
IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 165 | P a g e

Detection of Code Clone Functions Extract Using Metric

Based Technique in Software Engineering
Gagandeep Kaur1, Dr. Bikrampal Kaur2

1M.Tech Scholar, 2Professor

Department of CSE, Chandigarh Engineering College, Landran, Punjab, India

Abstract-- Object-oriented programming is today the main

paradigm in mainstream software development. As their

requirement is increasing day by day they are becoming

greater and complex. Large scale software organizations are

expensive to build and, are even more expensive to

maintain. In PC software, we could probably have different

sorts of repetition.Duplicated code proves easy and

inexpensive during the software expansion phase, but it

makes software maintenance much harder. Software clone

has a number of undesirable effects on the quality of the

software. So there is a need to detect the clones to figure out

the problems and to help better software understand ability

and maintenance. This paper proposes a various method that

association’s neural network with metric based technique to

yield structurally meaningful near-miss clones and

implemented using MATALB. It is a new clone detection

method that has been shown to yield gets high precision and

high recall in detecting near-miss intentional clones.

Keywords-- Object-Oriented Programming, Maintenance,

Software clone and fragments.

I. INTRODUCTION

Software Engineering is the request of engineering to the

development, testing, design, implementation and

maintenance of the software in an efficient technique [1].

The design, develop and testing window system level

software, compilers and network division software for

industrial, military and business etc. Code cloning is a form

of software reuse, and exists in virtually every software

project. This ad-hoc form of reuse consists in copying, and

eventually modifying, a block of present code that device a

piece of required functionality. Duplicated blocks are called

clones and the act of replication, including slight

modifications, is said cloning. The consequences of several

studies indicate that a considerable fraction of the basis code

in large software systems is duplicate code. Software clone

is usually generated by programmer's copy and paste

actions. Programmers habitually copy and paste an existing

similar code and further modify it according to their need.

Code duplicating or the act of copying code wastes and

making minor, non - functional alterations, is a well-known

problematic for evolving software [2] systems leading to

replicated code fragments or code clones. Code cloning also

leads to difficulty in code maintenance. Duplicate code also

leads to complexity when some enhancement or

modification is going to be done. Code detection is very

important in software industry due to following reasons:

o Plagiarism detection

o Code mining

o Copyright Protection and ;

o Code Compaction[3]

Over the last years many techniques has been recommended

for code cloning. In this paper, code cloning optimization

will be done using genetic algorithm in addition with

metrics based technique to enhance the accuracy of code

cloning system [4].

Duplicated code shows relaxed and inexpensive during the

software development phase, but it kinds software

maintenance [5] much harder. Software clone has a number

of undesirable effects on the excellence of the software.

Also increasing the quantity of the code, which

requirements to be preserved, it also increases the bug

probability.

So there is a need to detect the clones to symbol out the

difficulties and to help better software understandability and

keep. Regarding the detection of duplicated code, frequent

techniques have been positively functional on industrial

systems. These practices can be roughly classified into

following categories define in table 1:

This algorithm will find out various types of code like type-

1, type-2 etc. The remainder of the paper is organized as

Section 2, 3 will discuss the proposed techniques basic

concept. Section 4 will discuss the proposed work

methodology. Section 5 contains the results and analysis.

Finally section 6 contains the conclusion.

The work is scheduled as gives Introduction and types of the

code clone in section I; a study of the literature of these

approaches and techniques for to improve the performance

and to analyses and detect the code module in section II. It

used for proposed algorithm or simulation is described in

section III succeeded by the research technique. Here

discussed the problem formulation in section IV, The

evaluation of performance parameters and consequences in

section V followed by the conclusion and future scope in

section VI.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 166 | P a g e

Table no: 1 Types of the Detection of the Code Clone

Sr no.

Technique Name

Description

1. String Based The platform is divided into a

number of strings (typically lines)

and these sequences are equaled

against each other to find structures

of duplicated strings.

2.
Token-based A lacer tool divisions the program

into a watercourse of tokens and

then examines for series of similar

tokens.

