💪 Core Concept

Real nth Roots of a

Let n be an integer (n > 1) and let a be a real number.

n	is	an	even	int	eger.
**		****	~	****	-

a < 0 No real nth roots

a = 0 One real nth root: $\sqrt[n]{0} = 0$

a > 0 Two real nth roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$

n is an odd integer.

a < 0 One real nth root: $\sqrt[n]{a} = a^{1/n}$

a = 0 One real nth root; $\sqrt[n]{0} = 0$

a > 0 One real nth root: $\sqrt[n]{a} = a^{1/n}$

G Core Concept

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example
Product of Powers	$a^m \cdot a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$
Power of a Power	$(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$
Power of a Product	$(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

ore Concept

Rational Exponents

Let $a^{1/n}$ be an nth root of a, and let m be a positive integer.

$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

💪 Core Concept

Properties of Radicals

Let a and b be real numbers and let n be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[n]{a \cdot b} = \sqrt[n]{a \cdot \sqrt[n]{b}}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

	Rule	Example
When n is odd	$\sqrt[n]{x^n} = x$	$\sqrt[7]{5^7} = 5$ and $\sqrt[7]{(-5)^7} = -5$
When n is even	$\sqrt[n]{x^n} = x $	$\sqrt[4]{3^4} = 3$ and $\sqrt[4]{(-3)^4} = 3$

Core Concept

Horizontal Line Test

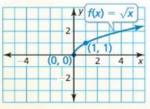
The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

To find the inverse function, switch x and y, and then solve for y.

G Core Concept

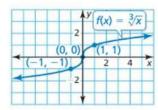
Parent Functions for Square Root and Cube Root Functions

The parent function for the family of square root functions is $f(x) = \sqrt{x}$.



Domain: $x \ge 0$, Range: $y \ge 0$

The parent function for the family of cube root functions is $f(x) = \sqrt[3]{x}$.



Domain and range: All real numbers

G Core Concept

Transformation	f(x) Notation	Examples	
Horizontal Translation Graph shifts left or right.	f(x-h)	$g(x) = \sqrt{x - 2}$ $g(x) = \sqrt{x + 3}$	2 units right 3 units left
Vertical Translation Graph shifts up or down.	f(x) + k	$g(x) = \sqrt{x} + 7$ $g(x) = \sqrt{x} - 1$	7 units up 1 unit down
Reflection Graph flips over x- or y-axis.	f(-x) $-f(x)$	$g(x) = \sqrt{-x}$ $g(x) = -\sqrt{x}$	in the y-axis in the x-axis
Horizontal Stretch or Shrink Graph stretches away from	f(ax)	$g(x) = \sqrt{3x}$	shrink by a factor of $\frac{1}{3}$
or shrinks toward y-axis.		$g(x) = \sqrt{\frac{1}{2}}x$	stretch by a factor of 2
Vertical Stretch or Shrink		$g(x) = 4\sqrt{x}$	stretch by a factor of 4
Graph stretches away from or shrinks toward x-axis.	<i>a</i> • <i>f</i> (<i>x</i>)	$g(x) = \frac{1}{5}\sqrt{x}$	shrink by a factor of $\frac{1}{5}$

G Core Concept

Solving Radical Equations

To solve a radical equation, follow these steps:

- Step 1 Isolate the radical on one side of the equation, if necessary.
- Step 2 Raise each side of the equation to the same exponent to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.
- Step 3 Solve the resulting equation using techniques you learned in previous chapters. Check your solution.

G Core Concept

Operations on Functions

Let f and g be any two functions. A new function can be defined by performing any of the four basic operations on f and g.

Operation	Definition	Example: $f(x) = 5x, g(x) = x + 2$
Addition	(f+g)(x) = f(x) + g(x)	(f+g)(x) = 5x + (x+2) = 6x + 2
Subtraction	(f-g)(x) = f(x) - g(x)	(f-g)(x) = 5x - (x+2) = 4x - 2
Multiplication	$(fg)(x) = f(x) \cdot g(x)$	$(fg)(x) = 5x(x+2) = 5x^2 + 10x$
Division	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	$\left(\frac{f}{g}\right)(x) = \frac{5x}{x+2}$

The domains of the sum, difference, product, and quotient functions consist of the x-values that are in the domains of both f and g. Additionally, the domain of the quotient does not include x-values for which g(x) = 0.