

Minding the Gaps:

Understanding Technology Interdependence and Coordination in Knowledge Work

Diane E. Bailey*
Center for Work, Technology and Organization

Department of Management Science and Engineering
Stanford University

Stanford, CA 94305-4026

Paul M. Leonardi
Department of Communication Studies

Department of Industrial Engineering and Management Sciences
Northwestern University

2240 Campus Drive
Evanston, IL 60208

Jan Chong

Center for Work, Technology and Organization
Department of Management Science and Engineering

Stanford University
Stanford, CA 94305-4026

Forthcoming in Organization Science

We gratefully acknowledge Mahesh Bhatia, Fabrizio Ferraro, Menahem Gefen, Julie
Gainsburg, and Lesley Sept, who assisted in data collection. We thank the engineers for
graciously allowing us to observe them at work and for sharing their thoughts with us. Stephen
Barley and two anonymous reviewers from the Academy of Management OCIS division
provided helpful comments on earlier versions of this paper. This research was made possible
by National Science Foundation grant IIS – 0070468. The General Motors-Stanford
Collaborative Research Laboratory provided additional funding.

*Corresponding author: Diane E. Bailey, 428 Terman, Stanford University, Stanford, CA 94305-4026.
Phone 650.723.3821. Email: diane.bailey@stanford.edu

 ii

Minding the Gaps:

Understanding Technology Interdependence and Coordination in Knowledge Work

ABSTRACT

In this paper, we broaden the concept of interdependence beyond its focus on task to include technology,

defining technology interdependence as technologies’ interaction with and dependence on one another in the course

of carrying out work. With technologies increasingly aiding knowledge work, understanding technology

interdependence may be as important as understanding task interdependence for theories of organizing, but the

literature has yet to develop ways of thinking about technology interdependence or its impact on the social dynamics

of work. We define a technology gap as the space in a workflow between two technologies wherein the output of the

first technology is meant to be the input to the second one. Using data from an inductive study of two engineering

occupations (hardware engineering and structural engineering), we analyzed engineers’ gap encounters (episodes in

which a technology gap appeared in the course of action) and found striking differences in how engineers minded the

gaps. Hardware engineers minded the gaps by coordinating technologies via “bridges” that automated data transfers

between technologies. Structural engineers, by contrast, allowed technology gaps to persist even though traversing

gaps consumed significant time and effort. Our findings highlight a difference between task interdependence and

technology interdependence regarding the degree of coordination necessary for success. Managers in our study

designed policies around technology interdependence and coordination not to manage technology most efficiently,

but to manage work and workers in a manner consistent with occupational structures and industry constraints. We

discuss the implications of our findings for theories of organizing work.

 1

INTRODUCTION

Interdependence has long been central to theories of how to organize work. Researchers have typically

conceptualized interdependence as the extent to which an organization’s tasks require its members to work with one

another (Mohr 1971; Thompson 1967) and have focused on people’s actions in relation to others (Bachrach et al.

2006; Shea and Guzzo 1987; van der Vegt and Janssen 2003). Along these lines, Guzzo and Shea (1992:296)

defined task interdependence as the extent to which “group members must interact and depend on each other in

order for the group to accomplish its work.” A primary mechanism for managing task interdependence is coordination

(Rico et al. 2008; Wageman 1995), either explicitly via planning and communication (e.g. Faraj and Sproull 2000) or

implicitly via anticipation of others’ needs (e.g. Espinosa et al. 2004) .These studies indicate that both planned and

emergent structures coordinate the efforts of people who work interdependently on tasks and that effective

coordination efforts often lead to important performance outcomes in organizations. Beyond performance, research

has highlighted the effect of task interdependence on behaviors and attitudes that arise when coordinating work,

such as cooperation, learning, citizenship, helping, motivation and satisfaction (Sprigg et al. 2000; Van der Vegt et al.

2003; Wageman 1995; Wageman and Baker 1997).

