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Political scientists frequently interpret the results of conjoint experiments as reflective
of voter preferences. In this paper we show that the target estimand of conjoint exper-
iments, the AMCE, is not well-defined in these terms. Even with individually rational
experimental subjects, unbiased estimates of the AMCE can indicate the opposite of
the true preference of the majority. To show this, we characterize the social choice
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a structural interpretation of the AMCE and highlight that the problem we describe
persists even when a model of voting is imposed.
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Conjoint experiments have become a standard part of the political scientist’s toolkit. Across the top

scholarly journals political scientists regularly interpret the results of these experiments to make empirical

claims about both voter preferences and electoral outcomes. In this paper, we show that the target estimand

of conjoint experiments, the average marginal component effect (AMCE), does not support such claims. We

do so by characterizing the social choice correspondence implied by the AMCE and, in line with well known

results (Arrow, 1950; Gibbard, 1973), we demonstrate its undesirable properties for making inferences about

voter preferences and electoral outcomes.

The goal of factorial designs like those in forced-choice conjoint experiments is to mimic the comparisons

individual voters make at the ballot box. By randomizing a large number of candidate and platform features,

researchers seek to construct realistic approximates of the choices voters face. With a simple difference-in-

means or least-squares regression researchers compare the attributes of candidates most frequently chosen

to the attributes of the candidates least frequently chosen to make empirical claims about the preferences

of voters.

For example, experimental results from conjoint experiments are used to make claims about voters’ pref-

erences for particular policies like: “Americans express a pronounced preference for immigrants who are

well educated, are in high-skilled professions, and plan to work upon arrival (Hainmueller and Hopkins,
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2015); and “[there is] strong evidence for progressive preferences over taxation among the American public”

(Ballard-Rosa, Martin and Scheve, 2017). Even more frequently, conjoint results are used to make state-

ments about candidates for elected office like: “voters prefer experienced or locally born politicians, but do

not prefer politicians affiliated with a major political party... and are indifferent with regard to dynastic

family ties and gender (Horiuchi, Smith and Yamamoto, 2018);” and “voters and legislators do not seem to

hold female candidates in disregard; all else equal, they prefer female to male candidates (Teele, Kalla and

Rosenbluth, 2018).”

Put simply, political scientists use conjoint results to make statements about a binary preference relation

for a representative voter in the context of elections. Researchers interpret findings from conjoints as evidence

that candidates with particular features are most preferred and thereby more likely to win elections (Carnes

and Lupu, 2016; Teele, Kalla and Rosenbluth, 2018). What is more, the conjoint method and this common

interpretation have even migrated to the public discourse. CBS News and POLITICO, for example, have

both highlighted results from conjoint experiments, asserting that the “[Democratic] party’s primary voters

prefer female candidates of color in 2020 (Magni and Reynolds, 2019)” and that [Democratic] “voters showed

a clear preference for females, all else equal (Khanna, 2019).” By way of example and formal proof, we show

that the AMCE produces a representative voter that is uninformative with respect to empirical claims about

electoral contests.

The AMCE is defined as the average effect of varying one attribute of a candidate profile, e.g. the race or

gender of the candidate, from A to A′, on the probability that the candidate will be chosen by a respondent,

where the expectation is defined over the distribution of the other attributes. To be clear, we do not dispute

that the estimators proposed by Hainmueller, Hopkins and Yamamoto (2014) for this quantity are unbiased

under their assumptions. Rather, we show that even when these assumptions hold, a positive AMCE of

candidate-feature A over A′ does not indicate: 1.) A majority of voters prefer candidates with feature A

to those with A′; 2.) all else equal the median voter prefers candidates with A to those with A′; nor 3.)

candidates with feature A beat candidates with feature A′ in most elections.

This occurs because the AMCE averages over two aspects of individual preferences: their direction

(whether or not an individual prefers A to A′) and their intensity (how much they prefer A to A′). Because

the AMCE produces a literally average voter, it assigns greater weight to voters who intensely prefer a

particular outcome, the consequence of which can be inaccurate out-of-sample predictions. For example, a

large majority of people may have a strict preference for male candidates over female candidates, but the

AMCE may be positive for female candidates if there is a small minority of voters who have an intense

preference for women. Far from being a statistical accident, this structure undergirds numerous political
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questions where the direction and intensity of preferences are potentially correlated.

Our point is not merely semantic. In the field of market research, where the tools of conjoint experiments

were first developed, scholars are typically interested in the demand for a given product, which is determined

by both the intensive and extensive margins of consumer choice. By contrast, political scientists typically

care about elections, which are won on the extensive margin. Indeed, outside of fantastical institutional

designs (e.g, Lalley and Weyl (2018)) electoral contests are not swayed by how much a subset of voters prefer

a given candidate but, rather, how many voters have a strict preference for each candidate. By averaging

over both margins of choice, the AMCE can prove uninformative with respect to the questions of interest

to political scientists.

Since the objective of conjoint experiments is to construct a mapping from individual to aggregate pref-

erences, we build on the literature in positive political theory that formally evaluates mechanisms that do

just that. That is, we characterize the AMCE as a social choice correspondence — a mapping from indi-

vidual to aggregate preferences (Austen-Smith and Banks, 2000, p. 26). In doing so, we show that the

AMCE is a perturbation of the Borda rule and, as such, inherits some of its undesirable properties. Namely,

we demonstrate that the AMCE does not satisfy the majority or independence of irrelevant alternatives

(IIA) criteria. In this paper we focus on violations of the majority criterion — a principle that states if a

majority of voters prefer a particular feature the aggregation mechanism should select it and only briefly

discuss the implications of IIA violations for conjoint designs that restrict attribute-combinations from their

randomization schemes.

