process and Asset Data

AMS Suite	AMS Suite: Asset Graphics		OP	PC Status	USER: X	11/11/201	2 Process Manag	ON. Jerment
PUMP101A	RUN TIME 1 HRS SINCE OOS 4459.5	HRS		EAM APP	PROTECTI		PERFORMANCE	
RUNNING 0%						s INPUTS	CONFIGURATION	5
	CURRENT	AVERAGE	BASELINE	OV1_PV ×	0V2_PV ×) PKV1_PV	×) PKV2_PV ×) DISCH	I_P_SD_PV ×	Scales
VIBRATION 1	0.170 RMS	0.1578	0.1570	02				
PEAKVUE 1	3.258 G's H 🔿	3.2492	1.8513	3.6			0.5 A A 19	5 MIN
VIBRATION 2	0.214 RMS	0.2238	0.2248	0.18				1 HR
PEAKVUE 2	1.909 G's	1.8952	1.9000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~		
FLOW	60.01 kg/hr	60.00	60.00		an Am	Λ , Λ , Λ		TDAY
SPEED	1,500 RPM	1,500	1,500	25 V V	v v v v		V V V V A H as	1 WK
DISCHARGE P	30.35 psig	29.87	29.99	0.14				1 MTH
SUCTION P	1.99 kg/cm ²	2.00	2.01	2				
	0.10 kg/cm ²	0.10	0.10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim$		1 QTR
PUMP HEAD	28.2 psig	28.28	18.6				Link Deels/	1 YR)
BEAR TEMP 1	41.01 °C	41.00	40.8)	and Dev of L	ischarge Pr	ess righ <u>AND</u> r	ngn Peakvue	
BEAR TEMP 2	42.01 °C	42.00	42.00	0002 0002 0002 0002 0002 0002 0002 000	0000 0000 0000 0000 0000 0000 0000 0000 0000	2000 1011 1011 1011 1011 1011 1011 1011	0000 11/1/1 11/1/1 11/1/1 11/1/1 0001 0001 0001 11/1/1 11/1 11/1/1 11/	-9
SEAL PRESSURE	0.49 kg/cm ²	0.50	0.49	******				•
PRESSURE - HI	NORMAL			ALARMS			COUNT	4
PRESSURE - LO	NORMAL			11/11/2012 6 21 17 AM	CAVITAT	ION		
SEAL LEVEL	51.00 %	51.00	51.00	11/11/2012 6:21:17 AM	PRE CAV	ITATION		
LEVEL - HI	NORMAL			11/11/2012 6:21:02 AM	VIBRATIC	ON 1 INCREASING TREND DETECTED		
LEVEL - LO	NORMAL			11/11/2012 6:20:51 AM	HIGH PEA	AKVUE VIBRATION 1		
HCLEAK	NORMAL							
CAVITATION (STD)	0 2975	0.2809	0.0237	>				
	Real		\sim	1				
		Z		S				K)

Heat Exchanger Monitoring

Fouling calculation – One flow and four temperatures

Importance of Heat Exchanger Monitoring

Looking at a typical Heat Exchanger Root Cause & Effect Diagram...

Fouling and plugging can impact several process areas:

Only with Emerson... Address critical fault conditions...

Fault Condition	Cold Side Inlet Temp	Cold Side Outlet Temp	Hot Side Inlet Temp	Hot Side Outlet Temp	Cold Side Flow	Hot Side Flow	Cold Side dP	Hot Side dP
HX Cleaning Required					M	M	Ø	M
HX Fouling					M	M		
Low Flow					M	M		
Decreasing HX Duty	Ø	Ø	M	Ø	Ø	Ø		

...using pre-engineered algorithms on a combination of process and equipment data to report asset health

