Incentivos para Inovar e a Decisão de Abrir ou Fechar Capital Aula 07

Rogério Mazali

Economia da Inovação III

06/06/2017

Relação com literatura anterior

 Vimos que a literatura mostra que preocupações com o mercado de capitais podem modificar incentivos para inovar (Holmstrom, JEBO 1989).

- Vimos que a literatura mostra que preocupações com o mercado de capitais podem modificar incentivos para inovar (Holmstrom, JEBO 1989).
- Em particular, firmas grandes normalmente são firmas de capital aberto, com ações negociadas em bolsa.

- Vimos que a literatura mostra que preocupações com o mercado de capitais podem modificar incentivos para inovar (Holmstrom, JEBO 1989).
- Em particular, firmas grandes normalmente são firmas de capital aberto, com ações negociadas em bolsa.
- Como firmas grandes possuem muitos projetos, é impraticável para o investidor verificar o valor de cada projeto da empresa individualmente.

- Vimos que a literatura mostra que preocupações com o mercado de capitais podem modificar incentivos para inovar (Holmstrom, JEBO 1989).
- Em particular, firmas grandes normalmente são firmas de capital aberto, com ações negociadas em bolsa.
- Como firmas grandes possuem muitos projetos, é impraticável para o investidor verificar o valor de cada projeto da empresa individualmente.
- A reputação da empresa acaba sendo o principal determinante do valor das ações e debêntures da empresa e, consequentemente, do custo de capital da empresa.

- Vimos que a literatura mostra que preocupações com o mercado de capitais podem modificar incentivos para inovar (Holmstrom, JEBO 1989).
- Em particular, firmas grandes normalmente são firmas de capital aberto, com ações negociadas em bolsa.
- Como firmas grandes possuem muitos projetos, é impraticável para o investidor verificar o valor de cada projeto da empresa individualmente.
- A reputação da empresa acaba sendo o principal determinante do valor das ações e debêntures da empresa e, consequentemente, do custo de capital da empresa.
- Um projeto inovador que vá mal pode prejudicar a reputação de toda a empresa, prejudicando os projetos não-inovadores da emrpesa.

Ideia central

 Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?
- Um empreendedor inicia um projeto sem saber se o projeto é bom ou ruim, mas sabe se o projeto é inovador ou não.

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?
- Um empreendedor inicia um projeto sem saber se o projeto é bom ou ruim, mas sabe se o projeto é inovador ou não.
- Projeto inovador bom vale mais que projeto normal bom.

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?
- Um empreendedor inicia um projeto sem saber se o projeto é bom ou ruim, mas sabe se o projeto é inovador ou não.
- Projeto inovador bom vale mais que projeto normal bom.
- Ele procura financiadores para seu projeto. Duas opções:

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?
- Um empreendedor inicia um projeto sem saber se o projeto é bom ou ruim, mas sabe se o projeto é inovador ou não.
- Projeto inovador bom vale mais que projeto normal bom.
- Ele procura financiadores para seu projeto. Duas opções:
 - Procura Fundos Private Equity e/ou Venture Capitalists;

- Firmas grandes e de capital aberto tenderão a ser conservadoras e abandonarão projetos inovadores para não prejudicar projetos normais.
- Neste artigo, veremos que outras razões podem fazer com que empresas de capital aberto tenham menos incentivos para inovar.
- Em Ferreira et al (RFS 2012), TODAS as firmas de capital aberto desincentivam inovação, independentemente do tamanho.
- Por quê?
- Um empreendedor inicia um projeto sem saber se o projeto é bom ou ruim, mas sabe se o projeto é inovador ou não.
- Projeto inovador bom vale mais que projeto normal bom.
- Ele procura financiadores para seu projeto. Duas opções:
 - Procura Fundos Private Equity e/ou Venture Capitalists;
 - Abre capital.

Ideia central

• **Primeiro ponto:** Depois de certo tempo, empreendedor recebe sinal que diz se o projeto dará retorno ou não.

- **Primeiro ponto:** Depois de certo tempo, empreendedor recebe sinal que diz se o projeto dará retorno ou não.
 - Se escolhe abrir capital, o empreendedor precisa revelar informações sobre seu projeto.

- **Primeiro ponto:** Depois de certo tempo, empreendedor recebe sinal que diz se o projeto dará retorno ou não.
 - Se escolhe abrir capital, o empreendedor precisa revelar informações sobre seu projeto.
 - Se o sinal for bom e o projeto inovador, um investidor do mercado não pagará tudo o que o projeto vale, pois apesar de saber que o projeto é bom, há incerteza sobre se o projeto é inovador ou não.

- **Primeiro ponto:** Depois de certo tempo, empreendedor recebe sinal que diz se o projeto dará retorno ou não.
 - Se escolhe abrir capital, o empreendedor precisa revelar informações sobre seu projeto.
 - Se o sinal for bom e o projeto inovador, um investidor do mercado não pagará tudo o que o projeto vale, pois apesar de saber que o projeto é bom, há incerteza sobre se o projeto é inovador ou não.
 - Esta incerteza n\u00e3o existe se o investidor for do tipo PE/VC.

- **Primeiro ponto:** Depois de certo tempo, empreendedor recebe sinal que diz se o projeto dará retorno ou não.
 - Se escolhe abrir capital, o empreendedor precisa revelar informações sobre seu projeto.
 - Se o sinal for bom e o projeto inovador, um investidor do mercado não pagará tudo o que o projeto vale, pois apesar de saber que o projeto é bom, há incerteza sobre se o projeto é inovador ou não.
 - Esta incerteza n\u00e3o existe se o investidor for do tipo PE/VC.
 - Firma inovadora com bons projetos tenderá a escolher se manter com capital fechado.

Ideia central

• **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;
- Terceiro ponto: há empreendedores que vendem seus negócios por motivo liquidez, mesmo eles sendo bons e inovadores.

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;
- Terceiro ponto: há empreendedores que vendem seus negócios por motivo liquidez, mesmo eles sendo bons e inovadores.
 - Assim, se o sinal recebido for ruim, o mercado pagará pelo seu projeto mais do que ele vale (porque há a possibilidade de o empreendedor estar vendendo por motivo liquidez).

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;
- Terceiro ponto: há empreendedores que vendem seus negócios por motivo liquidez, mesmo eles sendo bons e inovadores.
 - Assim, se o sinal recebido for ruim, o mercado pagará pelo seu projeto mais do que ele vale (porque há a possibilidade de o empreendedor estar vendendo por motivo liquidez).
 - Portanto, o empreendedor pode sair do mercado com algum ganho vendendo um projeto ruim para o mercado e/ou venture capitalist.

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;
- Terceiro ponto: há empreendedores que vendem seus negócios por motivo liquidez, mesmo eles sendo bons e inovadores.
 - Assim, se o sinal recebido for ruim, o mercado pagará pelo seu projeto mais do que ele vale (porque há a possibilidade de o empreendedor estar vendendo por motivo liquidez).
 - Portanto, o empreendedor pode sair do mercado com algum ganho vendendo um projeto ruim para o mercado e/ou venture capitalist.
 - O valor dessa opção real, a opção de saída, limita inferiormente as perdas do empreendedor.

- **Segundo ponto:** Se firma abrir capital, antecipará que não conseguirá o retorno sobre investimento em inovação.
 - Consequência: firmas de capital aberto tenderão a investir menos em inovação;
- Terceiro ponto: há empreendedores que vendem seus negócios por motivo liquidez, mesmo eles sendo bons e inovadores.
 - Assim, se o sinal recebido for ruim, o mercado pagará pelo seu projeto mais do que ele vale (porque há a possibilidade de o empreendedor estar vendendo por motivo liquidez).
 - Portanto, o empreendedor pode sair do mercado com algum ganho vendendo um projeto ruim para o mercado e/ou venture capitalist.
 - O valor dessa opção real, a opção de saída, limita inferiormente as perdas do empreendedor.
 - Consequentemente, empresas de capital fechado têm incentivo a sobreinvestir em inovações.