The focus in the organizations literature on coordination among people as they work interdependently has left

considerations of interdependence among technologies engaged in the task largely by the wayside. To find

discussions of interdependence among technologies, one must turn to research on production and operations

management. This literature has recognized that, with the introduction of automated processes and computerized

technologies such as numerically controlled machine tools and robotic welders, many tasks in manufacturing

systems are today performed by machine. Consequently, interdependence among people has come to be

complemented by, if not wholly replaced by, interdependence among technologies. This interdependence among

technologies affects production outcomes so strongly that assuring that the output from one technology can be

effortlessly employed as input for the next one is now essential in countless manufacturing settings (Gray et al.

1993). Production researchers pay considerable attention to problems posed by technology interdependence (e.g.

Carrillo and Gaimon 2000; Naveh and Erez 2004; Zantek et al. 2002) and advocate solutions that call for more

coordination among technologies, such as multi-functional equipment and machines that can accept diverse inputs

 2

(Ecker and Gupta 2005; Sinreich and Nelkenbaum 2006). Overall, this research suggests that efficiency gains in

manufacturing are increasingly achieved by successfully managing interdependence among technologies.

Technology’s growing role in accomplishing work is by no means limited to production environments. In today’s

“knowledge economy,” computer and information technologies are transforming service and white-collar “knowledge

work.” For example, travelers can now book reservations online in the absence of a travel agent, accessing through

one portal the sites of airlines, hotels, and car rental companies (Campbell-Kelly 2003). Similarly, automatic teller

machines (ATMs) have taken on a broad set of tasks once performed exclusively by bank tellers (Morisi 1996).

Overall, computer and information systems have automated many tasks in clerical work (Zuboff 1988), while

computer computation, simulation and analysis tools increasingly aid engineers, doctors, architects, financial analysts

and other professionals in their everyday work (Boland et al. 2007; Staum 2001; Streufert 2001).

As more and more technologies are introduced into service and knowledge work, interdependence among

technologies is likely to spring up: The closer one technology lies to another along the path of work actions, the more

likely interdependence will arise in the form of interface formats, information requirements and the like. We refer to

such interdependence as technology interdependence. In a manner parallel to task interdependence, we define

technology interdependence as technologies’ interaction with and dependence on one another in the course of

carrying out work. As workplace technologies become more prevalent in service and knowledge work, understanding

technology interdependence may be as important for theories of organizing as understanding task interdependence.

Not only may technology interdependence strongly affect performance outcomes in service and knowledge work just

as it has in production work, it may also alter existing task interdependence – and associated behavioral and

attitudinal outcomes – as workers’ roles and tasks change. Yet, organizational scholars have yet to develop ways of

thinking about technology interdependence or its impact on the social dynamics of work.

To begin this development, this paper explores, inductively, technology interdependence in knowledge work. In

the course of this exploration, we address three questions based on our grounded study of technology use among

engineers across two occupations and four firms. Given the lack of prior research in this area, the first question asks,

What does technology interdependence “look like” in knowledge work? In essence, it asks how scholars can

conceptualize, measure, and analyze technology interdependence. Researchers typically measure task

 3

interdependence by asking workers to rate on Likert-type scales such statements as “I have to work closely with my

team members to do my work properly” (Van der Vegt and Van de Vliert 2005: 78). Because technologies cannot

answer such questions absent tracking mechanisms, we require a different approach. We begin by tracing how

technologies that the engineers employed fed into one another. Specifically, we document whether and how the

output of one technology was used as the input for the next. We develop the concept of a technology gap to describe

the “space” between two interdependent technologies: A technology gap signals a transfer of work product from one

technology on which an operation has been completed to another on which the next operation is to be carried out.

We identify in our field notes 310 gap encounters, or episodes in which an engineer, in the course of his work,

came to the edge of a technology gap that he had to traverse. By examining the direction of workflow across the gap

(either forward or backward), we find that technologies in both occupations exhibited, to use Thompson’s (1967)

terms, considerable sequential and some reciprocal interdependence. We categorize gaps by their “width,” a

measure of how difficult traversal of the gap was for the engineer, to reveal differences by occupation in the

distribution of wide and narrow gaps in the forward and backward directions. By examining how many substitutable

technologies were available to the engineers for the completion of any task, we are able to speak to the prevalence

of pooled technology interdependence as well. We also show that interdependence among technologies in both

settings was largely distinct from task interdependence among people. We find that although both occupations

exhibited what we would term high technology interdependence, differences in how that interdependence was

manifested across occupations suggest that the experience of technology interdependence might vary considerably.

