
Calculus 3 - Surface Integrals

Earlier we introduced line integrals. Suppose we had a piece of wire with

density ρ(x, y, z) that we bent in the shape of a 3D curve C(x, y, z). If we

assume that the density is constant along a small piece with length ds, the

mass of that piece would be ρ(x, y, z)ds and then add up all the pieces so

that in the limit the mass of the wire would be

m =
∫
C

ρ(x, y, z)ds. (1)

This we called a line integral.

We now do the same except instead of a line, we do this with a surface.

Assume that the density of a surface is given by ρ(x, y, z). The shape of

the surface is given by S(x, y, z). If we have a small part of the surface,

denoted by dS, then the mass of the little part of the surface is ρ(x, y, z)dS.

Now add up the little pieces and in the limit we get

m =
∫∫
S

ρ(x, y, z)dS. (2)

This we call a surface integral.
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Example 1. Evaluate ∫∫
S

(z− 3x− y)dS. (3)

where S is the surface of the plane 2x + 5y− z = −1 on the interval

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Soln.

First we need to know what dS is. Recall from surface area that the surface

is z = f (x, y) then

dS =
√

1 + f 2
x + f 2

y dA (4)

Here the surface is z = 2x + 5y + 1, so calculating derivatives gives

fx = 2, fy = 5 (5)

and so

dS =
√

1 + 22 + 52 dA. (6)

Bringing this and the surface into (3) gives

∫ 1

0

∫ 1

0
(2x + 5y + 1− 3x− y)

√
30 dy dx

=
√

30
∫ 1

0

∫ 1

0
(−x + 4y + 1) dy dx

=
√

30
∫ 1

0
(−xy + 2y2 + y)

∣∣∣1
0

dx

=
√

30
∫ 1

0
(−x + 3) dx

=
√

30
(
−1

2
x2 + 3x

) ∣∣∣1
0
=

5
2

√
50

(7)
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Example 2. Evaluate ∫∫
S

(x2 + y2)dS. (8)

where S is the surface of the paraboloid z = x2 + y2 for 0 ≤ z ≤ 4.

Soln.

First we find dS. Since z = x2 + y2 then

fx = 2x, fy = 2y (9)

and from (4)

dS =
√

1 + 4x2 + 4y2 dA. (10)

and (8) is ∫∫
R

(x2 + y2)
√

1 + 4x2 + 4y2 dA (11)

noting that once we bring in the surface, we are now projecting down into

the xy plane. Since the region of integration is a circle of radius 2, we
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introduce polar. In doing (16) becomes gives

∫ 2π

0

∫ 2

0

√
1 + 4r2 r3dr dθ =

391
√

17 + 1
60

π (12)

Example 3. Evaluate ∫∫
S

(z4 + x)dS. (13)

where S is the surface of the plane y + z = 1 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

Soln.

If we were to bring in the surface z = 1− y then

fx = 0, fy = −1 (14)

and from (4)

dS =
√

2 dA. (15)
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and (13) is
√

2
∫ 2

0

∫ 1

0

(
(1− y)4 + x

)
dy dx. (16)

We certainly can do this and the integration wrt y is doable, but maybe

projecting in another direction is better. Instead of projecting into the xy

plane (down), let’s project in the xz plane (from the right)

Previously, given z = f (x, y) then projection down (into the xy plane) we

have ∫∫
S

F(x, y, z)dS =
∫∫
Rxy

F(x, y, f (x, y))
√

1 + f 2
x + f 2

y dAxy (17)

Now if the surface is given as y = g(x, z) then projected left (into the xz

plane) we have

∫∫
S

F(x, y, z)dS =
∫∫
Rxz

F(x, g(x, z), z)
√

1 + g2
x + g2

z dAxz (18)

Similarly if surface is given as x = h(y, z) then projection back (into the yz

plane) we have

∫∫
S

F(x, y, z)dS =
∫∫
Ryz

F(h(y, z), y, z)
√

1 + h2
y + h2

z dAyz (19)
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So in the example, we will project into the xz plane. So given that

y = 1− z (20)

then we have

dS =
√

1 + 02 + (−1)2 dxdz (21)

and our surface integral becomes

√
2
∫ 1

0

∫ 2

0
(z4 + x)dxdz =

12
5

√
2. (22)

Example 4. Evaluate ∫∫
S

ydS. (23)

where S is the surface of the cylinder x2 + y2 = 1 in the first octant for

0 ≤ z ≤ 1.
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Soln.

Our choices are to project into the

1. yz plane

2. xz plane

We will set up each and then determine which is better

(i) yz plane

We solve the cylinder for x so x =
√

1− y2. Now dS is

dS =

√
1 +

y2

1− y2 dAyz =
1√

1− y2
dAyz (24)

The surface integral (23) becomes

∫ 1

0

∫ 1

0

y√
1− y2

dy dz (25)

(i) xz plane

We solve the cylinder for y so y =
√

1− x2. Now dS is

dS =

√
1 +

x2

1− x2 dAxz =
1√

1− x2
dAxz (26)

The surface integral (23) becomes

∫ 1

0

∫ 1

0

y√
1− x2

dx dz =
∫ 1

0

∫ 1

0

√
1− x2
√

1− x2
dx dz = 1 (27)

I think the second one is clearly easier!
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