Having characterized the social choice correspondence of the AMCE, we then use results from this exercise

to provide a method that, for a given AMCE estimate, allows researchers to place sharp bounds on the

proportion of experimental subjects that maintain a strict preference for a candidate-feature. Using this

method, we re-evaluate the findings of every conjoint experiment published in the American Political Science

Review, American Journal of Political Science, and the Journal of Politics between 2016 and 2019 and show

that, with two exceptions, their results are consistent with either the majority or the minority of respondents

holding a strict preference for the candidate-feature that yielded each study’s largest estimated effect.

Finally, we explore the relationship between the AMCE and a simple model of voting. In providing

a structural interpretation of the AMCE we show that it reflects an average of individual ideal points

over candidate-features. This highlights how conjoints combine information about both the intensity and

direction of preferences and demonstrates the need to impose additional structure in order to obtain estimates

of theoretically relevant quantities of interest. We conclude with some directions for future research on how

to make conjoints more informative about voter preferences.
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I. An Example

To start, we work through a toy example of how the AMCE aggregates preferences. We aim to make

as few assumptions about the underlying preferences of individual voters as possible. While we view our

assumptions as benign, we note that if the AMCE exhibits undesirable properties under these assumptions,

placing even less structure will not rectify whatever problems we identify and only obscure what drives these

results. Furthermore, we emphasize that we are agnostic with respect to the content of voters preferences.

Individuals may be self-interested, other-regarding, or some mixture thereof. We impose only that individual

preferences are complete and transitive.1 Without completeness and transitivity we can learn about neither

individual or aggregate preferences. As such, these are the minimal assumptions about individual preferences

we can make and still hope to recover meaningful insight into the AMCE.

Since, fundamentally, the object researchers seek to describe concerns a preference relation over candidate-

features, the primitives we begin with are over these features. For simplicity, consider an electorate of five

voters (V1, V2, V3, V4, V5), whose preferences over candidates we would like to study with a conjoint

experiment. To eliminate concerns about estimation, suppose we can fully observe every potential choice

between candidates made by every member of this population. In this world, there are two attributes of

candidates that are important to voters: their gender (female or male) denoted by G ∈ {F,M}, and their

age (old or young) denoted A ∈ {O, Y }. Each candidate is an ordered pair of gender and age, so that there

are four different candidate profiles: FO,FY,MO, and MY . The voters’ preferences over attributes are a

strict partial order ≻, and are given in the following table:

V1 V2 V3 V4 V5
M ≻ F M ≻ F F ≻ M F ≻ M M ≻ F
Y ≻ O Y ≻ O O ≻ Y O ≻ Y O ≻ Y

Table 1—: Preferences over attributes

It can easily be seen that a majority of voters prefer male candidates to female candidates, and a majority

of voters prefer old candidates to young candidates.

We construct preferences over candidates from preferences over attributes in the following way: Voters

prefer candidates that have both of the attributes they like to those that have one attribute they like, which

in turn they prefer to candidates who have neither of the attributes they like. Notice that there are two

types of candidates that have only one attribute that matches a voter’s preference. For these candidates,

whether a voter prefers one or the other depends on which attribute the voter places a greater weight on.

1Formally, completeness is defined as preferences satisfy x ≿ y, y ≿ x or both. Transitivity is defined as x ≿ y & y ≿ z, then x ≿ z
where ≿ denotes the weak preference relation.
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For example, if a voter places more weight on gender, we would expect them to choose a candidate who has

their preferred gender but not their preferred age over a candidate who has the voter’s preferred age but

not the gender.

Formally, such preferences over candidate profiles can be written as the lexicographic preference relation

≿, where for each voter one attribute is given a greater weight in determining the preference ordering.

Accordingly, we assume that voters 1, 2, and 5 place more weight on the candidate’s age, A ≿ G, whereas

voters 3 and 4 place more on the candidate’s gender, G ≿ A. Combining weights with preferences over

attributes, we can produce voters’ preferences over candidate profiles. These are presented in Table 2.

Rank V1 V2 V3 V4 V5
1. MY MY FO FO MO
2. FY FY FY FY FO
3. MO MO MO MO MY
4. FO FO MY MY FY

Table 2—: Preferences over candidate profiles

Given these preferences, in Table 3 we present the votes candidates would obtain in each head-to-head

election for every possible pairwise comparison. Note that in this example women and men win the same

number of elections (the winner is bolded in the first column).

Comparison V1 V2 V3 V4 V5 Tally
MY , FY MY MY FY FY MY 3, 2
MY,FO MY MY FO FO FO 2, 3
MY,MO MY MY MO MO MO 2, 3
MO,FY FY FY FY FY MO 1, 4
MO, FO MO MO FO FO MO 3, 2
FY,FO FY FY FO FO FO 2, 3

Table 3—: Aggregate preferences over candidate profiles

In this simple setting, the AMCE is derived as in Hainmueller, Hopkins and Yamamoto (2014), Proposition

3. The intuition behind the comparisons being made when estimating the AMCE is given in Table 4. Here,

Ȳ (C1, C2) denotes the fraction of votes that candidate C1 obtains when run against candidate C2. For each

contest we can obtain Ȳ from the last column of Table 3. To obtain the AMCE for males we compare

how male candidates (column 1) fare relative to female candidates (column 2) when they run against the

same opponent, then sum this difference over all possible opponents. This sum is finally normalized by the

number of possible profiles minus one (3) times the number of possible values for gender (2). The procedure

yields an AMCE for male equal to −1/15, meaning that the average probability of being chosen is higher
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for female candidates than it is for male candidates.

1. 2.

Ȳ (MY,MO) − Ȳ (FY,MO) = −2/5
Ȳ (MY,FO) − Ȳ (FY, FO) = 0
Ȳ (MY,MY ) − Ȳ (FY,MY ) = 1/10
Ȳ (MY,FY ) − Ȳ (FY, FY ) = 1/10
Ȳ (MO,MO) − Ȳ (FO,MO) = 1/10
Ȳ (MO,FO) − Ȳ (FO,FO) = 1/10
Ȳ (MO,MY ) − Ȳ (FO,MY ) = 0
Ȳ (MO,FY ) − Ȳ (FO,FY ) = −2/5

−2/5

(# of profiles − 1)× # values for gender = 6

AMCE = −1/15

Table 4—: Obtaining the AMCE

Our toy example illustrates the intuition driving our main result. Notice that the AMCE for men is

negative, and yet we know that by construction a majority of the voters prefer male to female candidates.