Empreendedor e Tecnologia

• Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:
 - Projeto 1 (P1): projeto convencional;

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.
- Cada projeto possui dois possíveis resultados: sucesso (S) ou fracasso (F).

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- ullet Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.
- Cada projeto possui dois possíveis resultados: sucesso (S) ou fracasso (F).
- Se sucesso, projeto paga 1, se fracasso, paga 0.

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t = 0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.
- Cada projeto possui dois possíveis resultados: sucesso (S) ou fracasso (F).
- Se sucesso, projeto paga 1, se fracasso, paga 0.
- Probabilidade de sucesso:

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t = 0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.
- Cada projeto possui dois possíveis resultados: sucesso (S) ou fracasso (F).
- Se sucesso, projeto paga 1, se fracasso, paga 0.
- Probabilidade de sucesso:
 - Projeto 1: *p*;

- Empreendedor (E, Insider) é agente neutro ao risco que detêm inicialmente 100% das ações da firma.
- Empreendedor precisa escolher entre dois projetos, em dois períodos diferentes, t=0,1:
 - Projeto 1 (P1): projeto convencional;
 - Projeto 2 (P2): projeto inovador.
- Cada projeto possui dois possíveis resultados: sucesso (S) ou fracasso (F).
- Se sucesso, projeto paga 1, se fracasso, paga 0.
- Probabilidade de sucesso:
 - Projeto 1: p;
 - Projeto 2: q.

Empreendedor e Tecnologia

• Suponha $E\left(q|F\right) < q < E\left(q|S\right)$, $p > E\left(q\right)$, e $p < E\left(q|S\right)$.

Empreendedor e Tecnologia

- Suponha E(q|F) < q < E(q|S), p > E(q), e p < E(q|S).
- Defina $\delta \equiv E\left(q\right)/p$ e $\theta \equiv E\left(q|S\right)/p$. Temos que $\delta < 1$ e $\theta > 1$. Portanto:

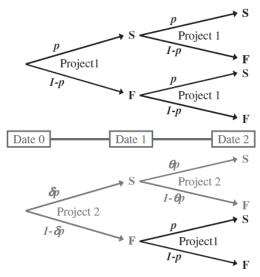
$$\delta p = E(q)$$

Empreendedor e Tecnologia

- Suponha E(q|F) < q < E(q|S), p > E(q), e p < E(q|S).
- Defina $\delta \equiv E\left(q\right)/p$ e $\theta \equiv E\left(q|S\right)/p$. Temos que $\delta < 1$ e $\theta > 1$. Portanto:

$$\delta p = E(q)$$

• Seja x_t o payoff obtido no tempo t, com $x_t \in \{0, 1\}$. Payoff total: $\pi = x_1 + x_2$.


Empreendedor e Tecnologia

- Suponha E(q|F) < q < E(q|S), p > E(q), e p < E(q|S).
- Defina $\delta \equiv E\left(q\right)/p$ e $\theta \equiv E\left(q|S\right)/p$. Temos que $\delta < 1$ e $\theta > 1$. Portanto:

$$\delta p = E(q)$$

- Seja x_t o payoff obtido no tempo t, com $x_t \in \{0, 1\}$. Payoff total: $\pi = x_1 + x_2$.
- Investimento Inicial: 1.

Empreendedor e Tecnologia

Empreendedor e Tecnologia

• Valor ex-ante de P1:

$$v_1 = p(1+p) + p(1-p) = 2p$$

Empreendedor e Tecnologia

Valor ex-ante de P1:

$$v_1 = p(1+p) + p(1-p) = 2p$$

Valor ex-ante de P2:

$$v_2 = \delta p + \delta \theta p^2 + p (1 - \delta p)$$
$$= p \{1 + \delta [1 + p (\theta - 1)] \}$$

Empreendedor e Tecnologia

Valor ex-ante de P1:

$$v_1 = p(1+p) + p(1-p) = 2p$$

Valor ex-ante de P2:

$$v_2 = \delta p + \delta \theta p^2 + p (1 - \delta p)$$

= $p \{1 + \delta [1 + p (\theta - 1)] \}$

• P2 será melhor que P1 ex-ante se $v_2 > v_1$, isto é, se:

$$\delta \left[1 + p\left(\theta - 1\right)\right] > 1$$

Liquidez e Fricções do Mercado Financeiro

Utilidade do Empreendedor tipo Diamond e Dybvig (JPE, 1983):

$$U\left(c_{1},c_{2}
ight)=\left\{egin{array}{ll} c_{1} & ext{, com probabilidade} & \mu \ c_{2} & ext{, com probabilidade} & 1-\mu \end{array}
ight.$$

onde c_t é o consumo no período t.

Liquidez e Fricções do Mercado Financeiro

Utilidade do Empreendedor tipo Diamond e Dybvig (JPE, 1983):

$$U\left(c_{1},\,c_{2}
ight)=\left\{egin{array}{ll} c_{1} & ext{, com probabilidade} & \mu \ c_{2} & ext{, com probabilidade} & 1-\mu \end{array}
ight.$$

onde c_t é o consumo no período t.

• Esta formulação capta o fato de que o Empreendedor pode precisar vender seus ativos porque precisa consumir em t=1.

Financiamento de Projetos e Tipos de Investidores

• Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.

Financiamento de Projetos e Tipos de Investidores

- Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.
- Dois tipos de Investidores: sofisticado e não-sofisticado.

Financiamento de Projetos e Tipos de Investidores

- Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.
- Dois tipos de Investidores: sofisticado e não-sofisticado.
 - Não-sofisticados (NS; c/ prob. 1-e): só observa informação disponível publicamente.

Financiamento de Projetos e Tipos de Investidores

- Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.
- Dois tipos de Investidores: sofisticado e não-sofisticado.
 - Não-sofisticados (NS; c/ prob. 1 − e): só observa informação disponível publicamente.
 - **Sofisticados** (S; c/ prob. e): observam "inside information" quando negociam, sabem o mesmo que o empreendedor.

Financiamento de Projetos e Tipos de Investidores

- Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.
- Dois tipos de Investidores: sofisticado e não-sofisticado.
 - Não-sofisticados (NS; c/ prob. 1-e): só observa informação disponível publicamente.
 - **Sofisticados** (S; c/ prob. *e*): observam "*inside information*" quando negociam, sabem o mesmo que o empreendedor.
- Se o empreendedor encontra um investidor sofisticado (um VC, por exemplo), barganhará com ele, obtendo:

$$\Sigma \equiv v - V$$

onde v é o valor intrínseco do projeto e V é o valor de mercado das ações negociadas com o investidor.

Financiamento de Projetos e Tipos de Investidores

- Empreendedor só pode emitir ações => privadamente para o VC, ou publicamente, se abrir capital.
- Dois tipos de Investidores: sofisticado e não-sofisticado.
 - Não-sofisticados (NS; c/ prob. 1-e): só observa informação disponível publicamente.
 - **Sofisticados** (S; c/ prob. e): observam "inside information" quando negociam, sabem o mesmo que o empreendedor.
- Se o empreendedor encontra um investidor sofisticado (um VC, por exemplo), barganhará com ele, obtendo:

$$\Sigma \equiv v - V$$

onde v é o valor intrínseco do projeto e V é o valor de mercado das ações negociadas com o investidor.

A fração do excedente capturada pelo VC é β.