3.
Syntactic-based Approaches use a parser to

translate source program into

explain trees or abstract syntax tree

matching or metrics to find clones.

4.
Parse-tree based After construction a wide-ranging

parse-tree one performs pattern

matching on the tree to search for

similar sub-trees

5.
Metric-based Metrics are calculated from

program and these are used to find

duplicated code.

II. RELATED WORK

In this we, discuss the prior work of the code clone

detection based on software engineering. Jian Chen et.al

,2015 [6] In this paper, examined the use of a clone sensor

to classify known Android malware. They assemble a set of

Android submissions known to comprise malware and a set

of kind applications. They extracted the Java source code

from the double code of the submissions and use NiCad, a

near miss clone detector, to invention the classes of clones

in a small separation of the malicious presentations. Then

used these clone programs as a signature to find related

source files in the rest of the hateful applications. The

benign gathering is used as a control group. Mr. Ritesh V.

Patil et.al,2014[7] examined existing code in software

development life cycle. Although code cloning is a suitable

way for designers to reuse current code it could possibly

lead to negative influences, such as code size needlessly

increased and may lead to unused, dead code. There are

numerous clone detection techniques based on dissimilar

evaluation parameters. Exposed clone detection tools and

methods do not sufficiently satisfy with regards to rapidity

and correctness. Ritu Garg et.al,2014[8] This paper offered

a brief impression to the detection of these risk and

contradictions in either of the two stages of software

development system i.e. Design phase or the operation

phase along with their experts and frauds. Ritesh V. Patil

et.al,2014 [9] described as, the clone discovery

consequences for a single source code variety gives a

developer with particulars about a discrete state in the

development of the software system. However, tracing

clones through numerous source code versions enables a

clone investigation to take into replication a temporal

dimension. This nice of an investigation of clone evolution

may be utilized to find out the outlines as well as features

displayed by clones as they evolve within a system.

Developers may apply the consequences of this analysis to

recognize the clones more methodically, which may guide

them to handle the clones more automatically. Later, studies

of clone development provide significant role in observing

as well as handling disquiets of cloning in software. Harald

Störrle et.al, 2015 [10] described as, Code Duplicates are a

main source of software faults. Thus, it is probable that

model duplicates have a significant adverse impact on

model excellence, and thus, on any software shaped based

on those models, notwithstanding of whether the software is

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 167 | P a g e

made fully automatically or hand crafted following the

drawing defined by the model. Inappropriately, however,

model clones are much less well deliberate than code clones.

In this paper, presented a clone detection process for UML

domain models. A method covers a much better variety of

model types than present approaches while providing high

clone detection rates at high speed.

Fig.1: Code Clone Process

III. ISSUES IN CODE CLONE DETECTION

An increasing the amount of the code which needs to be

maintained duplication also increases the defect probability

and resource requirements. The following list gives an

overview of these problems:

o Increased Maintenance Work and Cost Because of

duplicated code in the system. One needs additional time

and attention to understand the existing code. When

programmers maintain a piece of clone code. The

changes should also perform on every other clone pairs.

Since programmers who usually have no records of this

duplicate code, the maintaining work should perform on

the entire system. If a cloned code segment is found to

be contained a bug, all of its similar counterparts should

be inspected for improving the bug in question, as there

is no guarantee that this bug has been already eliminated

from other related parts at the time of reprocessing or

during maintenance [11].

o Increased Defect Probability By simply copying a

quantity of code into a new context, which will cause the

fight between each other, e.g. conflict and clash between

variables from the unoriginal code and variables in the

new context. Dependencies of copied code may also not

be fully understood by the new context is mother

potential defect cause. Duplication of the source code

also increases the probability of bug propagation in the

system [12].