We explore this possibility in our second question, How do knowledge workers experience and deal with

technology interdependence? In particular, we focus on how engineers minded technology gaps, ultimately

developing a typology of gap traversal strategies employed by the engineers we studied. These strategies included

navigating, bridging, crossing, expanding, bypassing and standing still at gaps. We find that one occupation actively

and purposefully narrowed gaps by creating “bridges” that linked technologies. Bridges largely automated the transfer

of data from one technology to the next and, by their permanence, made future traversals easier and speedier for all

engineers in the firm. In this manner, bridges alleviated many of the problems associated with technology

interdependence. The other occupation, by contrast, minded gaps by intentionally creating few bridges across them.

 4

The absence of bridges forced engineers in this occupation to arduously navigate gaps that remained wide for one

and all. In this occupation, the problems associated with technology interdependence in the everyday carrying out of

tasks rarely waned.

In sum, work in the first occupation reflected a high level of coordination among technologies whereas work in

the second occupation reflected a low level of coordination among technologies. This finding is striking because

coordination has always been tightly tied to the concept of task interdependence. Some scholars measure task

interdependence by asking questions about coordination (e.g. Langfred 2007; Linden et al. 1997; Sharma and Yetton

2003); other scholars contend that coordination is required for successful task performance when task

interdependence is high (de Jong et al. 2007; Rico et al. 2008; Wageman 1995). This tight coupling between

coordination and task interdependence stands in contrast to our findings: Among the engineers we studied, high

technology interdependence was associated with high technology coordination in only one occupation; engineers in

the other occupation also faced considerable technology interdependence, but intentionally eschewed coordinating

their workplace technologies in the course of successfully performing their work.

This difference between technology interdependence and task interdependence with respect to the degree of

coordination prompts our third question: What factors shape the development of low versus high coordination

practices and mechanisms for handling technology interdependence in knowledge work? In other words, if high

coordination is tied to high task interdependence, why is high coordination not similarly tied to high technology

interdependence? We find that the decision to either tightly or loosely couple coordination and technology

interdependence was influenced by a mix of work characteristics, occupational structures and industry constraints. In

hardware engineering, factors like high technology costs and the ability to entrust logic testing of models to

technology rendered streamlining data transfer among technologies a successful strategy; in this case, high

technology interdependence was tightly coupled with coordination. In structural engineering, by contrast, liability

concerns, difficulties in assessing the soundness of models, and the desire to develop design knowledge among

engineers worked against such streamlining, resulting in little coordination among interdependent technologies.

Our findings are an important contribution to the organizations literature because they suggest that modern tasks

may feature interdependence among technologies in addition to, and distinct from, interdependence among people.

 5

Moreover, the requirements for effectiveness may be different for each type of interdependence: High levels of task

interdependence may call for high coordination, but high levels of technology interdependence may not necessarily

do so. In our study, managers designed policies around technology interdependence not to manage technology most

efficiently, but to manage work and workers in a manner consistent with their occupational environment. We discuss

the implications of our findings for theories of organizing work.

METHODS

Research Design

We investigated technology interdependence in knowledge work in two occupations: structural engineers in

building design and hardware engineers in computer chip design. Structural engineers specify the materials, shapes,

and sizes of the beams, columns and other elements that transfer loads to the ground to prevent buildings from

collapsing. Hardware engineers craft the logic of microprocessor cores, buses, and other chip components for

products they bring to market. These engineers write code in high-level programming languages that specifies how

components will handle instructions; they also write programs to verify proper component functioning.

Our data are drawn from two structural design and two chip design firms in the San Francisco Bay area. Across

the four firms, we shadowed 12 structural engineers and 15 hardware engineers on repeated occasions. To maintain

a focus on engineering rather than management tasks, we targeted junior and mid-level engineers. Between 1999

and 2001 we conducted 61 observations of structural engineers and 65 observations of hardware engineers.