Diferenças entre Firmas de Capital Aberto e Fechado

• Principal diferença: observabilidade de x_1 :

- Principal diferença: observabilidade de x₁:
 - **Capital Aberto:** todos observam x_1 ;

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - Capital Fechado: só empreendedor, VCs correntes e investidores sofisticados observam x₁.

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x₁.
- Empresas de capital aberto têm que ser mais transparentes;

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x₁.
- Empresas de capital aberto têm que ser mais transparentes;
- Regulação exige que informações sejam publicadas, relatórios sejam enviados aos acionistas, auditorias sejam feitas, etc.

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x₁.
- Empresas de capital aberto têm que ser mais transparentes;
- Regulação exige que informações sejam publicadas, relatórios sejam enviados aos acionistas, auditorias sejam feitas, etc.
- Hipótese captura esse efeito.

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x₁.
- Empresas de capital aberto têm que ser mais transparentes;
- Regulação exige que informações sejam publicadas, relatórios sejam enviados aos acionistas, auditorias sejam feitas, etc.
- Hipótese captura esse efeito.
- Custo de capital:

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x₁.
- Empresas de capital aberto têm que ser mais transparentes;
- Regulação exige que informações sejam publicadas, relatórios sejam enviados aos acionistas, auditorias sejam feitas, etc.
- Hipótese captura esse efeito.
- Custo de capital:
 - Capital Aberto: $c_{pub} \in (0,1)$;

- Principal diferença: observabilidade de x₁:
 - Capital Aberto: todos observam x₁;
 - **Capital Fechado:** só empreendedor, VCs correntes e investidores sofisticados observam x_1 .
- Empresas de capital aberto têm que ser mais transparentes;
- Regulação exige que informações sejam publicadas, relatórios sejam enviados aos acionistas, auditorias sejam feitas, etc.
- Hipótese captura esse efeito.
- Custo de capital:
 - Capital Aberto: $c_{pub} \in (0,1)$;
 - Capital Fechado: $c_{priv} \in (0,1)$.

Estrutura de Informação e Ordem dos Eventos

• Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- ullet Valor das ações para os investidores em t=0: u_{arphi} ;

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;
 - descobre se há investidores sofisticados querendo investir: $\varepsilon \in \{sim, n\~ao\};$

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;
 - descobre se há investidores sofisticados querendo investir: $\varepsilon \in \{sim, n\~ao\};$
 - observa x_1 .

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;
 - descobre se há investidores sofisticados querendo investir: $\varepsilon \in \{sim, n\~ao\};$
 - observa x_1 .
- Em t = 1, o investidor S:

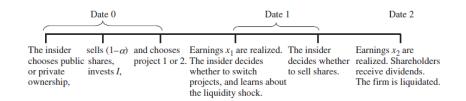
- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;
 - descobre se há investidores sofisticados querendo investir: $\varepsilon \in \{sim, n\~ao\};$
 - observa x_1 .
- Em t = 1, o investidor S:
 - descobre se o projeto é inovador ou não (se é tipo P1 ou P2);

- Em t=0, o Empreendedor decide parcela $\left(1-\alpha_{\varphi}\right)$ de sua empresa para vender e financiar seu projeto, onde $\varphi\in\{\mathit{pub},\mathit{priv}\}$.
- Investidores em uma empresa de capital aberto são não-sofisticados.
- ullet Prob. de Empreendedor escolher P2: σ_{arphi}
- Valor das ações para os investidores em t=0: u_{φ} ;
- Em t = 1, o Empreendedor:
 - aprende seu tipo: $\tau \in \{c_1, c_2\}$;
 - descobre se há investidores sofisticados querendo investir: $\varepsilon \in \{sim, n\tilde{a}o\};$
 - observa x_1 .
- Em t = 1, o investidor S:
 - descobre se o projeto é inovador ou não (se é tipo P1 ou P2);
 - observa x₁.

Estrutura de Informação e Ordem dos Eventos

ullet Em t=1, o mercado:

- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;


- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;
 - Caso n = sim, observam x_1

- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;
 - Caso n = sim, observam x_1
- O Empreendedor decide então se vende o restante de suas ações ou não:

- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;
 - Caso n = sim, observam x_1
- O Empreendedor decide então se vende o restante de suas ações ou não:
 - prob. de venda p/ mercado: $b_{\varphi}\left(x_{1},\pi,\tau,\varepsilon\right)$;

- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;
 - Caso n = sim, observam x_1
- O Empreendedor decide então se vende o restante de suas ações ou não:
 - prob. de venda p/ mercado: $b_{\varphi}(x_1, \pi, \tau, \varepsilon)$;
 - prob. de venda p/ inv. sofisticados: $I_{\varphi}(x_1, \pi, \tau, \varepsilon)$.

- Em t = 1, o mercado:
 - Observa se houve venda de ações ao público ou não: $n \in \{sim, não\}$;
 - Caso n = sim, observam x_1
- O Empreendedor decide então se vende o restante de suas ações ou não:
 - prob. de venda p/ mercado: $b_{\varphi}(x_1, \pi, \tau, \varepsilon)$;
 - prob. de venda p/ inv. sofisticados: $I_{\varphi}(x_1, \pi, \tau, \varepsilon)$.
- Em t=2, os agentes observam x_2 , os ativos da firma são liquidados e os pagamentos são realizados.

Definição de Equilíbrio

• Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:

- Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:
 - Em t=1, $b_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ e $I_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ maximizam o payoff do Empreendedor dadas as avaliações $V_{\varphi}^*\left(n,\eta\right)$ e $\Lambda_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ dos investidores NS e S;

- Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:
 - **9** Em t=1, $b_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ e $I_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ maximizam o payoff do Empreendedor dadas as avaliações $V_{\varphi}^*\left(n,\eta\right)$ e $\Lambda_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ dos investidores NS e S;
 - $\textbf{2} \ \, \text{Em} \,\, t = 0, \,\, \varphi^*, \,\, \alpha_\varphi^* \,\, \text{e} \,\, \sigma_\varphi^* \,\, \text{maximizam o payoff do Empreendedor dados} \\ b_\varphi^* \left(x_1, \pi, \tau, \varepsilon \right), \,\, I_\varphi^* \left(x_1, \pi, \tau, \varepsilon \right), \,\, V_\varphi^* \left(n, \eta \right) \,\, \text{e} \,\, \Lambda_\varphi^* \left(x_1, \pi, \tau, \varepsilon \right);$

- Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:
 - **1** Em t=1, $b_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ e $I_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ maximizam o payoff do Empreendedor dadas as avaliações $V_{\varphi}^*\left(n,\eta\right)$ e $\Lambda_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ dos investidores NS e S;
 - ② Em t=0, φ^* , α_{φ}^* e σ_{φ}^* maximizam o payoff do Empreendedor dados $b_{\varphi}^*(x_1, \pi, \tau, \varepsilon)$, $l_{\varphi}^*(x_1, \pi, \tau, \varepsilon)$, $V_{\varphi}^*(n, \eta)$ e $\Lambda_{\varphi}^*(x_1, \pi, \tau, \varepsilon)$;
 - **3** As avaliações dos investidores são dadas por $V_{\varphi}^{*}\left(n,\eta\right)=E\left(v|n,\eta,\varphi,\rho^{*}\right)$ e $\Lambda_{\varphi}^{*}\left(n,\eta\right)=E\left(v|x_{1},\pi,\tau,\varepsilon,\varphi,\rho^{*}\right)$.

- Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:
 - **9** Em t=1, $b_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ e $I_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ maximizam o payoff do Empreendedor dadas as avaliações $V_{\varphi}^*\left(n,\eta\right)$ e $\Lambda_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ dos investidores NS e S;
 - ② Em t=0, φ^* , α_{φ}^* e σ_{φ}^* maximizam o payoff do Empreendedor dados $b_{\varphi}^*\left(\mathbf{x}_1,\pi,\tau,\varepsilon\right)$, $l_{\varphi}^*\left(\mathbf{x}_1,\pi,\tau,\varepsilon\right)$, $V_{\varphi}^*\left(\mathbf{n},\eta\right)$ e $\Lambda_{\varphi}^*\left(\mathbf{x}_1,\pi,\tau,\varepsilon\right)$;
 - **3** As avaliações dos investidores são dadas por $V_{\varphi}^{*}(n,\eta) = E(v|n,\eta,\varphi,\rho^{*})$ e $\Lambda_{\varphi}^{*}(n,\eta) = E(v|x_{1},\pi,\tau,\epsilon,\varphi,\rho^{*})$.
 - Crenças são consistentes com as ações de equilíbrio: $\rho^* = \left(b_{\varphi}^*\left(\mathbf{x}_1, \pi, \tau, \varepsilon\right), l_{\varphi}^*\left(\mathbf{x}_1, \pi, \tau, \varepsilon\right), \sigma_{\varphi}^*\right).$

- Dado um vetor de parâmetros $(p, \delta, \tau, k, \mu, e, c_{priv}, c_{pub}, I, \beta)$, um EPB deste jogo será um conjunto de crenças ρ^* e estratégias tais que:
 - **9** Em t=1, $b_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ e $I_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ maximizam o payoff do Empreendedor dadas as avaliações $V_{\varphi}^*\left(n,\eta\right)$ e $\Lambda_{\varphi}^*\left(x_1,\pi,\tau,\varepsilon\right)$ dos investidores NS e S;
 - ② Em t=0, φ^* , α_{φ}^* e σ_{φ}^* maximizam o payoff do Empreendedor dados b_{φ}^* $(x_1, \pi, \tau, \varepsilon)$, l_{φ}^* $(x_1, \pi, \tau, \varepsilon)$, V_{φ}^* (n, η) e Λ_{φ}^* $(x_1, \pi, \tau, \varepsilon)$;
 - **3** As avaliações dos investidores são dadas por $V_{\varphi}^*\left(n,\eta\right)=E\left(v|n,\eta,\varphi,\rho^*\right)$ e $\Lambda_{\varphi}^*\left(n,\eta\right)=E\left(v|x_1,\pi,\tau,\varepsilon,\varphi,\rho^*\right)$.
 - Crenças são consistentes com as ações de equilíbrio: $\rho^* = \left(b_{\varphi}^*\left(x_1, \pi, \tau, \varepsilon\right), I_{\varphi}^*\left(x_1, \pi, \tau, \varepsilon\right), \sigma_{\varphi}^*\right).$
 - Probabilidades são atualizadas de acordo com a Regra de Bayes.

Escolha de venda na data 1

• **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.
- Se o excedente v V for negativo, E abre o capital da empresa.

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.
- Se o excedente v-V for negativo, E abre o capital da empresa.
- Supondo que, em t = 1, E venda suas ações para um S privado, obterá:

$$V + (1 - \beta) (v - V)$$

Escolha de venda na data 1

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.
- Se o excedente v-V for negativo, E abre o capital da empresa.
- Supondo que, em t=1, E venda suas ações para um S privado, obterá:

$$V + (1 - \beta) (v - V)$$

ullet E venderá se tiver qualquer poder de barganha, i.e., se eta < 1.

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.
- Se o excedente v V for negativo, E abre o capital da empresa.
- Supondo que, em t=1, E venda suas ações para um S privado, obterá:

$$V + (1 - \beta) (v - V)$$

- ullet E venderá se tiver qualquer poder de barganha, i.e., se eta < 1.
- Suponha que E tem todo o poder de barganha na negociação com S, i.e., $\beta=0$, obtendo

$$V + 1 \times (v - V) = v$$

Escolha de venda na data 1

- **Suposição:** Investidor privado sofre mesmo choque de liquidez que o Empreendedor.
- E pode vender para S via venda privada ou NS abrindo capital.
- S estará disponível para negócios c/ prob. e.
- Se o excedente v-V for negativo, E abre o capital da empresa.
- Supondo que, em t=1, E venda suas ações para um S privado, obterá:

$$V + (1 - \beta) (v - V)$$

- ullet E venderá se tiver qualquer poder de barganha, i.e., se eta < 1.
- Suponha que E tem todo o poder de barganha na negociação com S, i.e., $\beta=0$, obtendo

$$V + 1 \times (v - V) = v$$

• E obtêm de S o valor fundamental (ou intrínseco) v de seu projeto.

Escolha de venda na data 1

• Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.

- Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:

- Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:
 - E tem necessidades de liquidez e n\u00e30 tem alternativa a n\u00e30 ser vender suas a\u00e7\u00f3es;

- Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:
 - E tem necessidades de liquidez e não tem alternativa a não ser vender suas ações;
 - E observou $x_1 = 0$ e quer vender um ativo "podre".

- Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:
 - E tem necessidades de liquidez e não tem alternativa a não ser vender suas ações;
 - E observou $x_1 = 0$ e quer vender um ativo "podre".
- Suponha $x_1=1.$ Se vende para S, E obtêm $v_1=1+p$ se P1 e $v_2=1+\theta p$ se P2.

- Seja m a prob. de que E tenha necessidades de liquidez em t=1 condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:
 - E tem necessidades de liquidez e não tem alternativa a não ser vender suas ações;
 - E observou $x_1 = 0$ e quer vender um ativo "podre".
- Suponha $x_1=1.$ Se vende para S, E obtêm $v_1=1+p$ se P1 e $v_2=1+\theta p$ se P2.
- Se vende para NS em um IPO, obtêm:

$$mv + (1 - m) p = m (1 + p) + (1 - m) p$$

= $m + p$
< $1 + p = v_1$

Escolha de venda na data 1

- Seja m a prob. de que E tenha necessidades de liquidez em t=1condicional à abertura de capital em t=1.
- Para um investidor que observa abertura de capital, há duas possibilidades:
 - E tem necessidades de liquidez e não tem alternativa a não ser vender suas acões;
 - E observou $x_1 = 0$ e quer vender um ativo "podre".
- Suponha $x_1 = 1$. Se vende para S, E obtêm $v_1 = 1 + p$ se P1 e $v_2 = 1 + \theta p \text{ se P2}.$
- Se vende para NS em um IPO, obtêm:

$$mv + (1 - m) p = m(1 + p) + (1 - m) p$$

= $m + p$
 $< 1 + p = v_1$

E nunca abrirá capital se receber sinal positivo, qualquer que

18 / 35

Escolha de venda na data 1

• Suponha agora $x_1 = 0$. Seja b a prob. E sem nec. liq. venda seus ativos ao mercado.