Holding all else constant (in the case of this example, age), a male candidate would always win.2 Further-

more, women and men win an equal number of electoral contests.3 The AMCE produces an estimate that

indicates the opposite of the true majority preference because the minority, who place the greatest weight on

the gender dimension, also have a preference for female candidates, while the majority, who prefer men, do

not place much weight on gender when making their decisions. When aggregating preferences over gender,

the AMCE mechanically assigns greater weight to the minority that strongly prefer women.

Crucially, this result is a feature of the target estimand and is not a problem of estimation. Our example is

analogous to a survey in which each respondent is asked to evaluate all possible head-to-head comparisons.

To highlight this, we conduct a simulation exercise where we run a three question conjoint experiment on

a population characterized by the distribution of voter preferences in our toy example. That is, we take

a population of five voters with the preferences detailed in Table 3. Then, we randomly construct pairs

of candidates, perturbing their gender and age. Knowing voter preferences for candidate profiles we then

obtain a winner in each contest and estimate the AMCE for male candidates. In Figure 1 we present results

from conducting this exercise 1,000 times. Of course, because the AMCE is unbiased, the effect is centered

on -1/15, despite being generated from a population of voters where 3/5 prefer men.

2Note that in rows 1 and 5 of Table 3 the male candidate gets three votes against the female candidate’s two.
3From Table 3 men win rows 1, 3, and 5 and women win rows 2, 4, and 6.
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Figure 1. : This figure presents an exercise where we conduct 1,000 conjoint experiments on a population
of 5 voters with preferences as detailed in Table 3 and where candidates are randomly generated from a
combination of gender and age.

II. The AMCE as a Social Choice Correspondence

In this section, we show that the above example is a general feature of the AMCE. To accomplish this

we start by showing that the AMCE has a direct correspondence to the Borda rule, a voting system that

assigns points to candidates according to their order of preference. Borda rule voting is implemented as

follows. With n candidates, the Borda rule assigns zero points to each voter’s least preferred candidate,

one point to the candidate preferred to that but no other, and so on until the most preferred candidate

receives n − 1 points. Thus for each voter, the Borda score contributed to a candidate corresponds to the

number of other candidates to whom he or she is preferred. This in turn is equal to the number of times that

candidate would be chosen if the voter was presented with every possible binary comparison. A candidate’s

Borda score is the sum of the individual Borda scores assigned to that candidate by each voter, and is equal

to the total number of times that candidate would be chosen if each voter was subjected to each binary

comparison. This is summarized in Lemma 1:

LEMMA 1: The Borda score of each profile is equal to the total number of times that profile is chosen in

all pairwise comparisons.
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PROOF:

All proofs are in the appendix.

In the context of conjoint experiments, we further define the Borda score of a feature as the sum of the

Borda scores of each profile that has that feature. For example, the Borda score of “female” is the sum

of the Borda scores of all female candidates. We can now state our result pertaining to the equivalence of

Borda and AMCE:

PROPOSITION 1: The difference of the Borda scores of a feature and the benchmark is proportional to

the AMCE of that attribute.

The proof of Proposition 1 follows from Lemma 1 and the observation that Borda and AMCE measure

aggregate preferences in analogous ways. They both tally the number of alternatives that are defeated by

candidates with a given feature, then use that tally to compare across features. The AMCE estimates are

constructed by taking the difference of these tallies and normalizing them to be between −1 and 1. In the

proof we formally walk through the steps of how to get to AMCE from Borda counts, and produce the same

expression as the AMCE in Equation 5 of Hainmueller, Hopkins and Yamamoto (2014).

This equivalence is important, because it is well known in the social choice literature that the Borda rule has

several undesirable properties. We have shown that these properties extend to the AMCE. For example, the

Borda rule violates the irrelevance of independent alternatives (IIA) criterion, which states that the relative

ranking of two candidates should not depend on the presence of another candidate. In the supplemental

appendix we show that the AMCE violates IIA. That is, we demonstrate via a simple example that the

AMCE of a given candidate-feature depends on the other feature-combinations included in the experiment.

In our example, the estimated AMCE on male versus female depends on the particular randomization of

party and education. By restricting, for example, educated Republicans from the randomization scheme, the

AMCE on male changes sign. Of course, this is deeply problematic for conjoint experiments that frequently

exploit constrained randomizations.4

In this paper we focus upon a second social choice property of the AMCE – that it also inherits from the

Borda rule – and show that it violates the majority criterion. This states that if a majority of voters prefer

one candidate, then that candidate must win. Our example shows that this feature of the Borda rule extends

to attributes, where a majority of voters prefer male candidates to female candidates, but the Borda score of

F is greater than that of M . Here, we establish this result more generally. Specifically, we show that when

a majority of candidates prefer a feature, the AMCE may still indicate that feature has a negative effect on

the probability of being chosen. This discrepancy is driven by respondents assigning different weights, or

4We more thoroughly explore this problem in a separate paper.
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importance, to attributes. For example, if respondents who like a feature also put more weight on it than

those who dislike it, the AMCE estimate will be higher than the margin of respondents who strictly prefer

that attribute. More importantly, a small minority that cares intensely about an attribute can overtake a

much larger majority that has the opposite preference but cares less intensely about it. This may result

in an AMCE in favor of the feature the minority prefers, even if that feature would in fact lead to a large

electoral disadvantage between otherwise similar candidates.

We leverage the correspondence between the AMCE and the Borda rule to derive sharp bounds on the

fraction of the population that prefers a feature over the benchmark and show that the potential divergence

with AMCE grows in the number of unique candidate profiles, K. More precisely, for any given value of

the AMCE for a feature, total number of candidate profiles, and the number of values the attribute can

take, we define the maximum and minimum fractions of voters who prefer that feature over the benchmark

attribute. These bounds are given in our next result.