In preliminary interviews with senior managers, we learned that technologies aided nearly every task in both

occupations. Structural engineers created designs via computation and equation solving on pocket calculators and

via modeling in computer-aided drawing (CAD) software packages. They employed information from design manuals,

building codes, textbooks, and past project records as they analyzed models in Excel or computational software

programs. Hardware engineers wrote code in text editors and used checking programs to verify logic and syntax.

Verified code was entered with other component code and specification files into simulators for testing. Simulation

results could be read in text form or fed into wave form generators for interpretation. The prevalence of technology

use in the course of work tasks in both domains indicated the likelihood of considerable technology interdependence.

 6

Other aspects of the technology infrastructures, however, such as differences in the cost of technologies, suggested

that technology interdependence might differ substantially across the two occupations, thus providing a useful

comparison.

Data Collection

Engineering work has been notoriously difficult to study (Barley 2005; Downey et al. 1989). Engineers carry out

tasks with few everyday correlates and use sophisticated technologies whose functioning is not easily gleaned. An

engineer may simultaneously employ multiple technologies, engage in discussion, and consult a variety of artifacts.

To meet these challenges, we interviewed a manager or engineer in each firm so that he could outline the major

phases of design and the tasks undertaken in them. From these descriptions, we built timelines that specified the

normal progression of design. We studied textbooks and design manuals that explained the analyses required for

design in each discipline; doing so helped us to understand the modeling and computation steps that engineers

would perform. We asked engineers (not in our sample) to tutor us in greater detail on a set of primary work tasks

and technologies so that we would be better prepared to link textbook theory to actual practice in our observations.

We wrote detailed field notes during our observations, in which we recorded the engineer’s every action,

including his typed commands, computer program starts, switches and stops, and use of artifacts. We asked for

screenshots when engineers worked on the computer, made photocopies of physical documents they employed

(e.g., book pages), and sketched other artifacts that could not be captured by computer or copier (e.g., drafting tools).

We audiotaped conversations whenever engineers spoke too quickly or too technically for us to keep apace by hand.

We later entered transcriptions of the tapes into the text of the notes at the point they occurred. Collecting so many

types of data enabled us to prepare field notes that describe actions, conversations, and visual images

simultaneously and thus produce a record not only of what engineers did and said, but also of what they worked on

and created. We wrote appendices for each day’s field notes that describe the artifacts we collected, including how

and why the engineer employed the artifact. We began expanding our field notes immediately after each observation;

completing a full narrative of each three to four-hour observation session took between two and two and a half days.

The intensity of our techniques for collecting and recording data prompted us to study the four firms sequentially

so that the research could remain manageable. We began and completed the research on structural engineering

 7

before moving to hardware engineering. Three graduate students assisted with the fieldwork in structural engineering

and two others assisted with the research on hardware engineering. The first author did fieldwork in all four sites and

completed fifty percent of the observations in both occupations to ensure that we would retain a deep understanding

of each site when the students graduated. Consistency and coordination were especially important in a project

spanning multiple years and sites. The first author trained all team members who did fieldwork and reviewed every

set of notes that they produced for thoroughness, technical accuracy and conformity to formats.

Data Analysis

The first task of data analysis was to conceptualize technology interdependence in a manner that would allow us

to identify and isolate incidents in the field notes in which interdependence was evidenced. We adopted the

recommendation of Glaser (1978) to develop analytic constructs, grounded in our rich observational data, that would

aid us in systematic analysis. Following Glaser’s practice of “theoretical sensitivity,” and recognizing from our

fieldwork that technology interdependence is often manifested at the intersection of technologies, we first developed

the concept of technology gap. We defined a technology gap as the space in a workflow between one technology

and a second technology wherein the output of the first technology was meant to be the input to the second one. An

example of a technology gap existed between CAD software (for drawing solutions) and analysis software (for testing

solutions) in structural engineering. Transferring the CAD model from the CAD software to the analysis software

required human effort; no single command ran first one application and then the other.