- Suponha agora $x_1 = 0$. Seja b a prob. E sem nec. liq. venda seus ativos ao mercado.
- Regra de Bayes:

$$m\left(\sigma_{priv},b
ight) = \Pr\left(Nec.Liq|venda
ight) \ = rac{\Pr\left(venda|Nec.Liq
ight)}{\Pr\left(venda
ight)} \ \mu\left(1-e
ight)$$

$$=\frac{\mu\left(1-e\right)}{\mu\left(1-e\right)+b\left(1-\mu+\mu e\right)\left[\sigma_{\textit{priv}}\left(1-\delta p\right)+\left(1-\sigma_{\textit{priv}}\right)\left(1-p\right)\right]}$$

Escolha de venda na data 1

- Suponha agora $x_1 = 0$. Seja b a prob. E sem nec. liq. venda seus ativos ao mercado.
- Regra de Bayes:

$$m\left(\sigma_{\textit{priv}}, b\right) = \Pr\left(\textit{Nec.Liq}|\textit{venda}\right) \\ = \frac{\Pr\left(\textit{venda}|\textit{Nec.Liq}\right)}{\Pr\left(\textit{venda}\right)}$$

$$=\frac{\mu\left(1-e\right)}{\mu\left(1-e\right)+b\left(1-\mu+\mu e\right)\left[\sigma_{\textit{priv}}\left(1-\delta p\right)+\left(1-\sigma_{\textit{priv}}\right)\left(1-p\right)\right]}$$

Portanto:

$$\begin{aligned} & V_{\textit{priv}}\left(\sigma_{\textit{priv}},b\right) \\ &= & m\left(\sigma_{\textit{priv}},b\right)\left[\sigma_{\textit{priv}}\textit{v}_2 + \left(1-\sigma_{\textit{priv}}\right)\textit{v}_1\right] + \left(1-m\left(\sigma_{\textit{priv}},b\right)\right)\textit{p} \end{aligned}$$

Escolha de venda na data 1

Portanto:

$$\begin{aligned} & V_{\textit{priv}}\left(\sigma_{\textit{priv}},b\right) \\ &= & m\left(\sigma_{\textit{priv}},b\right)\left[\sigma_{\textit{priv}}\textit{v}_2 + \left(1-\sigma_{\textit{priv}}\right)\textit{v}_1\right] + \left(1-m\left(\sigma_{\textit{priv}},b\right)\right)\textit{p} \end{aligned}$$

Escolha de venda na data 1

Portanto:

$$\begin{aligned} & V_{\textit{priv}}\left(\sigma_{\textit{priv}},b\right) \\ &= & m\left(\sigma_{\textit{priv}},b\right)\left[\sigma_{\textit{priv}}\textit{v}_2 + \left(1-\sigma_{\textit{priv}}\right)\textit{v}_1\right] + \left(1-m\left(\sigma_{\textit{priv}},b\right)\right)\textit{p} \end{aligned}$$

• Para vender suas ações em t=1 ao observar $x_1=0$, E precisa antecipar $V_{priv}\left(\sigma_{priv},b\right)\geq p$.

Portanto:

$$\begin{aligned} & V_{priv}\left(\sigma_{priv},b\right) \\ &= & m\left(\sigma_{priv},b\right)\left[\sigma_{priv}v_2 + \left(1-\sigma_{priv}\right)v_1\right] + \left(1-m\left(\sigma_{priv},b\right)\right)\rho \end{aligned}$$

- Para vender suas ações em t=1 ao observar $x_1=0$, E precisa antecipar $V_{priv}\left(\sigma_{priv},b\right)\geq p$.
- Isto sempre ocorre => E sempre vende suas ações após observar um fracasso, não importando o projeto.

Escolha de projeto na data 0

• Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$\begin{array}{ll} u_{priv,1} & \equiv & \mu \left(1 - e \right) \, V_{priv} \left(\sigma_{priv}, 1 \right) \\ & & + \left(1 - \mu + \mu e \right) \left[\left(1 - p \right) \, V_{priv} \left(\sigma_{priv}, 1 \right) + p \left(1 + p \right) \right] \end{array}$$

Escolha de projeto na data 0

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$\begin{array}{ll} u_{\textit{priv},1} & \equiv & \mu \left(1 - e \right) \, V_{\textit{priv}} \left(\sigma_{\textit{priv}}, 1 \right) \\ & & + \left(1 - \mu + \mu e \right) \left[\left(1 - \rho \right) \, V_{\textit{priv}} \left(\sigma_{\textit{priv}}, 1 \right) + \rho \left(1 + \rho \right) \right] \end{array}$$

Se escolehr P2, E obterá:

$$\begin{array}{ll} u_{\textit{priv},2} & \equiv & \mu \left(1 - e \right) \, V_{\textit{priv}} \left(\sigma_{\textit{priv}}, 1 \right) \\ & + \left(1 - \mu + \mu e \right) \left[\left(1 - \delta \rho \right) \, V_{\textit{priv}} \left(\sigma_{\textit{priv}}, 1 \right) + \delta \rho \left(1 + \theta \rho \right) \right] \end{array}$$

Escolha de projeto na data 0

E escolherá P2 se:

$$p\left(1-\delta
ight)V_{priv}\left(\sigma_{priv},1
ight)+\delta p\left(1+ heta p
ight)-p\left(1+p
ight)\geq0$$

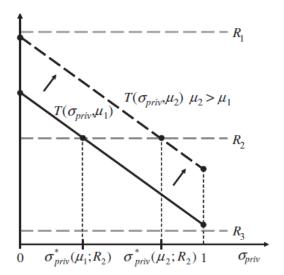
i.e., se

$$v_2 - v_1 + p(1 - \delta) T(\sigma_{priv}) \ge 0$$
 (1)

onde
$$T\left(\sigma_{\textit{priv}}\right) = V_{\textit{priv}}\left(\sigma_{\textit{priv}}, 1\right) - p$$
.

Escolha de projeto na data 0

 Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.


- Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.
- Para termos $\sigma_{\textit{priv}} \in (0,1)$, devemos ter $v_2 v_1 + p (1-\delta) \ T (\sigma_{\textit{priv}}) = 0$.

- Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.
- Para termos $\sigma_{priv} \in (0,1)$, devemos ter $v_2 v_1 + p(1-\delta) T(\sigma_{priv}) = 0$.
- Note que $p\left(1-\delta\right) T\left(\sigma_{\textit{priv}}\right) = pT\left(\sigma_{\textit{priv}}\right) \delta pT\left(\sigma_{\textit{priv}}\right) > 0.$

- Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.
- Para termos $\sigma_{priv} \in (0,1)$, devemos ter $v_2 v_1 + p(1-\delta) T(\sigma_{priv}) = 0$.
- Note que $p\left(1-\delta\right) T\left(\sigma_{\textit{priv}}\right) = pT\left(\sigma_{\textit{priv}}\right) \delta pT\left(\sigma_{\textit{priv}}\right) > 0.$
- Inovações eficientes $(v_2 > v_1) = > P2$ será escolhido.

- Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.
- Para termos $\sigma_{priv} \in (0,1)$, devemos ter $v_2 v_1 + p(1-\delta) T(\sigma_{priv}) = 0$.
- Note que $p\left(1-\delta\right)T\left(\sigma_{priv}\right)=pT\left(\sigma_{priv}\right)-\delta pT\left(\sigma_{priv}\right)>0$.
- Inovações eficientes $(v_2 > v_1) = > P2$ será escolhido.
- Inovações ineficientes ($v_2 < v_1$) também podem ser escolhidas, desde que $p\left(1-\delta\right)$ $T\left(\sigma_{priv}\right) \geq v_1-v_2$.

- Se (1) valer, E escolhe P2 com certeza. Se o sinal for trocado, E escolhe P1 com certeza.
- Para termos $\sigma_{priv} \in (0,1)$, devemos ter $v_2 v_1 + p(1-\delta) T(\sigma_{priv}) = 0$.
- Note que $p\left(1-\delta\right) T\left(\sigma_{\textit{priv}}\right) = pT\left(\sigma_{\textit{priv}}\right) \delta pT\left(\sigma_{\textit{priv}}\right) > 0.$
- Inovações eficientes $(v_2 > v_1) = > P2$ será escolhido.
- Inovações ineficientes ($v_2 < v_1$) também podem ser escolhidas, desde que $p(1-\delta)$ $T(\sigma_{priv}) \ge v_1 v_2$.
- Empresas de cap. fechado superinvestem em inovação.