Heat exchanger high fouling rate detection

High fouling rate detection with process <u>and</u> asset data

AMS Suite	AMS Suite: Asset Graphic	25	OPC Status Runtime Error	USER:		11/11/2012	EMERS Process Manad	iON gement
HT EXCH E1	RUN TIME 3,307.8 HRS SIM	ICE OOS 4,458.7 HRS		EAM APP	PROTECTION	PREDICTION	PERFORMANCE	
ACTIVE 25%	HIGH EXCHANGER FOULING	DETECTED			PROCESS		CONFIGURATION	
IIOT SIDE	CURRENT	AVERAGE	BASELINE FLOW_H_I			•_H_PV ×) Q_H_CV	×	Scales
FLOW	7,000.01 m³/hr	7,000.00	7,000.00					
INLET TEMP	225.99 °C	226.00	226.00				30	5 MIN
OUTLET TEMP	225.00 °C	225.00	215.00 7600					1 HR
PRESSURE (AP)	10.01 kPa	10.00	10.01		~		20	
HEAT DUTY	336.34 kW	336.37	394.68 6200 240	ot Outlet	Temp 🔾 🗕			
COLD SIDE	CURRENT	AVERAGE	BASELINE	Increase			30	0 1 WK
FLOW	32,500.00 m ³ /hr	32,500.00	32,500.01 218 4800 210 218		, <u> </u>		20	» 1 MTH
INLET TEMP	12.50 °C	12.50	12.51	Juty Decre	ease		22	0 1 QTR
OUTLET TEMP	21.00 °C	21.00	23.00 ¹⁸⁰ 214				18	
PRESSURE (AP)	20.00 kPa	20.00	20.00				14	
HEAT DUTY	306.72 kW	307.00	2000 150 210 55 5	E 8 E 8 E 8 E 8 E 8 E 8 E	8 = 8 = 8 = 8 = 8 = 8 = 8 = 8	E 85 85 85 85 85 85 85 85	NE NE NE NE NE NE	» 🔍
EXCHANGER	CURRENT	AVERAGE	BASELINE		85 85 85 85 85 85 85 85 85 8	15 85 85 85 85 85 85 85 85 85 85	85 85 85 85 85 85	
FOULING FACTOR	19 %	н	1					
LOSSES	124 €/DAY	124	0 ALARM	S			COUN	1
DUTY ERROR	9 %		4 11/11/2012	5:23:38 AM	HIGH EXCHANGER FOU	LING DETECTED		ô
U_OBSERVED	154,046.93 kW/°C-m ²	154,122.18	190,867.22					
U_CORRECTED	1,828.22 kW/°C-m ²	1,829.11	2,265.20					
ΔU – DAILY	0.00 AU/DAY							
ΔU - MONTHLY	0.00 AU/MTH							
								-
				Et .				X

Clean exchanger indication

Value Proposition for EAM for Heat Exchanger

- Enable Comparison of Efficiency Deterioration Patterns for Different Crude Types & on Different Exchangers
- Enable Identification of Exchangers with Higher Fouling Tendency
- Alarm on "High Cost of Energy Detected" (Cost of Energy & Efficiency/ Fouling)
- Warnings on & Identification of Operationally Passive Asset
- Alarm on "High Exchanger Fouling Detected"
- Calculate & Alarm on Deviation Between Hot & Cold Side Heat Duty
- Trend & Monitor Deterioration of Efficiency
 - Hourly/ Weekly/ Monthly/ Yearly Trends
- Automatic Snapshot Loading for Crude Change
- Ability to Import Past Historized Data into EAM : Enable Analysis of Fouling History for Period Before EAM Installation
- Export of Data into MS Excel to Enable Offline if Required

EAM vs. Spreadsheet Trending : Proactive vs. Post-mortem Approach

- Alarms & Early Warnings :
 - Dynamic Identification of Bad Data (e.g. Instrument Failures, Temperature Inversion)
 - Early Warnings & Alarms on High Energy Cost
 - Early Warnings on High Exchanger Fouling Enable Decision on Maintt.
 - High Exchanger Fouling Rate
 - High Heat Duty Error Enable Timely Baseline
- Calculation & Trending for Parameters such as:
 - "U Corrected" & "△ U Daily/ Weekly/ Monthly/ Yearly"
 - Fouling
 - Exchanger Health Penalty Weightage Configurable by User
 - Energy Cost Enable Timely Decision on Exchanger Maintt.