In identifying technology gaps, we counted as technologies any artifact that an engineer employed in the course

of his work that provided output or allowed input. Thus, books and manuals were included because their content

often was the output that engineers entered into other technologies; most software programs were also included.

Work implements not counted included pencils, erasers, straight edges and other implements that had less

discernible input or output. Also not counted were functions within technologies, such as a spell checking function in

a word processor.1

1 In some cases, such functions arguably represented technology gaps that had been managed by placing a stand-alone
application within another program, but distinctions of this sort would have burdened too heavily our analysis efforts.

 8

We next defined a gap encounter as an episode in which a technology gap appeared in the course of action.

That is to say, a gap encounter occurred when an engineer sought to transfer the output of one technology so that it

might serve as the input for a second one. Gap encounters often appeared when engineers switched from one

technology to another and in doing so carried forward some piece of work from the first technology for further

manipulation by the second one. The important aspect of gap encounters was the transfer of output to input: the

focus was on the path of work across technologies and hence technology interdependence, not between people and

hence task interdependence. Thus, gap encounters could have involved multiple individuals; in our observations,

however, most gap encounters featured a single individual who operated both technologies.

Detecting engineers’ encounters with gaps was straightforward in observations of structural engineers, whose

work was often done with paper, pencil and a calculator. For a structural engineer to launch a software application,

for example, entailed an obvious turn in posture towards the keyboard; similarly, employing a design manual required

reaching for it on a bookshelf. In hardware engineering, almost all work was completed on the computer and hence

most technologies were launched by command, with few distinguishable body movements to signal switches among

technologies. We therefore positioned ourselves during observations so that we could see all keystrokes.

Additionally, we detected early cues of switches whenever an engineer began to prepare her data for output. Such

preparation may have entailed such distinct steps as making selections from pull-down menus, running an external

script, or processing the data format manually (for example, by adjusting it row-by-row in a file). All of these actions

served as behavioral signals that a technology gap might soon be encountered.

We began our analysis by isolating the gap encounters in four sets of field notes, two from each occupation. We

examined these encounters to determine what attributes of them might best help us in conceptualizing technology

interdependence. We made detailed lists of such attributes, examined the lists with respect to gap encounters pulled

from a broad cross-section of our data, and revised the lists to reflect those attributes common to all gap encounters

(Strauss and Corbin 1998). Ultimately, we identified three key attributes that would help us distinguish among and

compare encounters: the direction of the flow of work across the gap, the size of the gap, and the strategy the

engineer undertook to deal with the gap. Each attribute had more than one possible value; for example, we observed

many strategies for contending with gaps. We define the attributes and their observed values in the next section.

 9

These attributes and their values became the codes that we employed to code the gap encounters in the

remaining field notes. In total, we identified 127 gap encounters in 176 hours of observation in structural engineering

and 183 encounters in 178 hours of observation in hardware engineering. The first author coded each of these 310

gap encounters using Atlas.ti. In the course of doing so, we found that some engineers traversed a given gap many

times while other engineers traversed it only once while completing the same task. One engineer, for example, sent

his code for error checking after writing each twenty lines of code while another waited until she had completed her

entire code file. To account for these differences in behavior, we coded a gap encounter only once per observation if

the engineer was transferring the same object (e.g., the same model, the same piece of code) across the same gap

between the same two technologies. In other words, we opted not to inflate the number of gap encounters due to

engineers’ variation in work practices, but to render counts that reflect how often the task was performed.

Technology interdependence is not completely described by the three attributes of technology gaps on which we

focused, but analyzing these attributes helped tremendously in conceptualizing and documenting, in particular,

sequential and reciprocal interdependence, as we explain in the next section. To investigate pooled interdependence,

we examined the number of substitutable technologies available for completing each task. In addition, to enhance our

understanding of technology interdependence in all of its forms, we drew heavily on our field notes for incidents and

conversations that would help us to deepen our insights, interpret our findings, and support our conclusions.