O valor de se manter o capital fechado

Temos que:

$$u_{priv} = \sigma_{priv}^* u_{priv,2} + (1 - \sigma_{priv}^*) u_{priv,1}$$
$$= \sigma_{priv}^* v_2 + (1 - \sigma_{priv}^*) v_1$$

já que os investidores devem ter lucro esperado zero.

O valor de se manter o capital fechado

Temos que:

$$u_{priv} = \sigma_{priv}^* u_{priv,2} + (1 - \sigma_{priv}^*) u_{priv,1}$$
$$= \sigma_{priv}^* v_2 + (1 - \sigma_{priv}^*) v_1$$

já que os investidores devem ter lucro esperado zero.

• E/S precisam cobrir seus custos para investir na empresa em t=0, isto é:

$$(1 - \alpha_{priv}) c_{priv} u_{priv} \ge I$$

O valor de se manter o capital fechado

Temos que:

$$u_{priv} = \sigma_{priv}^* u_{priv,2} + (1 - \sigma_{priv}^*) u_{priv,1}$$

= $\sigma_{priv}^* v_2 + (1 - \sigma_{priv}^*) v_1$

já que os investidores devem ter lucro esperado zero.

• E/S precisam cobrir seus custos para investir na empresa em t=0, isto é:

$$(1 - \alpha_{priv}) c_{priv} u_{priv} \ge I$$

• E irá vender o mínimo no. de ações necessário. Portanto:

$$(1 - \alpha_{priv}) c_{priv} u_{priv} = I$$

O valor de se manter o capital fechado

• Temos que:

O valor de se manter o capital fechado

- Temos que:
- Segue que:

$$\alpha_{priv}^{*} = 1 - \frac{I}{c_{priv} u_{priv}}$$

$$= 1 - \frac{I}{c_{priv} \left[\sigma_{priv}^{*} v_{2} + \left(1 - \sigma_{priv}^{*}\right) v_{1}\right]}$$

O valor de se manter o capital fechado

- Temos que:
- Segue que:

$$\alpha_{priv}^{*} = 1 - \frac{I}{c_{priv} u_{priv}}$$

$$= 1 - \frac{I}{c_{priv} \left[\sigma_{priv}^{*} v_{2} + \left(1 - \sigma_{priv}^{*}\right) v_{1}\right]}$$

 Valor da firma sob regime de capital fechado (valor das ações de E para ele mesmo):

$$W_{ extit{priv}} = lpha_{ extit{priv}}^* u_{ extit{priv}} = \left[\sigma_{ extit{priv}}^* v_2 + \left(1 - \sigma_{ extit{priv}}^*
ight) v_1
ight] - rac{I}{c_{ extit{priv}}}$$

que é o valor esperado gerado pelo projeto ajustado pelo custo de capital.

Escolha de venda na data 1

• Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.
- Se P1 tiver sido escolhido, mercado atribui $m(\sigma_{pub}, b) < 1$.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.
- Se P1 tiver sido escolhido, mercado atribui $m\left(\sigma_{pub},b\right)<1$.
 - Portanto, mercado atribui prob. positiva de projeto ser P2.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.
- Se P1 tiver sido escolhido, mercado atribui $m\left(\sigma_{pub},b\right)<1$.
 - Portanto, mercado atribui prob. positiva de projeto ser P2.
 - E faz lucro positivo vendendo ações de P1 como sendo P2.

- Se a firma é de capital aberto desde o início, x₁ é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.
- Se P1 tiver sido escolhido, mercado atribui $m\left(\sigma_{pub},b\right)<1$.
 - Portanto, mercado atribui prob. positiva de projeto ser P2.
 - E faz lucro positivo vendendo ações de P1 como sendo P2.
 - E venderá suas ações se P1 e $x_1 = 1$.

- Se a firma é de capital aberto desde o início, x_1 é informação pública e todos a observam.
- No entanto, há incerteza a respeito do tipo de projeto: P1 ou P2.
- Investidores NS não observam o tipo de projeto.
- Suponha $x_1 = 1$. Nesse caso, E não venderá suas ações se estiver investindo em P2.
- Se P1 tiver sido escolhido, mercado atribui $m(\sigma_{pub}, b) < 1$.
 - Portanto, mercado atribui prob. positiva de projeto ser P2.
 - E faz lucro positivo vendendo ações de P1 como sendo P2.
 - E venderá suas ações se P1 e $x_1 = 1$.
- Seja $s \equiv \Pr(P2|venda, x_1 = 1)$. Temos:

$$s = rac{\mathsf{Pr}\left(\mathit{venda}, \mathit{x}_1 = 1 \middle| \mathit{P2}
ight)}{\mathsf{Pr}\left(\mathit{venda}, \mathit{x}_1 = 1
ight)}$$

Escolha de venda na data 1

• Calculando Pr (venda, $x_1 = 1$)

$$\Pr\left(\mathit{venda}, \mathit{x}_{1} = 1\right) = \left(1 - \sigma_{\mathit{pub}}\right) \mathit{p} + \sigma_{\mathit{pub}} \mu \left(1 - e\right) \delta \mathit{p}$$

Escolha de venda na data 1

• Calculando Pr (venda, $x_1 = 1$)

$$\Pr\left(\mathit{venda}, \mathit{x}_{1} = 1\right) = \left(1 - \sigma_{\mathit{pub}}\right) \mathit{p} + \sigma_{\mathit{pub}} \mu \left(1 - e\right) \delta \mathit{p}$$

• Calculando Pr (venda, $x_1 = 1|P2$):

$$\Pr\left(venda, x_1 = 1 | P2\right) = \mu\left(1 - e\right) \delta p$$

Escolha de venda na data 1

• Calculando Pr (venda, $x_1 = 1$)

$$\Pr\left(\mathit{venda}, \mathit{x}_{1} = 1\right) = \left(1 - \sigma_{\mathit{pub}}\right) \mathit{p} + \sigma_{\mathit{pub}} \mu \left(1 - e\right) \delta \mathit{p}$$

• Calculando Pr (venda, $x_1 = 1|P2$):

$$\Pr\left(venda, x_1 = 1 \middle| P2\right) = \mu\left(1 - e\right) \delta p$$

Portanto:

$$s = \frac{\sigma_{pub}\mu \left(1 - e\right)\delta p}{\left(1 - \sigma_{pub}\right)p + \sigma_{pub}\mu \left(1 - e\right)\delta p}$$

Escolha de venda na data 1

• Calculando Pr (venda, $x_1 = 1$)

$$\Pr\left(\mathit{venda}, \mathit{x}_{1} = 1\right) = \left(1 - \sigma_{\mathit{pub}}\right) \mathit{p} + \sigma_{\mathit{pub}} \mu \left(1 - e\right) \delta \mathit{p}$$

• Calculando Pr (venda, $x_1 = 1|P2$):

$$\Pr\left(venda, x_1 = 1 | P2\right) = \mu \left(1 - e\right) \delta p$$

Portanto:

$$s = \frac{\sigma_{pub}\mu (1 - e) \, \delta p}{(1 - \sigma_{pub}) \, p + \sigma_{pub}\mu (1 - e) \, \delta p}$$

• Valor de mercado das ações vendidas ao mercado em t=1:

$$V_{pub}\left(\sigma_{pub}
ight)=1+s\left(\sigma_{pub}
ight) heta p+\left[1-s\left(\sigma_{pub}
ight)
ight] p$$

Escolha de projeto na data 0

• Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$u_{pub,1} \equiv pV_{pub}\left(\sigma_{pub}\right) + p\left(1-p\right)$$

Escolha de projeto na data 0

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$u_{pub,1} \equiv pV_{pub}\left(\sigma_{pub}\right) + p\left(1-p\right)$$