EAM Enables Informed & Timely Decision for

- Averting Problems Before They Occur
- Cost Effective Operation

Our solution uses tested algorithms on a combination of process and equipment data

Our Solution addresses every critical root cause... (Compressor)

Fault Condition	ххх	CSI 942 with 2 acc	0 (Ideal is 3- 94 celerometers a	RMT 3051S			RMT 648		RMT 3051S		FSHR 4320	MM3098		
	VFD Speed	Motor Vibration	Compressor Vibration	Bearing Vibration	Intake Filter dP	Flow	Suct Press	Disch Press	Suct Temp	Disch Temp	Lube Oil P	Lube Oil T	Vane Pos.	SG/MW
Resonance Freq Band	Ø	Ø	Ø											
High Vibration	M	M												
Bearing Fault	M	M												
Plugged Intake Filter					Ø									
Process Instability						Ø	Ø	M						
Low dP							M	M						
High dT									Ø	Ø				
Lube Oil Monitoring											Ø	Ø		
Control Vane Defect													Ø	
Gas Comp Change														Ø

Compressor Monitoring Solution

Compressor Instability Monitoring

Compressor Instability Monitoring

Process Management

Fin Fan Monitoring

Fin Fan Monitoring Solution

Cooling Tower Monitoring

EAM Summary

- Wireless technology has made real-time monitoring of Essential Assets economical
- Catching an equipment issue before it fails can be many times the cost of the monitoring equipment
- Emerson's new EAM Suite combines process with asset data to make intelligent equipment alerts – In real-time before it fails
- Customer benefits can be substantial

EAM Solution with Plant Control system

Reduce Energy Costs With Automated Steam Trap Monitoring

The Rosemount 708 Wireless Acoustic Transmitter

- Gives you real-time visibility to all your critical steam traps
- Provides information that enables you to make good decisions
- Is fast and easy to install and maintain
- Is proven technology that's easy to use

SteamLogic Software

- Steam trap state calculated using algorithms within software
 - Determined based on acoustic counts, temperature, line pressure, and trap type
 - Trap states include; good, cold, and blowthru
 - Works with all trap vendors