Various Code Clone detection Techniques each have its

own Pros and cons:

o Certain methods find duplicates by associating program

script with small or no code normalize and some other

methods use a negligent to variety a token sequence for

program and find clones by definition common

sequence on the token sequence and some make use of

parse to build a parse-tree or abstract syntax tree.

o Certain other Methods evaluate some metrics and find

duplicity by comparing the build program dependency

graphs and find clones.

o As it has been already discussed that a lot of tools,

techniques and classifiers has been already tried in this

scenario of textual parameter code cloning detection but

there are chances of improvement of the accuracy

pattern of classification [12].

o The problem of this research work is to enhance the

accuracy and FAR rate as well as to reduce the[15]

FRR rate of the detection using Soft Computing in

addition to this using metric based technique for feature

extraction of codes.

Aggregation

Filtered clone groups

Pre-processing Match detection Transformation

Formatting Post- pre-processing: Filtering

Extraction and Manual

Analysis

Visualization and analysis

CODE BASE

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 168 | P a g e

IV. PROPOSED WORK

In Section, we discuss the proposed techniques used in Our

research Work and Compute the performance parameters i.e

Mean Square error, False Acceptance Rate, False Rejection

rate and Accuracy. We mainly work in Found the Clone of

the MATLAB code and calculate the Accuracy in Manually

and Auto Clone. In this work FFNN and metric based

approach will be used for clone detection. The whole

implementation will take place in following manner:

o Input data: Firstly, we create the dataset in Object

Oriented programming Language and MATLAB code.

o Feature Extraction: Apply Metric based method to get

features extraction. In Metric based technique- instead

of associating the code straight. Different metric of

code are collected and these metrics were compared to

perceive clones. Many clone uncovering procedures

today use metrics for perceiving similar codes. Initially,

fingerprinting functions which are nothing but a set of

software metrics are calculated for one or more

syntactic units such as a function or a class, a method or

even a statement and then these metrics values are

compared to find clones over these syntactic units.

Generally, such metrics are calculated by parsing the

source code into ASTFPDG representation. Then the

metric were calculated from names, layout, expression

and simple control flow of function. A clone is detected

only when pair of whole function bodies that have

similar metrics values are identified.

o Optimize: After Feature extraction, we apply the

optimization technique. The Genetic Procedure is a

model of machine knowledge which derives its

performance from image of the processes of Evolution

in environment. This is done by the creation within a

machine of a Populace of Individuals represented by

Chromosomes, in spirit a set of character strings that

are similar to the base-4 chromosomes that we see in

our own DNA. The individuals in the populace then go

through a process of evolution. We should note that

Evolution is not a purposive or directed process. That

is, there is no evidence to support the declaration

that the goal of evolution is to produce Mankind.

Indeed, the procedures of nature seem to boil down

to different Individuals competing for resources in

the Environment. Some are healthier than others. Those

that are better are more likely to survive and

disseminate their genetic material.

o Classification: Last one classification of code clones

using Feed Forward Neural Network. For the prediction

of code clone, data is collected and normalized. Then a

single layer perception neural network is created and

trained with the given dataset. Feed Forward Neural

Network is an organically stimulated organization

algorithm. It consists of amount of simple neuron like

processing units, prearranged in layers. Every unit in a

layer is related with all the units in the preceding layer

[11]. These connections are not all equal: each joining

may have a different strength or weight. The weights on

these contacts encode the information of a network.

Frequently the units in a neural network are also

called nodes. Data arrives at the inputs and permits

through the network, layer by layer; pending it arrives

at the productivities. During consistent operation, that is

when it acts as a classifier, there is no comment

between layers. This is why they are called feed

forward neural networks.

o After training, the network is tested using the testing

dataset and it predicts whether the software project

classes have the code clones or not.

o Evaluate the performance parameters like far, frr and

accuracy.