Se escolher P2, E obterá:

$$= \begin{array}{l} u_{pub,2} \\ \equiv & \delta p \left[\mu \left(1 - \mathrm{e} \right) \, V_{pub} \left(\sigma_{pub} \right) + \left(1 - \mu + \mu \mathrm{e} \right) \left(1 + \theta \mathrm{p} \right) \right] + \left(1 - \delta \mathrm{p} \right) \mathrm{p} \end{array}$$

Escolha de projeto na data 0

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$u_{pub,1} \equiv pV_{pub}\left(\sigma_{pub}\right) + p\left(1-p\right)$$

• Se escolher P2, E obterá:

$$\equiv \begin{array}{l} u_{pub,2} \\ \equiv & \delta p \left[\mu \left(1 - e \right) V_{pub} \left(\sigma_{pub} \right) + \left(1 - \mu + \mu e \right) \left(1 + \theta p \right) \right] + \left(1 - \delta p \right) p \end{array}$$

• E escolherá P2 se:

$$u_{pub,2} \geq u_{pub,1}$$

Escolha de projeto na data 0

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$u_{pub,1} \equiv pV_{pub}\left(\sigma_{pub}\right) + p\left(1-p\right)$$

• Se escolher P2, E obterá:

$$\equiv \begin{array}{l} u_{pub,2} \\ \equiv & \delta p \left[\mu \left(1 - e \right) V_{pub} \left(\sigma_{pub} \right) + \left(1 - \mu + \mu e \right) \left(1 + \theta p \right) \right] + \left(1 - \delta p \right) p \end{array}$$

• E escolherá P2 se:

$$u_{pub,2} \geq u_{pub,1}$$

Se E escolhe P2 com certeza => mercado antecipa => investir em
 P1 e vendê-lo como P2 é melhor => não é EPB.

Escolha de projeto na data 0

- Subindo um "nó", analisamos a escolha entre de E entre P1 e P2.
- Se escolher P1, E obterá:

$$u_{pub,1} \equiv pV_{pub}\left(\sigma_{pub}\right) + p\left(1-p\right)$$

• Se escolher P2, E obterá:

$$\equiv \begin{array}{l} u_{pub,2} \\ \equiv & \delta p \left[\mu \left(1 - e \right) V_{pub} \left(\sigma_{pub} \right) + \left(1 - \mu + \mu e \right) \left(1 + \theta p \right) \right] + \left(1 - \delta p \right) p \end{array}$$

• E escolherá P2 se:

$$u_{pub,2} \geq u_{pub,1}$$

- Se E escolhe P2 com certeza => mercado antecipa => investir em
 P1 e vendê-lo como P2 é melhor => não é EPB.
- Não há EPB em que uma firma de capital aberto escolhe P2 com certeza.

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu \left(1-e\right)\delta + s^{*} \left[1-\delta \mu \left(1-e\right)\right]}$$

onde

$$s^{*} = \max \left\{ 0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)\rho^{2}\left(\theta - 1\right)}{\rho^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]} \right\}$$

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu \left(1-e\right)\delta + s^{*} \left[1-\delta \mu \left(1-e\right)\right]}$$

onde

$$s^{*} = \max \left\{0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)p^{2}\left(\theta - 1\right)}{p^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]}\right\}$$

Além disso, temos que:

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu\left(1-e\right)\delta + s^{*}\left[1-\delta\mu\left(1-e\right)\right]}$$

$$s^{*} = \max \left\{0, \frac{v_{2}-v_{1}-\delta\mu\left(1-e\right)p^{2}\left(\theta-1\right)}{p^{2}\left(\theta-1\right)\left[1-\delta\mu\left(1-e\right)\right]}\right\}$$

- Além disso, temos que:
 - se $v_1>v_2-\delta\mu\,(1-e)\,p^2\,(\theta-1)$, então $\sigma_{pub}^*=0$.

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu \left(1 - e\right) \delta + s^{*} \left[1 - \delta \mu \left(1 - e\right)\right]}$$

$$s^{*} = \max \left\{0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)p^{2}\left(\theta - 1\right)}{p^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]}\right\}$$

- Além disso, temos que:
 - se $v_1>v_2-\delta\mu\left(1-e\right)p^2\left(\theta-1\right)$, então $\sigma_{pub}^*=0$.
 - se $v_1 < v_2 \delta \mu \left(1 e\right) p^2 \left(\theta 1\right)$, então $\sigma_{pub}^* \in (0, 1)$.

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu\left(1-e\right)\delta + s^{*}\left[1-\delta\mu\left(1-e\right)\right]}$$

$$s^{*} = \max \left\{0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)p^{2}\left(\theta - 1\right)}{p^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]}\right\}$$

- Além disso, temos que:
 - se $v_1 > v_2 \delta \mu (1 e) p^2 (\theta 1)$, então $\sigma_{pub}^* = 0$.
 - se $v_1 < v_2 \delta \mu \left(1 e\right) p^2 \left(\theta 1\right)$, então $\sigma_{pub}^* \in (0, 1)$.
- Sempre que $v_1 > v_2$, P1 será escolhido. P2 nunca será escolhido sem que seja o mais eficiente.

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{s^{*}}{\mu\left(1-e\right)\delta + s^{*}\left[1-\delta\mu\left(1-e\right)\right]}$$

$$s^{*} = \max \left\{0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)p^{2}\left(\theta - 1\right)}{p^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]}\right\}$$

- Além disso, temos que:
 - se $v_1 > v_2 \delta \mu (1-e) p^2 (\theta-1)$, então $\sigma_{pub}^* = 0$.
 - se $v_1 < v_2 \delta \mu \left(1 e\right) p^2 \left(\theta 1\right)$, então $\sigma_{pub}^* \in (0, 1)$.
- Sempre que $v_1 > v_2$, P1 será escolhido. P2 nunca será escolhido sem que seja o mais eficiente.
- P1 será escolhido em algumas ocasiões mesmo não sendo o mais eficiente.

Escolha de projeto na data 0

Equilíbrio ocorrerá com:

$$\sigma_{pub}^{*} = \frac{\mathit{s}^{*}}{\mu\left(1-\mathit{e}\right)\delta+\mathit{s}^{*}\left[1-\delta\mu\left(1-\mathit{e}\right)\right]}$$

$$s^{*} = \max \left\{0, \frac{v_{2} - v_{1} - \delta\mu\left(1 - e\right)p^{2}\left(\theta - 1\right)}{p^{2}\left(\theta - 1\right)\left[1 - \delta\mu\left(1 - e\right)\right]}\right\}$$

- Além disso, temos que:
 - se $v_1 > v_2 \delta \mu (1-e) p^2 (\theta-1)$, então $\sigma_{pub}^* = 0$.
 - se $v_1 < v_2 \delta \mu \left(1 e\right) p^2 \left(\theta 1\right)$, então $\sigma_{pub}^* \in (0, 1)$.
- Sempre que $v_1 > v_2$, P1 será escolhido. P2 nunca será escolhido sem que seja o mais eficiente.
- P1 será escolhido em algumas ocasiões mesmo não sendo o mais eficiente.
- Empresas de capital aberto subinvestem em inovação.

O valor de se manter o capital aberto

Temos que:

$$u_{pub} = \sigma_{pub}^* u_{pub,2} + (1 - \sigma_{pub}^*) u_{pub,1}$$

= $\sigma_{pub}^* v_2 + (1 - \sigma_{pub}^*) v_1$

já que os investidores devem ter lucro esperado zero.

O valor de se manter o capital aberto

Temos que:

$$u_{pub} = \sigma_{pub}^* u_{pub,2} + (1 - \sigma_{pub}^*) u_{pub,1}$$

= $\sigma_{pub}^* v_2 + (1 - \sigma_{pub}^*) v_1$

já que os investidores devem ter lucro esperado zero.

