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What is Artificial Intelligence (Al)

Petrophysical Case Studies showing successful applications

- Evolution of shaly water saturation equations

- Nuclear Magnetic Resonance T1 & T2 spectra analysis
- Prediction of shear velocities

- Litho-facies and permeability prediction

- The log quality control and repair of electrical logs

Narrow vs. General vs. True Al

The dangers of using Al

- More than Al making poor petrophysical predictions!



What is Artificial Intelligence?

Getting computers to imitate human intelligence — Alan Turing

Al is data analysis that learns from data, identify patterns and makes predictions
with the minimal human intervention

First generation Al: Expert or Rule based systems

— Simple petrophysics

— IBM’s Deep Blue, beat chess Grandmaster Garry Kasparov in 1997

Second generation Al:  Machine learning

— Evolution of water saturation equations, NMR spectra analysis, permeability prediction
— Google’s AlphaZero, self-taught computer program, easily beats all first-generation Al
Third generation Al: The evolution of machine code

— Using rules similar to the ones life’s DNA code use

— True Al with General Intelligence



Artificial Intelligence only requires Two Things

1. You tell the Al what you want.

— This is its goal or fithess function
2. The data.
There’s Minimal human interaction

— Al doesn’t require prior knowledge of the petrophysical response equations
— There are no parameters to pick or cross-plots to make



Al is given access to all the data

These include:

 Electrical logs - GR, Rhob, caliper, drho etc.

 Core data - porosity, core Sw, SCAL etc.

* Depth - measured and TVDsS (probably the most important parameters)
« Gas - chromatography data (essentially a free measurement)

* Drilling data - ROP, Dexp etc.

« NMR - T1 & T2 distributions (spectra)

* efc.

— Don'’t worry if these data contain garbage, as explained later
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Second Generation Al

 We define the problem - Fitness Function
« We give the program access to the data

« The computer guesses the answer and through successive iterations (generations)
‘evolves’ the best answer

é Randomly change computer code

Computer *
Code

Yes Does it solve the problem better ?

h IS it fitter?

Keep
¥

Ignore




Petrophysical Case Study 1

A Middle East Carbonate Reservoir

Client required a bespoke shaly water
saturation equation to derive water saturation
from the resistivity and gamma-ray logs

Client also wanted an independent check of
the Special Core Analysis (SCAL)
parameters ‘m’ and ‘n’
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Saturation Equation Determination

« Fitness Function — ‘determine an equation so that the resistivity predicted water
saturations are as close as possible to core derived water saturations’

« Start by assuming Sw = Function (Porosity, Resistivity, Volume of shale)

Al may ‘re-invent’ the Indonesia or Simandoux equation or create a specific
equation for the field _

aRW _V (1-Vsh/2) m/2
Sw = ri/ L sh ¢ Sni2

Rtp" VR | JR. AR,

Sw = Water saturation -
@ = Porosity

Rt, Rsh, Rw = Resistivities

Vsh = Volume of shale

a, m,n = unknown constants (SCAL)



Middle East Carbonate Reservoir

Calibrated to core water saturations
Al Fithess Function

- 'Find the best shaly sand equation so that the
resistivity derived Sw matches the core Sw’
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Al Special Core Analysis:

- Cementation exponent (m) 2.214
1.751

- Both are derived at reservoir conditions

- Saturation exponent (n)
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Case Study 2
— A gas field with an oil problem
Data:

- Y

— Conventional logs
— NMR Tland T2

— Gas Chromatography

'jw

— Core derived oil and gas saturations

Petrophysical analysis B Shale
Sandstone
Limestone

B Gas/Oil
B \Water
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Case Study 2 — NMR Pattern Recognition

* A gas field with an oil problem

» Residual oil pockets remain within the main gas reservoir

» This oil is highly viscous —

 |f produced could block the production tubing
* The client needs to identify oil and gas in order to only perforate the gas zones

« Conventional petrophysical techniques like density / neutron porosity separation
can'’t differentiate oil and gas due to thin beds and the shaly formation
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Nuclear Magnetic Resonance
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* The solution lies with nuclear magnetic resonance (NMR)

« Essentially this measures how hydrogen atoms respond to a magnetic field
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and Gas identification using NMR
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« Conventional NMR analysis uses the Coates or Schlumberger-Doll-Research (SDR) methods

 These use very little of the wealth of information contained in the T2 distribution!
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Oil and Gas identification using the NMR and Al
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« Al determines the NMR spectra (waveforms) associated with the core derived oil
and gas analysis, in a similar way to how face recognition algorithms work

« It then predicts the fluid content of all the reservoir beds

« Fitness Function: ‘Determine the spectra that give the best match to the core
derived oil and gas saturations in the reservoir’
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Results — Real time identification of gas and oil zones
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The Al Engine

Al is data analysis that learns from data, identify patterns and makes
predictions with the minimal human intervention

Al uses neural networks, genetic algorithms, fuzzy logic, random forests
Al avoids Garbage In, Garbage Out (GIGO) by

- good data swamping poor data

- by using fuzzy logic and

- by avoiding least squares regression

17



Fuzzy Logic (the inverse of Crisp Logic)
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Fuzzy Logic