PROPOSITION 2: Let y denote the fraction of voters who prefer t1 over t0. Given an AMCE estimate of

π(t1, t0), it must be that

y ∈
[
max

{
π(t1, t0)τ(K − 1) + τ

K(τ − 1) + τ
, 0

}
,min

{
π(t1, t0)τ(K − 1) +K(τ − 1)

K(τ − 1) + τ
, 1

}]

where τ is the number of distinct values the attribute of interest can take.

To find these bounds, we calculate the highest and lowest possible Borda scores a respondent can contribute

to a feature as a function of the total number of possible profiles, and the number of distinct values the

attribute of interest can take. We first assume that for all proponents of a feature, the attribute involved

is the top priority. This means that all profiles with that feature are preferred to all profiles without that

feature. This results in the highest possible Borda score to the feature, and minimum possible Borda score

to the benchmark. Thus we obtain the maximum net Borda score a proponent can contribute to a feature.

In contrast, we assume for all opponents of that feature, the attribute has the lowest priority. This means

that the attribute in question only factors in what an opponent chooses if the profiles are otherwise identical.

This results in the highest possible Borda score for the feature, subject to the constraint that opponents

prefer the benchmark to it. This yields the minimum net Borda score an opponent can subtract from a

feature. Having calculated the maximum Borda score for a feature per proponent and opponent, we can

invoke Proposition 1 to calculate the maximum possible AMCE estimate for a given fraction of opponents

and proponents. Inverting this function yields the lowest possible fraction of proponents for a given AMCE

estimate. The upper bound is calculated analogously. Interested readers can find the details in the proof,
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where we formally state and carefully trace the arguments summarized here.

In Figure 2, we apply this proposition to compute the bounds for AMCEs of 0.05, 0.10, 0.15, and 0.25

for a binary feature, plotting the upper and lower bounds of the proportion of experimental subjects who

prefer a binary feature on the y-axis against the number of potential candidate profiles that respondents

can choose from on the x-axis. As the figure shows, even for AMCE estimates of a fairly large magnitude,

it takes fewer than five possible profiles for these bounds to grow to a completely uninformative range.

Of course, nearly all conjoint experiments exceed five possible candidate profiles. For instance, with six

attributes taking two possible values each — still a conservative design by recent standards — there are

already 26 = 64 possible profiles. Only when the AMCE is extremely large — an effect size of 0.25, which

is rarely achieved by anything other than controls such as a candidate’s partisanship or experience — do

the bounds become informative regarding the majority preference. Even then, if the feature of interest were

ternary instead of binary, an AMCE of 0.25 would still be inconclusive.

In Table 5, we conduct this exercise for every forced-choice conjoint experiment in the APSR, AJPS, and

JOP published between 2016 and the first quarter of 2019. We construct our bounds for the largest estimated

effect presented in each of these papers. In this way, for each paper, we provide the best possible case for

informative bounds. Nevertheless, from the eleven papers we analyze, only two — those of Mummolo (2016)

and Hemker and Rink (2017) — prove informative with respect to a majority preference. In both of these

papers, the effect sizes are quite large — 0.30 and 0.33, respectively — and the number of possible candidate

profiles is comparatively small (6 and 32, respectively). Furthermore, in both cases, the attribute of interest

is binary; note that, by contrast, the very largest effect size of 0.35, found in Newman and Malhotra (2018),

produces uninformative bounds due to the large number of possible profiles (over 120,000) and relevant

features (9).

The bounding exercise we propose contains the entire range of preferences that are consistent with a

given AMCE. In other words, the upper and lower bounds reflect a worst-case scenario for researchers,

which is realized when preferences over features and weights over attributes are highly correlated. Thus,

Proposition 2 underscores the dangers of making statements about aggregate preferences with so little

structure on individual choices. Of course, in reality, this correlation may not be so large. As such,

researchers may want to know how the AMCE performs in the best-case scenario. We can use the logic

underlying Proposition 2 to show that when voters have homogeneous weights — that is, when every

respondent has the same priorities over attributes — the AMCE and the majority preference must point

in the same direction. That is, when all subjects assign the same priority ranking to a binary attribute,

we show that the sign of the AMCE must correspond to the sign of the margin of victory for the relevant
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Figure 2. : Upper and lower bounds on fraction of people who prefer a binary feature, consistent with an
AMCE of .05, .10, .15, and .25, respectively, as a function of number of possible candidate profiles.

feature over the baseline. Usefully for researchers, under these conditions the AMCE will be smaller in

magnitude than the size of the margin, thus providing a downwardly biased — and therefore conservative

— estimate for that quantity. Furthermore, we find that as the weight assigned to an attribute relative to

other attributes grows, the distance between the AMCE and the size of the margin shrinks.

COROLLARY 1 (Homogeneous weights): When voters assign homogeneous weights to attributes, the AMCE

of a binary attribute has the same sign as the majority preference, but underestimates the size of the margin.