TECHNOLOGY INTERDEPENDENCE IN TWO OCCUPATIONS

What Technology Interdependence “Looks Like”

Technology interdependence in the engineering work we observed paralleled the flow of work tasks as

engineers moved forward through stages of design and analysis. In this task progression, the output of one

technology became the input to a second technology as the engineer’s product (be it a drawing, a computational

model, or code) advanced towards completion. Each transfer of the product from one technology to the next

indicated a technology gap. For example, when a hardware engineer finished writing his component code in a text

editor, he might submit it to a simulator for testing. The serial traversal of technology gaps in this manner spoke to the

sequential interdependence among technologies in both occupations.

 10

Engineering work also flowed backward. A backward flow was almost always generated by feedback. Backward

flows in the form of feedback occurred, for example, when a testing program detected problems in a model or a piece

of code. The engineer would employ this feedback to modify the model or code in the relevant technology he had

employed to create his design. Feedback varied in its explicitness: Some testing programs merely detected errors,

others pointed out error location, still others diagnosed possible causes, and a rare few suggested corrections. In

each case, the feedback was intended to serve as input to a technology with which the engineer would modify the

model or code. Because this technology was typically the same one the engineer employed to create the model or

code, the presence of technology gaps in the backward flow reflected reciprocal interdependence among

technologies in these two occupations.

Table 1 shows that in both occupations we studied, engineers encountered most gaps as they progressed in a

forward direction along the sequentially organized flow of engineering work. In structural engineering 80% of all

encountered gaps arose in the forward direction; in hardware engineering 84% arose in that direction. At 20% and

16%, respectively, of all gaps, backward gaps indicated a degree of reciprocal interdependence among technologies

in both structural engineering and hardware engineering.

Technology gaps in either direction required human intervention for their traversal. This intervention was more

strenuous for some gaps than for others. As a first step in characterizing the difficulty associated with traversal, we

denoted the size of the gap, or the distance between the two technologies, by categorizing gaps as being either wide

or narrow. We defined wide gaps as being more difficult to traverse than narrow gaps. We assessed gap size based

on a combination of the amount of time it took the engineer to traverse the gap and the number of distinct steps or

actions that were required. Hence, a gap was wide when its traversal required a significant amount of time (as much

as an entire afternoon) and possibly multiple actions (for example, manually transferring data points one by one

across several input screens). We called a gap narrow when the output of the first technology became the input to

the second one in a very short time (as little as a few seconds and often in under a minute) with few related actions

(often simply typing a single command).

A wide gap is illustrated in the example of Cindy, a structural engineer who designed her steel beams in

AutoCAD software and then analyzed their deflection in a program called Ramsbeam. Because there was no easy

 11

mechanism to transfer data from AutoCAD to Ramsbeam, Cindy had to enter the values manually. The transfer was

further complicated by the fact that the AutoCAD values were in different units than the ones that Ramsbeam would

accept, as Cindy explained:

I get the dimensions from CAD [she points to the text lines at the bottom of her screen, where
numbers appear], but Ramsbeam is in kips2 per feet and CAD is in pounds per square foot, so I
use my calculator to do the conversion. [She picks up her pocket calculator and enters some
values and then types the result into the entry field of the Ramsbeam window.]

In an example of a narrow gap, Eric, a hardware engineer, created a diagnostic test and was ready to run it on a

microprocessor configuration. To do so, he simply typed a command, as described in our field notes: “At the prompt

in the lower left window, he types: make vcs.log DIAG-103.”

Table 2 shows the distribution of wide and narrow gaps across the two occupations. Wide gaps outstripped

narrow gaps in structural engineering by a large margin, constituting 93% of all gap encounters in this field. In

hardware engineering the balance was tipped in the opposite direction, with engineers encountering narrow gaps

(58%) more frequently than wide gaps (42%). Table 2 further categorizes wide and narrow gaps in terms of the flow

of work. In structural engineering over 90% of the gaps in the forward direction were wide. By contrast, in hardware

engineering less than a third of the forward gaps were wide. As compared to structural engineers, hardware

engineers switched with ease from one technology to another in the forward progression of work. In both

occupations, all gaps in the backward direction were wide.