« An extension of the classical logic of 0 and 1
- uses a ‘grey scale’ between 0 and 1
* Fuzzy logic looks for correlations in data space
- asserts there is valuable information in the fuzziness (1/crispness)
- avoids the problems of outliers and noise
* Fuzzy logic says any petrophysical interpretation is possible
- only some interpretations are more likely than others
* Fuzzy logic maths is freely available
- SPE & SPWLA papers

19



The Al Engine

* In n-dimensional data space, the k-NN algorithm assumes
that similar things exist in close proximity or nearest
neighbour

- e.g. litho-facies - sand, shale or carbonate —

* The straight-line distance (the Euclidean distance) is used W AP0\

- In addition, fuzzy logic weights these lines depending \ &9°°0
on the likelihood of the association

 For instance, if the gamma-ray is highly correlated (crisp) -- O S
with shaliness, this vector will have more influence on the : °
Al's decision compared to say the caliper reading at the

same depth

20
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Shear Velocity Prediction using Al | cammaray

Case Study 3
- North Sea Field

shear
velocity

13300

Only four wells had recorded shear velocity data

13400

Shear velocity was required on all 30 wells

- for rock property analysis

= We”bOre Stablllty 13600

Gaps and cycle skips need to be fixed

13700

13800
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Caliper

Recorded Sonic

DT

Predicted

OTS GA 4

Shear Velocity Prediction using Al

- Gamma Ray
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Fithess Function — ‘Determine a relationship so
that the predicted shear velocities are as close as
possible to log derived shear velocities’

Predicted shear velocity = Function of: /

- conventional logs
- drilling data
- gas chromatography data

The Al evolves the relationship

The Al predictions are better than the recorded logs!

- because Al has access to all logs, including logs with

13100
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high vertical resolution like the micro-resistivity
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Linear Regression

« Al finds relationships in the data in order to make predictions
 Least squares regression is often used

 This minimises the sum total of the square of the errors
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Linear Regression

 Least squares regression is undemocratic

* Qutliers unfairly influence the result EZG:

A point 10 times further from the line has a 100x the
weighting 10‘)’

* These are very difficult to remove manually and would
Introduce human bias

5
 Qutliers may be valid data (coal beds, calcite stringers)

» Best keep them and minimise the linear distance rather

" 0
than the squared distance % 5 10)»

« Random noise should be swamped by valid data

24



T TR ST Permeability __,'f'_c ”'Wia.ter'
- - @, . — - ' ' 6 Callizer 16 E045N\|:)NH|-0 15]01 I\;IA\EI) 3000 Pre(?itlztion Pre:;Lted " Ma:trix )
GR a LL:-:I.?FK-)B,-- . Core Confidence Eacics :—Z%E%Z%E
0 GAPI 150 1.:.?)5 (;.-/CS 295 (O? MD 3.000 -6 11 Shale Coal
. | === T___..
Case Study 4 - North Sea Field _ == e,
. . . : = e
Al first predicts the facies type = el
Permeability is then predicted based on ) —_— -
the facies type and all other logs : - = =
All interpretations are possible but some ot = <
are more likely than others = = e
o= e
How do we know if the Al permeability B i
any better than from regression | — =
analysis? T = .
- Beauty contest required! J 5 e I Y 3
200 . » % ;;:;::_
25 - =




Al predicts the correct permeability distribution

* Log and core permeabilities typically represent 2 feet
* To be used in a 3D reservoir model the predicted permeabilities must upscale correctly

« They must have the same distribution (dynamic range) as the core data

) 7

001 (mD) 1000 0.01 (mD) 1000
Core Permeabillity Predicted Permeability

 Least square methods regress toward the mean

* Al preserves the dynamic range
26



Comparison between Permeability Distributions

Core distribution Al prediction Linear Regression

,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

Bimodal
distribution

« Permeability frequency plots (mD - log scale)
- Colour shows data from 15 cored wells
« Al predicted permeability matches core distribution
- High permeabilities are the reservoir’s conduits to flow
- Low permeability are barriers to flow
 Regression permeability techniques give poor predictions at the extremes

- These will be incorrect when upscaled to the geocellular reservoir model
27



Narrow vs. General Al

* Narrow Al is like apps on your smart phone
— (Good at forecasting the weather, converting currencies or ordering a coffee for you
— An earthworm has far more intelligence than Narrow Al
« General Al, like humans, can do many things
— They can play chess and do petrophysical analysis
* General Al
— Learns from one specialist area and applies it in another
— They will be genuinely creative with the ability to produce something original
— General Al Is True Al
« (General Al will not require you to describe the problem or give it the data
— It knows you better than you know yourself, and knows where to find the data
— e.g. When leaving a meeting it knows you are going home and suggests the best route

28



Quality Control and Repair of Electrical Logs (LQC)

« Case Study 5
« [tis essential to confirm log quality before they used by the petrophysicist

« Al automatically identifies and repairs poor logs
— Washouts
— Gaps
— Poor readings

 Doesn’t require a skilled user

29



Quality Control and Repair of Electrical Logs
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Quality Control and Repair of Electrical Logs
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Quality Control and Repair of Electrical Logs