The size of the underestimation grows as the relative weight assigned to the attribute of interest falls. In the

limit as the relative weight of the attribute of interest goes to zero, so does AMCE; even when the margin is
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Table 5—: Bounds on Proportion of Sample Having Preferences Consistent with AMCE, Computed for
Recent Papers in the Top Political Science Journals

Paper Estimated effect AMCE (π) Number of
profiles (K)

Number of
relevant

features (τ)

Bounds on
proportion

with
consistent
preference

APSR

Ward (2019)

Proportion of group comprised of
young men on support for
immigration, 100% vs. 50%
baseline

-0.18 6,840 5 [0.00, 0.77]

Auerbach and
Thachil (2018)

Broker education on support, high
(BA) vs. none 0.13 1,296 3 [0.20, 1.00]

Hankinson (2018)

Proximity of new housing on
homeowners’ support for new
construction, 2-minute walk vs. 40
minutes

-0.09 6,144 4 [0.00, 0.88]

Teele, Kalla, and
Rosenbluth (2018)

Experience on candidate support, 8
years vs. 0 years 0.15 864 4 [0.20, 1.00]

Carnes and Lupu
(2016)

Experience on candidate support,
some vs. none 0.09 32 2 [0.22, 1.00]

JOP
Newman and
Malhotra (2018)

Skill on support for immigrants,
high vs. low 0.35 120,960 9 [0.39, 1.00]

Ballard-Rosa,
Martin, and Scheve
(2016)

Tax rate on those earning <10k on
support for plan, 25% vs. 0% -0.24 38,400 4 [0.00, 0.68]

Mummolo and Nall
(2016)

White proportion of community on
Republicans’ choice to live there,
96% vs. 50%

0.11 3,456 4 [0.15, 1.00]

Mummolo (2016) Relevant information on choice to
consume, vs. irrelevant 0.30 6 2 [0.63, 1.00]

AJPS
Hemker and Rink
(2017)

Nationality on quality of response,
foreign vs. German 0.33 32 2 [0.66, 1.00]

Huff and Kertzer
(2017)

Perpetrator’s organization on
labeling attack as terrorism, foreign
ties vs. no info

0.19 108,000 6 [0.23, 1.00]

arbitrarily close to one.

Proof of Corollary 1 follows closely the logic of Proposition 2: when weights are identical across proponents

and opponents, each proponent contributes as many net Borda points to a feature as an opponent takes

away from it. As such, when the points contributed by proponents and opponents cancel out, the remainder

corresponds to the margin of victory for the feature preferred by the majority. Because Borda scores are

increasing in the weight assigned to an attribute, the remainder also increases. Thus the AMCE is sensitive

to the weight assigned to that attribute and therefore captures the size of this margin, even when it has the

correct sign.
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III. Structural Interpretation of the AMCE

Although the proposed estimator of the AMCE of Hainmueller, Hopkins and Yamamoto (2014) is “model

free,” in this section we demonstrate how it relates to an underlying model of choice. Our purpose in

providing this simple structural interpretation of the AMCE is to illustrate from another angle the same

aggregation problem that we have already identified in the preceding sections, wherein we cannot disentangle

the intensity and direction of individual preferences. To start, consider two candidates c ∈ {1, 2} running

in contest j who offer platforms xijc to voter i. A platform xijc is a vector of policies of length M that

fully characterizes a candidate in contest j, which we will eventually recast as a vector capturing all the

features (e.g. female, white, Republican) of that candidate. Let bi represent an M length vector of voter

i’s preferred policy locations (e.g., their issue-specific ideal-points), and assume that voters have quadratic

utility functions. Thus, voter i’s utility is maximized when candidate c offers a platform that exactly matches

her preferred policy positions, and the loss she obtains is a function of the distance between the candidate’s

policies and her ideal platform. Her utilities from the Candidate 1 and 2’s respective platforms is given by:

Ui(xij1) =− (bi − xij1)
2 + ηij1

Ui(xij2) =− (bi − xij2)
2 + ηij2

(1)

While the imposition of quadratic loss utilities may seem restrictive, in the appendix we show that our

results are numerically identical if we assume an absolute linear loss utility function. Regardless, it follows

that:

Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr(−(bi − xij1)
2 + ηij1 > −(bi − xij2)

2 + ηij2)

= Pr(ηij2 − ηij1 < 2(b′i(xij1 − xij2) + x′
ij2xij2 − x′

ij1xij1)

(2)

where yij1 is a binary indicator that equals 1 when respondent i chooses Candidate 1 in contest j and 0

otherwise. Now consider data generated from a conjoint experiment, where xij1 and xij2 are vectors of

randomized candidate attributes that have been discretized into binary indicators with an omitted category.

Typically, we would estimate Equation 2 with a probit or logit-like regression as is common in the discrete

choice/voting literature. Instead consider a linear model of the form:
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yij1 = 2(b′i(xij1 − xij2) + x′
ij2xij2 − x′

ij1xij1) + ηij1 − ηij2

=
∑
k

(
2bim(xijm1 − xijm2) + x2ijm2 − x2ijm1

)
+ ηij1 − ηij2

=
∑
k

(2bim − 1)(xijm1 − xijm2) + ηij1 − ηij2

=
∑
k

βim∆xijm + ϵij

(3)

where E(ϵij) = E(ηij1 − ηij2) = 0 follows from the randomization of xij1 and xij2, and the third line follows

from the fact that x2ijmc = xijmc, as this is a dummy. The slope, βim = 2bim − 1, gives the change in

probability for individual i of choosing Candidate 1 when Candidate 1 has feature m and Candidate 2 does

not, holding all their other features constant. Implicitly, it also constrains each element of bi to the [0, 1]

line. When bim = 0 (and βim = −1) the manipulation ∆xijm = 1 holding all other features constant gives a

predicted reduction in the probability of choosing Candidate 1 of one-hundred percent. When bim = 1 (and

βim = 1), the same manipulation gives a predicted increase in the probability of choosing Candidate 1 of

one-hundred percent. When bim = 1
2 (and βim = 0), this indicates that voter i is perfectly indifferent.