• E/S precisam cobrir seus custos para investir na empresa em t=0, isto é:

$$(1 - \alpha_{pub}) c_{pub} u_{pub} \ge I$$

O valor de se manter o capital aberto

Temos que:

$$u_{pub} = \sigma_{pub}^* u_{pub,2} + (1 - \sigma_{pub}^*) u_{pub,1}$$

= $\sigma_{pub}^* v_2 + (1 - \sigma_{pub}^*) v_1$

já que os investidores devem ter lucro esperado zero.

• E/S precisam cobrir seus custos para investir na empresa em t=0, isto é:

$$(1 - \alpha_{pub}) c_{pub} u_{pub} \ge I$$

• E irá vender o mínimo no. de ações necessário. Portanto:

$$(1 - \alpha_{pub}) c_{pub} u_{pub} = I$$

O valor de se manter o capital aberto

• Temos que:

- Temos que:
- Segue que:

$$\alpha_{pub}^{*} = 1 - \frac{I}{c_{pub}u_{pub}}$$

$$= 1 - \frac{I}{c_{pub}\left[\sigma_{pub}^{*}v_{2} + \left(1 - \sigma_{pub}^{*}\right)v_{1}\right]}$$

O valor de se manter o capital aberto

- Temos que:
- Segue que:

$$\alpha_{pub}^{*} = 1 - \frac{I}{c_{pub}u_{pub}}$$

$$= 1 - \frac{I}{c_{pub}\left[\sigma_{pub}^{*}v_{2} + \left(1 - \sigma_{pub}^{*}\right)v_{1}\right]}$$

 Valor da firma sob regime de capital aberto (valor das ações de E para ele mesmo):

$$W_{pub} = lpha_{pub}^* u_{pub} = \left[\sigma_{pub}^* v_2 + \left(1 - \sigma_{pub}^*\right) v_1\right] - \frac{I}{c_{pub}}$$

que é o valor esperado gerado pelo projeto ajustado pelo custo de capital.

O valor de se manter o capital aberto

- Temos que:
- Segue que:

$$\alpha_{pub}^{*} = 1 - \frac{I}{c_{pub}u_{pub}}$$

$$= 1 - \frac{I}{c_{pub}\left[\sigma_{pub}^{*}v_{2} + \left(1 - \sigma_{pub}^{*}\right)v_{1}\right]}$$

 Valor da firma sob regime de capital aberto (valor das ações de E para ele mesmo):

$$W_{pub} = lpha_{pub}^* u_{pub} = \left[\sigma_{pub}^* v_2 + \left(1 - \sigma_{pub}^*\right) v_1\right] - \frac{I}{c_{pub}}$$

que é o valor esperado gerado pelo projeto ajustado pelo custo de capital.

 Note que a equação é igual à da firma de capital fechado, mas o valor numérico não será, pois $\sigma_{pub}^* \neq \sigma_{priv}^*$.

O valor de se manter o capital aberto

Defina:

$$a \equiv rac{1}{c_{priv}} - rac{1}{c_{pub}} = rac{c_{pub} - c_{priv}}{c_{priv}c_{pub}}$$

O valor de se manter o capital aberto

Defina:

$$a \equiv rac{1}{c_{priv}} - rac{1}{c_{pub}} = rac{c_{pub} - c_{priv}}{c_{priv}c_{pub}}$$

Temos que:

$$W_{priv} - W_{pub} = \left(\sigma_{priv}^* - \sigma_{pub}^*\right)\left(v_2 - v_1\right) - \frac{I}{c_{priv}} + \frac{I}{c_{pub}}$$

O valor de se manter o capital aberto

Defina:

$$a \equiv rac{1}{c_{priv}} - rac{1}{c_{pub}} = rac{c_{pub} - c_{priv}}{c_{priv}c_{pub}}$$

Temos que:

$$W_{priv} - W_{pub} = \left(\sigma_{priv}^* - \sigma_{pub}^*\right)\left(v_2 - v_1\right) - \frac{I}{c_{priv}} + \frac{I}{c_{pub}}$$

Capital Fechado será preferível se:

$$\left(\sigma_{\textit{priv}}^* - \sigma_{\textit{pub}}^*\right)\left(\textit{v}_2 - \textit{v}_1\right) \geq \textit{al}$$

O valor de se manter o capital aberto

• Como capital fechado cria viés pró-inovação e capital aberto cria viés anti-inovação, $\left(\sigma_{priv}^*-\sigma_{pub}^*\right)>0$.

- Como capital fechado cria viés pró-inovação e capital aberto cria viés anti-inovação, $\left(\sigma_{priv}^* \sigma_{pub}^*\right) > 0$.
- Segue que:

- Como capital fechado cria viés pró-inovação e capital aberto cria viés anti-inovação, $\left(\sigma_{priv}^* \sigma_{pub}^*\right) > 0$.
- Segue que:
 - se inovação gera mais valor que projeto convencional $(v_2 > v_1)$, é ótimo para a firma manter-se de capital fechado;

- Como capital fechado cria viés pró-inovação e capital aberto cria viés anti-inovação, $\left(\sigma_{priv}^* \sigma_{pub}^*\right) > 0$.
- Segue que:
 - se inovação gera mais valor que projeto convencional $(v_2 > v_1)$, é ótimo para a firma manter-se de capital fechado;
 - se inovação gera mais valor que projeto convencional ($v_2 < v_1$), é ótimo para a firma manter-se de capital aberto.

- Como capital fechado cria viés pró-inovação e capital aberto cria viés anti-inovação, $\left(\sigma_{priv}^*-\sigma_{pub}^*\right)>0$.
- Segue que:
 - se inovação gera mais valor que projeto convencional $(v_2 > v_1)$, é ótimo para a firma manter-se de capital fechado;
 - se inovação gera mais valor que projeto convencional $(v_2 < v_1)$, é ótimo para a firma manter-se de capital aberto.
- Estrutura de propriedade da firma deve ser dirigida para a atividade que gera mais valor.

Previsões Empíricas

 Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;

- Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;
- Firmas devem se manter de capital fechado (aberto) se projetos inovadores geram mais (menos) valor que projetos convencionais;

- Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;
- Firmas devem se manter de capital fechado (aberto) se projetos inovadores geram mais (menos) valor que projetos convencionais;
- Redução dos custos de um IPO deve incentivar inovação;

- Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;
- Firmas devem se manter de capital fechado (aberto) se projetos inovadores geram mais (menos) valor que projetos convencionais;
- Redução dos custos de um IPO deve incentivar inovação;
- Um mercado de fusões, PE e VC ativo incentiva inovação em empresas de capital aberto mas prejudica atividades inovadoras em empresas de capital fechado.

- Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;
- Firmas devem se manter de capital fechado (aberto) se projetos inovadores geram mais (menos) valor que projetos convencionais;
- Redução dos custos de um IPO deve incentivar inovação;
- Um mercado de fusões, PE e VC ativo incentiva inovação em empresas de capital aberto mas prejudica atividades inovadoras em empresas de capital fechado.
- Um aumento no grau de assimetria de informação em IPOs estimula inovação em firmas de capital fechado.

- Firmas levam adiante mais (menos) projetos inovadores após fecharem (abrirem) capital;
- Firmas devem se manter de capital fechado (aberto) se projetos inovadores geram mais (menos) valor que projetos convencionais;
- Redução dos custos de um IPO deve incentivar inovação;
- Um mercado de fusões, PE e VC ativo incentiva inovação em empresas de capital aberto mas prejudica atividades inovadoras em empresas de capital fechado.
- Um aumento no grau de assimetria de informação em IPOs estimula inovação em firmas de capital fechado.
- Uma queda na liquidez das ações estimula inovação em empresas de capital aberto.