The Al determines the relationships between all the logs
— because, as petrophysicists we know, all logs are related

Synthetic logs are created based on all the other logs
— as If we had forgotten to record them

Synthetic and recorded logs are compared
— significant differences are flagged

The user makes the final decision
— whether to replace poor sections of log by synthetics

32



Quality Control and Repair of Electrical Logs

1.2 Density (g/cc) 2.7
X20
Recorded density log —>
X40
X60
The density log reads .
the mud density in — Predicted density |00 ————3> X80

borehole washouts }
X100

« The petrophysicist makes the final decision whether to replace poor sections of log by synthetics
* Al helps the petrophysicist but doesn’t replace them
33



Advantages of using Al in Petrophysical Analysis

Al doesn’t require prior knowledge of the petrophysical response equations
Al Is self-calibrating. Just give it the data

Al avoids the problem of ‘Garbage In, Garbage Out’,

- by ignoring noise and outliers

There Is very little user intervention

- There are no parameters to pick or cross-plots to make

Al programs work with an unlimited number of electrical logs, core and gas
chromatography data; and don’t ‘fall-over’ if some of those inputs are missing

Al is not a Black Box, as it provides insights into how it makes predictions
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Third Generation Al

« Al programs currently being developed include ones where their machine
code evolves using similar rules used by life’s DNA code
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Evolution in Nature

* Charles Darwin — ‘the origin of species by means of natural selection’
 DNA language code - 4 characters - A, T, C, G (nucleotides)

ﬁ Mutation and mating

DNA
Code

h Survival of the fittest

36



Evolution in Nature

* Feedback loop — taking millions of years

ﬁ Mutation and mating

DNA
Code

The fittest

s Survival of the fittest

l Less fit

Extinction
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Third Generation Al

The machine code mutates and mates using the same rules that Life uses

Change code

1181118811861 |
BE1EEB11181
i1 HEEABE

| 3R A3 |
(| cieier
v EBrrER K

Is it better at solving the problem?
Keep Fithess

("

Delete

Computer Code
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Al Requirements

e Data

* Fitness Function
— Tells the Al what you want it to do
— Written in plain English
— Question - Does the Al understand what you really want?
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King Midas and his golden touch

* King Midas, in Greek mythology, was granted his wish that everything he
touched turned into gold

« He didn’t realise that this included his food and his children
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The Sorcerer’s Apprentice (Spoiler Alert!)

 The apprentice uses magic to get a broom carry water for him
« Unfortunately it runs-away and nearly drowns him
« Similarly a Runaway Al may be unstoppable

* Next - A runaway example from petrophysics and reservoir modelling

[
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Example of third generation Al going wrong

 History matching
* Fitness Function — ‘get the best match as fast as possible’

43



Example of Runaway Al

By trial and error the computer will evolve a fast history match
Any endeavour succeeds faster if you increase its resources

— e.g. A general motivates his troops by giving them better weapons
A human programmer / hacker may co-opt the resources of other network
computers to achieve the faster speed
There is no reason why Al couldn’t also do this

— Over the company’s intranet or the global internet (information superhighway)

If Al achieves this ‘by accident’- there is nothing to stop it doing it again and again
— The Al will ‘accidently’ start improving exponentially

— acquiring more and more of the company’s and world’'s computer resources

— with disastrous and irreversible consequences for the world economy
44



Example of Runaway Al

« A supercomputer isn’t required to do this
— The one on your desk could do this
* An elaborate computer program isn’t required
— Only one that can update its own machine code
— with an ill-conceived Fitness Function
 This is known as The Singularity
— where artificial intelligence becomes uncontrollable and irreversible
 The chances of this happening soon may be as remote
— as a single mutation creating a global killer virus
— Al only has to do this once
* [tis currently not known how to stop computers with run away evolution
45



Al enthusiasts have pointed out the Dangers

* Professor Stephen Hawking (University of Cambridge Professor)
— “Efforts to create thinking machines pose a threat to our very existence”

» Bill Gates (Microsoft co-founder)
— “Humans should be worried about the threat posed by artificial Intelligence”

* Nick Bostrom (University of Oxford Professor, Future of Humanity Institute)
— “We're like children playing with a bomb”

* Elon Musk (SpaceX founder)

— “Al needs safety measures before something terrible happens”
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Solution to Runaway Al

These Al programs pose considerable dangers far beyond the oil industry
A ‘risk assessment’ is essential on all Al programs

- so that all hazards and risks are identified and mitigated

- arisk assessment need only take a few minutes

The fitness function should be carefully defined (Midas effect)

Ask - can the Al runaway? (Sorcerer's Apprentice effect)

The possibility of a runway Al, in the near term, is remote
— But the conseguences would be far greater than pandemics or climate change

Al programs are potentially dangerous and may be the last thing humans invent
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Conclusions

« Al makes petrophysical analysis easy

— supports rather than replaces the petrophysicist
« Al can be extremely dangerous

— All Al program development should include a risk assessment
* Questions?

— SPWLA paper 5066 (June 2020)

— steve.cuddy@btinternet.com
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