in logic	la		state	ot					
team <i>L</i>	ogie	/	eac	h				RO	SEMOUR
Powered by	Armstrong	8	ouo	· · ·					
p Monitoring	About H	elp	stea	m					
ces Group #1 Group #2									
ag # 🔺 Trap Status Sten	n Temp Trap Type (Critical State Change	Timestamp Monitor Tag	<u> </u>		Burst Rate (minutes)	Monitor Status	Battery Status	Gateway
O 32'	F F&T	1/7 2013 11:1	8:12 AM 70 -6 -2 C	9		1	0	-	TestLab-60
O 32'	'F Thermostatic	1//2013 11:1	3:29 AM 46-CA			1	U	-	TestLab-60
O 32'	'F Disc	1/7/2013 11:1	7:37 AM 708-62-8			1	O	-	TestLab-60
O 32'	'F Onfice	1/7/2013 11:1	3:19 AM 55-1			1	O	-	TestLab-60
O 32*	'F Thermostatic	1/7/2013 11:1	7:59 AM 708-62-17			1	0	-	TestLab-60
O 32°	°F Float	1/7/2013 11:1	7:40 AM 708-62-9			1	0	-	TestLab-60
(3) 32	'F Disc	1/7/2013 11:2	5:11 AM 708-62-10			1	0	-	TestLab-60
(3) 32°	F F&T	1/7/2013 11:2	5:30 AM 62-33			1	O	-	TestLab-60
(3 2 *	F FFT	1/7/2013 11:2	5:23 AM 46-9E			1	O	-	TestLab-60
(3 2 °	F hermostatic	1/7/2013 11:2	5:22 AM 708-86			1	0	-	TestLab-60
(3 2 °	F F&T	1/7/2013 11:2	5:00 AM 46-5F			1	0	-	TestLab-60
O 32'	F Inverted B	1/7/2013 11:1	8:24 AM 62-30			1	0	-	TestLab-60
0 2/	Inverted B	1/7/2013 11:1	7:46 AM 46-8D			1	0	-	TestLab-60
0 2	'F Inverted B	1/7/2013 11:1	7:52 AM 708-48			1	0	-	TestLab-60
32	F F&T	1/7/2013 11:1	8:29 AM 46-9C			1	0	-	TestLab-60
32	F F&T	1/7/2013 11:1	7:36 AM 55-38			1	0	-	TestLab-60
32	°F Inverted B	1/7/2013 11:1	7:44 AM 708-62-26	Easily		1	0	-	TestLab-60
32	F Thermostatic	1/7/2013 11:1	8:13 AM 700 00 00			1	O	-	TestLab-60
G 32'	F Themostatic	1/7/2013 11:1	8:13 AM 46	sort to		1	0	-	TestLab-60
G 32	F Thermostatic	1/7/2013 11:1	7:55 AM 70			1	0	-	TestLab-60
O 32'	'F Inverted B	1/7/2013 11:1	3:04 AM 62	find	Differentiat	0	õ	-	TestLab-60
O 32 ¹	F Inverted B	1/7/2013 11:1	7:40 AM		Dillerentiat	C	õ	-	TestLab-60
1 1 1 1 1	°F Bi Metal	1/7/2013 11.1	7.30 M 70	failed		ام مر م	õ	-	TestLab-60
0 32	'E Bi Metal	1/7/2013 11	740 AM 46-BU		between trap	and	õ	-	Testi ab-60
0 12	°F Bi Metal	1/7/201.111	8-28 AM 46-85				õ	-	Testiab-60
	*E Eloat	III. 2013 11:1	2:28 AM ACOLISTIC-708	traps	device failu	A	õ	-	receave
	E Themostatio	9/21/2012 3:0	2-12 PM STEAM709VPE			5	ñ	-	recrev4
	Themoscalic	572172012 3.0				3	0	-	Tankah CO
The Status		-	nal Deviece Ophy			14			TestLab-ou
Tap Status [All			Las Devices Only	~					
Good Tran/Good Monitor Statu	5	69 C		69 AND Data Available	3	Battery Good		8	
					3				
Iold Trap				2 V Device Not Config	ured 0	Dattery Low			
How The Tree /Pad Montor Q	atus			16 Out Of Service	0	Battery Critical			

Pressure Relief Valve Applications

- An alert can be set to indicate a vent state
 - Install and Learn
 - · Listens to background noise and sets the threshold accordingly
 - Manual

Configure

OK Cancel

EMERSON. Process Management

EAM Summary

- Wireless technology has made real-time monitoring of Essential Assets economical
- Catching an equipment issue before it fails can be many times the cost of the monitoring equipment
- Emerson's new EAM Suite combines process with asset data to make intelligent equipment alerts – In real-time before it fails
- Customer benefits can be substantial

Thank you!

Questions?

Setting the Standard for Automation™

A Tunable Filter Optical System for On-Line and Real-Time Hydrocarbon Gas Analysis

Virlesh N Desai, Servomex Group Ltd

Hydrocarbon Processing

FIVE MAJOR GAS ANALYSER TECHNOLOGIES

- (N.D.) I.R Photometry
- Paramagnetic (Process) O2 and PGC
- T.D.L
- Zirconia O2
- ...the rest is Niche...U.V, Mass Spec, water....

<u>Analysis Solutions in Paradise.....See us in Galveston 2013</u> The 58th Annual Symposium of the Analysis Division Galveston, Texas, USA; 14-18 April 2013

IS/

Whither the PGC?

Process GCs derived from Industrial need and push.... (Philips >>Applied Automation>>Siemens)

In terms of value sold PGCs have traditionally been the mainstay of the Process Gas analysis market

Good at hydrocarbon mixtures, trace elements in hydrocarbons (ppm C_2H_2 in C_2H_4)

Slide 3

Slide 4