V. PERFORMANCE PARAMETERS

o Mean Square Error : the mean squared error or mean

squared deviation of an estimator measures

the average of the quadrangles of

the errors or deviations, that is, the alteration between

the estimator and what is appraised.

o Accuracy: It is used to describe the closeness of a

measurement to the true value. When the term is

practical to sets of quantities of the same measured, it

involves a component of random error and a component

of systematic error.

o False Acceptance rate: is the probability that the

system incorrectly authorizes a non-authorized person,

due to inaccurately matching the biometric input with a

template. The FAR is normally expressed as a

percentage, following the FAR characterisation this is

the percentage of invalid inputs which are incorrectly

accepted.

o False Rejection Rate: is the probability that the system

incorrectly rejects access to an authorized person, due

to deteriorating to match the biometric input with a

model. The FRR is normally expressed as a percentage,

following the FRR explanation this is the percentage of

valid inputs which are incorrectly rejected.

VI. CONCLUSION

Cloning of code has become one of the easiest ways to

complete a project, who does not want to invest their time

on doing programming their project. It’s a loss for those

who really works hard for the project coding. The date no

such method has present who can evaluate the cloning for

several languages with one piece of code. The purpose

research work has overcome the drawbacks of the previous

attempts by removing the bar of the language which follows

the architecture of C++. The results have been verified using

FEED FORWARD BACK PROPAGATION NEURAL

NETWORK over the metrics. We will explain the results in

further paper.

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)
https://en.wikipedia.org/wiki/Deviation_(statistics)

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 169 | P a g e

REFERENCES

[1] Störrle, Harald. "Effective and efficient model clone

detection." In Software, Services, and Systems, pp. 440-457.

Springer International Publishing, 2015.

[2] Ducasse, Stéphane, Matthias Rieger, and Serge

Demeyer. "A language independent approach for detecting

duplicated code." In Software Maintenance,

1999.(ICSM'99) Proceedings. IEEE International

Conference on, pp. 109-118. IEEE, 1999.

[3] Schuldt, Christian, Ivan Laptev, and Barbara Caputo.

"Recognizing human actions: a local SVM approach."

In Pattern Recognition, 2004. ICPR 2004. Proceedings of

the 17th International Conference on, vol. 3, pp. 32-36.

IEEE, 2004.

[4] Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro

Inoue. "CCFinder: a multilinguistic token-based code clone

detection system for large scale source code." IEEE

Transactions on Software Engineering 28, no. 7 (2002):

654-670.

[5] Ahn, Chang Wook, and Rudrapatna S. Ramakrishna. "A

genetic algorithm for shortest path routing problem and the

sizing of populations." IEEE transactions on evolutionary

computation 6, no. 6 (2002): 566-579.

[6] Chen, Jian, Manar H. Alalfi, Thomas R. Dean, and Ying

Zou. "Detecting Android Malware Using Clone

Detection." Journal of Computer Science and

Technology 30, no. 5 (2015): 942-956.

[7] Wyss-Coray, Anton, Thomas A. Rando, Markus

Britschgi, Kaspar Rufibach, and Saul Abraham Villeda.

"Biomarkers of aging for detection and treatment of

disorders." U.S. Patent Application 13/575,437, filed

January 28, 2011.

[8] Garg, Ritu, and Rajesh Bhatia. "Code Clone v/s Model

Clones: Pros and Cons." International Journal of Computer

Applications (IJCA) 89, no. 15 (2014): 20-22.

[9] Patil, Ritesh V., Lalit V. Patil, Sachin V. Shinde, and S.

D. Joshi. "Software code cloning detection and future scope

development-Latest short review." In Recent Advances and

Innovations in Engineering (ICRAIE), 2014, pp. 1-4. IEEE,

2014.

[10] Roy, Chanchal K., James R. Cordy, and Rainer

Koschke. "Comparison and evaluation of code clone

detection techniques and tools: A qualitative

approach." Science of Computer Programming 74, no. 7

(2009): 470-495.

[11] Baker, Brenda S. "On finding duplication and near-

duplication in large software systems." In Reverse

Engineering, 1995., Proceedings of 2nd Working

Conference on, pp. 86-95. IEEE, 1995.

[12] Yang, Jiachen, Keisuke Hotta, Yoshiki Higo, Hiroshi

Igaki, and Shinji Kusumoto. "Classification model for code

clones based on machine learning." Empirical Software

Engineering 20, no. 4 (2015): 1095-1125.