Finally, averaging over all individuals, we obtain E(βim) as the coefficient from the regression:

yij1 =
∑
m

∆xijmβm + ϵij(4)

where the estimated coefficient β̂m is recovers the AMCE for feature m.5 Thus we see that, under this

simple model of choice, the AMCE can be interpreted as an average of respondents’ ideal points. This

insight illuminates why the AMCE is such an inappropriate summary statistic for making claims about

winners of elections or representative voters’ preferences. Under majority rule, elections are won by the

median voter, and the magnitudes of the ideal points of the most extreme voters should do nothing to

change the probability of a given candidate winning the election. Measuring the probability of winning as

a function of preference intensity essentially gives citizens voting power commensurate with the strength of

their opinions — a feature almost never observed in real-life institutional designs.6

5For a simple proof, see the supplemental appendix.
6It is true that voters with intense preferences may be more likely to turn out to vote or to be politically active, and may therefore

exercise outsized influence on electoral outcomes. However, these are not the mechanisms that researchers are currently thinking about
when interpreting the results of conjoint experiments, and if we think they are at work, we should study and model them more explicitly.
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IV. Discussion and Recommendations

We have shown why the AMCE does not support most interpretations made by political scientists. A

positive AMCE for a particular candidate-feature does not imply that the majority of respondents prefer

that feature over the baseline. It does not indicate that they prefer a candidate with that feature to a

candidate without it, all else equal. It does not mean that voters are more likely to elect a candidate with

that feature than candidates without it. Furthermore, this is not the consequence of uncertainty introduced

by sampling or measurement; all of it is inherent to the AMCE’s properties as an aggregation mechanism.

Even when the universe of respondents is fully observed and every conceivable contest between candidates

is assessed carefully and honestly, claims about voter preferences and electoral outcomes are not generally

supported by the results from conjoint experiments.

Instead, what we have demonstrated is that the AMCE can be thought of as an average of the direction

and intensity of voters’ preferences, or essentially an average of ideal points. As a consequence, it can

point in the opposite direction as the majority preference when there is a minority that intensely prefers a

feature and a majority that feels the opposite, but less strongly. The larger the correlation between direction

and intensity, the more misleading the AMCE. When it comes to the sorts of issues that interest political

scientists (and for which conjoints are often deployed), such as gender parity in elected office (Teele, Kalla

and Rosenbluth, 2018) or the sorts of people who should be favored by the nation’s immigration policy

(Hainmueller and Hopkins, 2015), this problematic preference structure is pervasive.

Building on well known results from the literature social choice, we have derived sharp bounds on the

proportion of a sample that prefers a feature based on a given AMCE. Unfortunately, the vast majority of

findings published in the top political science journals in the past few years fail to support claims about

majority preferences. That said, we have also shown that if there is no variation in preference intensity in

the sample, then at the very least the sign of the AMCE indicates the majority preference.

Our findings leave us with three types of practical advice for applied researchers. First, we address how

the discipline should assess the large body of research that has already been produced using the standard

conjoint experiment framework. Then, we offer some guidance on how to design a conjoint experiment if a

researcher wishes to use this framework, based on the results of our bounding exercise. We conclude with

some promising avenues for future methodological research to strengthen the link between conjoint results

and majority preferences.

Our first and most important point relates to the body of research already conducted using conjoint

experiments. We strongly urge researchers to place the “representative voter” implied by the AMCE in the

correct context and to use precise language when interpreting the results of conjoint experiments. While
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common interpretations such as “voters prefer A to A′” are not well-defined, colloquially they evoke some

notion of a majority — one that is not supported by the typical estimand presented in conjoint analysis

in political science. By the same token, political scientists should, on the whole, stop making inferences

about electoral contests from the AMCE unless such claims are supported by further evidence about the

distribution of voters’ priorities. As a consequence, the discipline must reevaluate what we have learned

from conjoint experiments with this clearer understanding of the AMCE in mind. We do not know whether

most voters prefer male or female candidates; we have only learned that the “average preference” for women

is positive (Teele, Kalla and Rosenbluth, 2018). We have no idea what features of immigrants are popular

with American voters; we can only say what characteristics evoke positive and negative “average reactions”

(Hainmueller and Hopkins, 2015).

Of course, there may be research questions for which conjoint designs are appropriate. For example, if

preference intensity is an important object of inquiry, then conjoint experiments may prove a way forward.

Even then, researchers must be willing to make inter-personal utility comparisons. As such, when focusing

on preference intensity, we recommend conjoint-like designs that recover a marginal willingness to pay for

particular candidate features. Nevertheless, if researchers must rely upon a forced-choice conjoint experiment

in the context of elections, our results indicate they should restrict themselves to conservative randomization

schemes that limit the number of attributes and potential candidate-profiles. Still, as our bounding exercise

demonstrates, even with a conservative design and a small number of binary attributes, the effect size that

produces informative bounds is extremely high by social science standards.

If researchers want to make claims about majority preferences from conjoint experiments, one potential

way forward may be to combine them with experiments designed to recover voters’ priorities. As we have

shown in Corollary 1, if respondents have homogeneous weights on the dimensions of choice, claims about

a majority preference can be sustained with existing research designs. However, this may not be a fruitful

avenue since the likelihood of homogeneous priorities in realistic political contexts is limited.

Finally, we suggest that researchers should be willing to trade off stronger assumptions with an ability

to make claims about electoral outcomes. A fully structural approach to conjoint analysis may prove

best capable of combining the realistic approximations of candidates that randomizing a large number

of candidate-features provides with an ability to make claims about electoral contests. By imposing and

estimating a model of voter choice, researchers may be able to have their cake and eat it too.
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Appendix

PROOF OF LEMMA 1:

Suppose there are N voters and K profiles. Consider voter i’s preference ranking over profiles. For any

xj , xk, denote by Yi(xj , xk) = 1 if i chooses profile xj over xk in a pairwise comparison, and Yi(xj , xk) = 0

otherwise. Without loss of generality, reorder the profiles such that the profile most preferred by i is x1, the

second most preferred is x2, and so on such that the least preferred is xK . Assign i’s most preferred profile

a Borda score of bi(x1) = K − 1, their second most preferred profile a score of bi(x2) = K − 2, and so on

such that their least preferred profile has a score of zero. Notice that when i is presented with each pairwise

comparison, their most preferred profile x1 will be chosen every time it is on the ballot, so

∑
j ̸=1

Yi(x1, xj) = 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
K−1 times

= K − 1

times. The second most preferred will be chosen each pairing except with the most preferred profile, so

∑
j ̸=2

Yi(x2, xj) = 0 + 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
K−2 times

= K − 2

times. Going this way, we see that individual Borda scores over profiles match perfectly with the number of

times each profile is chosen in pairwise comparisons. Finally, the least preferred profile will never be chosen

in every pairwise comparison made by voter i,
∑
j ̸=K

Yi(xK , xj) = 0 + 0 + 0 + ... + 0 = 0. Thus, for each

individual voter, the Borda score of a profile is equal to the number of times it is chosen when that voter

makes all pairwise comparisons, bi(xm) =
∑
j ̸=m

Yi(xm, xj).

The aggregate Borda score of a profile is the sum of individual voters’ Borda scores of that profile. When

we sum across voters the times each profile xm is chosen in all pairwise comparisons, their sums must be

equal to the sum of individual Borda scores. Formally,

b(xm) ≡
∑
i∈N

bi(xm) =
∑
i∈N

∑
j ̸=m

Yi(xm, xj)

■

PROOF OF PROPOSITION 1:

Recall that we defined the Borda score of a feature as the total number of times all the profiles with that
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feature are chosen in all pairwise comparisons. Formally, let Borda score of a feature t1, B(t1) be

B(t1) ≡
∑
i∈N

∑
x1∈κ(t1)

∑
xj ̸=x1

Yi(x1, xj)

where κ(t1) denotes the set of all profiles that have the feature t1. Dividing B(t1) by the total number of

pairwise comparisons t1 appears in, |κ(t1)|N(K − 1), and taking the difference with the Borda score of the

benchmark attribute t0, divided by |κ(t0)|N(K − 1) yields exactly AMCE as defined in Hainmueller et al

(2014):

π(t1, t0) ≡
B(t1)

|κ(t1)|N(K − 1)
− B(t0)

|κ(t0)|N(K − 1)
=

∑
i∈N

∑
x1∈κ(t1)

∑
xj ̸=x1

Yi(x1, xj)

|κ(t1)|N(K − 1)
−

∑
i∈N

∑
x0∈κ(t0)

∑
xj ̸=x0

Yi(x0, xj)

|κ(t0)|N(K − 1)

■

PROOF OF PROPOSITION 2:

Since we have already established the equivalence of Borda and AMCE in Proposition 1, we prove this

proposition by finding the range of Borda scores of t1 and t0 that can be rationalized for some proportion of

voters who prefer t1 over t0; and then inverting to find the minimum and maximum proportions for a given

AMCE.

Let us find the minimum fraction of voters who prefer t1 over t0 that is consistent with an AMCE estimate.

Notice first that for a fixed fraction of voters, AMCE is maximized when voters in favor of t1 assign the

highest priority to the attribute, they rank t1 the best, and t0 the worst; whereas those prefer t0 like t1

second, and assign the lowest priority to it. In other words, when those who prefer t1 rank all profiles with

t1 at the top, and all profiles with t0 at the bottom, this drives the AMCE estimate up. To help with the

intuition, the preferences of such a voter might look like:

t1αβγ︸ ︷︷ ︸
K−1

≻ t1α
′βγ︸ ︷︷ ︸

K−2

≻ . . . ≻ t1α
′β′γ′︸ ︷︷ ︸

K−K
τ

≻ t2αβγ ≻ . . . ≻ t2α
′β′γ′ ≻ . . . ≻ t0αβγ︸ ︷︷ ︸

K
τ
−1

≻ t0α
′βγ︸ ︷︷ ︸

K
τ
−2

≻ . . . ≻ t0α
′β′γ′︸ ︷︷ ︸
0

Holding constant the other features, the difference in Borda scores of a profile with t1 and with t0 is thus

K − K
τ . Formally, the maximum difference bi(t1, x) − bi(t0, x) = K − K

τ , for any arbitrary combination of

other attributes, x. Since each voter makes K
τ such comparisons between t1 and t0, each voter who prefers

t1 maximally generates K2(τ−1)
τ2

scores in favor of t1.

Similarly, when those who prefer t0 assign the lowest priority to this attribute, their preferences might
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look like:

t0αβγ︸ ︷︷ ︸
K−1

≻ t1αβγ︸ ︷︷ ︸
K−2

≻ t2αβγ ≻ . . . ≻ t0α
′βγ︸ ︷︷ ︸

K−τ−1

≻ t1α
′βγ︸ ︷︷ ︸

K−τ−2

≻ t2α
′βγ ≻ . . . ≻ t0α

′β′γ′︸ ︷︷ ︸
τ−1

≻ t1α
′β′γ′︸ ︷︷ ︸

τ−2

≻ t2α
′β′γ′ ≻ . . .

By holding constant the other features, the difference in Borda scores of a profile with t1 and with t0 is −1.

For these voters, the maximum difference is bj(t1, x)− bj(t0, x) = −1, for any arbitrary combination of other

attributes, x. Therefore, each voter who prefers t0 maximally generates −K
τ scores in favor of t1.

Thus, for a given AMCE π(t1, t0), we can derive the minimum fraction y of voters who prefer t1 by

summing these scores and normalizing.

π(t1, t0) =
(ymin)K

2(τ−1)
τ2

− (1− ymin)Kτ(
K
2

)
2
τ

Simple algebra reveals

ymin = max

{
π(t1, t0)τ(K − 1) + τ

K(τ − 1) + τ
, 0

}
A very similar argument establishes the upper bound of y.

■

PROOF OF COROLLARY 1:

When weights are homogeneous, all voters who prefer a feature contribute the same amount of net points

to it; whereas others with the opposite preference take away as many net points each. Formally, suppose

there is at least one voter i who prefers t1 to t0, and swap labels if there is not. Then, for any j who prefers

t0 to t1, we have that for all combinations of other attributes x; bi(t1, x) − bi(t0, x) = bj(t0, x) − bj(t1, x).

Each voter makes K
2 comparisons involving t1 and t0. Therefore, if there are y voters who prefer t1 to t0

and 1− y voters who prefer t0 to t1, we can write that for any x,

(A.11) B(t1)−B(t0) = (bi(t1, x)− bi(t0, x))(2y − 1)N
K

2

We know from the proof of Proposition 2 that if i prefers t1 to t0, the maximum value bi(t1, x) − bi(t0, x)

can take for a binary attribute is K
2 , which obtains when the weight assigned to t is so high that i prefers

any profile with t1 to any profile without. The minimum value it can take is 1, which obtains when the

weight assigned to t is so low that there is no profile that is ranked lower than (t1, x) but higher than (t0, x),

for any x. Notice further that bi(t1, x)− bi(t0, x) is monotone increasing in the relative weight of t. This is

because profiles with t1 and some less preferred values on other attributes become preferred to some profiles
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that have t0 and better preferred values on other attributes with lower weights. This drives the ranking of

all profiles with t1 higher, and those with t0 lower.

Next, recall that π(t1, t0) =
B(t1)

|κ(t1)|N(K−1) −
B(t0)

|κ(t0)|N(K−1) . Combining this with Equation A.11 gives:

π(t1, t0) = (bi(t1, x)− bi(t0, x))
2y − 1

K − 1

Since bi(t1, x) − bi(t0, x) > 0, the sign of π(t1, t0) is be positive if and only if y > 1/2. That is, under

homogeneous weights, the AMCE returns a positive estimate for t1 if and only if there are more people who

prefer t1 to t0. When the weight assigned to t is highest, we have π(t1, t0) =
K(2y−1)
2(K−1) , and so the AMCE

corresponds to roughly half the size of the margin. As attributes with higher weights are added, AMCE

falls. In particular, when the weight assigned to t is lowest, we have π(t1, t0) =
2y−1
K−1 . It is clear that for any

y, as the number of profiles grows, AMCE goes to zero in the limit.

■

PROOF THAT EQUATION 4 IS EQUIVALENT TO THE AMCE:

To show that the estimation of Equation 4 would yield the AMCE note first that Hainmueller, Hopkins

and Yamamoto (2014) show that the following regression recovers an unbiased estimate of the AMCE:

yijc = δ + xjmcρk + υijmc

where ρ̂m gives the AMCE for feature m. From the randomization of x, it follows from standard results that

the vector of coefficients β from Equation 4 can be obtained from the separate regression of the outcome yij1

on each column k of the matrix ∆Xij , e.g. yij1 = ∆xijmβm + ϵijm. It is sufficient to show that ρ̂m = β̂m.

The above equation implies ρ̂m =
Cov(xijmc,yijc)

V ar(xijmc)
. Similarly, estimating Equation 4 via least squares without

an intercept implies β̂m =
E(∆xijmyij1)

E(∆x2
ijm)

. Since E(∆xijm) = 0, it follows that β̂m =
Cov(xijm1−xijm2,yij1)

V ar(xijm1−xijm2)
.

Consider the numerator.

Cov(xijm1 − xijm2, yij1) = Cov(xijm1, yij1)− Cov(xijm2, yij1)

= Cov(xijm1, yij1)− Cov(xijm2, 1− yij2)

= 2Cov(xijmc, yijmc)

The last line follows from the fact that Cov(xijm1, yij1) = Cov(xijm2, yij2)

Next consider the denominator.
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V ar(xijm1 − xijm2) = V ar(xijm1) + V ar(−xijm2)− 2Cov(xijm1, xijm2)

= 2V ar(xijmc)

Which again follows from the randomization of features. It directly follows that β̂m = ρ̂m = AMCE.

■

PROOF OF THE EQUIVALENCE OF THE QUADRATIC LOSS AND ABSOLUTE LOSS:

(A.12)
Ui(xj1) = −|xj1 − bi|+ ηij

Ui(xj2) = −|xj2 − bi|+ νij

Assume 0 ≤ bi ≤ 1

(A.13)
Pr(yij1 = 1) = Pr(Ui(xij1) > Ui(xij2))

= Pr (ηij − νi2 < |xj2 − bi| − |xj1 − bi|)

Since xj1 & xj2 can take on only two values {0, 1}, it follows xj1 ≤ bi ≤ xj2 or xj2 ≤ bi ≤ xj1 This yields:

(A.14) Pr(yij1 = 1) = Pr (ηj1 − νj2 < ∆xj(2bi − 1))

If we were to estimate this via a linear probability model we obtain

(A.15)
yij1 = ∆xj(2bi − 1) + ηij − νij

= ∆xjβi + ϵij
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AN EXAMPLE OF THE AMCE VIOLATING IIA:

Consider three types of voters with preferences over three candidate-features, Gender (M or F ), Age (O or

Y ), and Race (B or W ). Preferences over features are given in Table A1.

V1 V2 V3
M ≻ F F ≻ M F ≻ M
O ≻ Y Y ≻ O Y ≻ O
B ≻ W B ≻ W W ≻ B

Table A1—: Preferences over attributes

Assume priorities over features as follows. V1: R ≿ A ≿ G; V2: A ≿ R ≿ G; V3: A ≿ G ≿ R. With this

information we can construct preferences over candidates for each type as presented in Table A2.

Rank V1 V2 V3
1. MOB FYB FYW
2. FOB MYB FYB
3. MYB FYW MYW
4. MOW FOB FOW
5. FYB MYW MYB
6. FOW MOB FOB
7. MYW FOW MOW
8. FYW MOW MOB

Table A2—: Preferences over attributes

Consider a population of five V1s, two V2s, and two V3s. Table A3 gives the AMCE estimate with the

full set of candidate-features and then restricting each combination of Age and Race. We see that the sign

flips when we omit either OB and YW, indicating that the AMCE for Male is dependent upon the other

feature-combinations, violating IIA.

Omitted Features O Y
B 1/168 -4/189
W -4/189 1/168

No Omitted Features: -1/126

Table A3—: AMCE Estimates of Male, restricting Age-Race feature combinations