To complete the picture of technology interdependence in each occupation, we next considered whether or not

pooled interdependence existed among the technologies. This endeavor required that we examine the degree to

which an array of substitutable technologies was available to aid with any given task. If different technologies were

available, there would be pooled interdependence, else not.

In hardware engineering, we found that most tasks were associated with a single technology unique to that task.

Consequently, engineers rarely had a choice among technologies in their work. To verify code via simulation, for

2 A kip is a kilo-pound; one kip equals 1000 pounds.

 12

example, engineers in one firm we studied employed a Verilog simulator made by a supplier named Synopsys;

Cadence as well as other design and analysis technology suppliers also sold Verilog simulators, but that firm owned

only the Synopsys simulator. The same was true for the tasks that fell before and after simulation, which meant that

the gap in front of and the gap behind the simulator each had but a single technology on either side. Hardware

engineers explained that the high cost of their work technologies – as much as a million dollars in some cases – was

a strong deterrent to purchasing multiple equivalent technologies to perform any given task. Pooled technology

interdependence was, therefore, largely absent in hardware engineering.

In structural engineering, we found the opposite situation: Numerous technologies existed for most tasks and

engineers could choose which technologies to use. For example, to determine the size of beams, the engineers

could employ a commercial product called Risa-3D or an Excel spreadsheet created by a colleague that accepted

input for predetermined formulas. Alternatively, the engineers could look up values for material strength in design

manuals and then use their calculator to determine the beam size “from scratch” by writing down and solving a series

of equations, using the strength values as input. The structural engineers noted that many technologies were

available for each task because each technology cost relatively little – the most expensive technology cost $25,000 –

and some technologies, given to the engineers by professors back in graduate school, were nearly free. Moreover,

much of the foundational knowledge that underpinned the algorithms embedded in the technologies retained its value

over time (e.g., the physics was still valid, many of the material properties were unchanged), which meant that old

technologies remained useful even as new technologies entered the firm. Hence, few technologies were retired.

Thus, in structural engineering, pooled technology interdependence was considerable.

We pull together our findings of flow direction, gap width and technology substitution in graphical representations

of technology interdependence in each occupation. Figure 1 provides a simplified representation for hardware

engineering. Four technologies (A, B, C and D), one for each of four tasks (1, 2, 3, 4), lie in progression, reflecting

sequential interdependence. The forward gaps between these technologies are mostly narrow; about one-third are

wide. All the backwards gaps, which indicate reciprocal interdependence, are wide. Figure 2 provides a simplified

representation of technology interdependence in structural engineering. Like Figure 1, Figure 2 shows four tasks in

progression, but in this case multiple technologies are available for each task: three technologies (A1, A2, A3) for the

 13

first task, two (B1, B2) for the second, three for the third (C1, C2, C3) and two for the fourth (D1, D2). These multiple

technologies for each task reflect pooled interdependence that is missing in the hardware engineering representation.

Forward and backward gaps are wide in structural engineering. The representations in Figures 1 and 2 reflect high

levels of technology interdependence: Almost all tasks in both occupations were aided by technology and the output

of one technology became the input for another technology as the work progressed.

Task interdependence looked quite different from technology interdependence in both occupations. In hardware

engineering, junior and mid-level hardware engineers worked in project groups of five to ten engineers, managed by

a senior engineer. Each engineer was assigned a particular microprocessor component; his job was to write and test

the code that would model that component. Input and output specifications were made early to reduce sequential

task interdependence among the engineers; engineers could begin work on their component absent completed code

on other components because they assumed that the output of other engineers’ models would conform to their

models’ input requirements per these specifications. Development could not begin, however, until these

specifications were determined.

Combined, the engineers’ component models formed the coded representation of a given version of the

microprocessor and its peripherals, which evidenced pooled task interdependence. A separate group typically tested

the complete representation, but each hardware engineer routinely built the full model when testing her own

component to make sure that it interacted properly with other components. In these component tests, older or less

detailed versions of other component models were generally sufficient, thereby lessening sequential task

interdependence by removing any need to wait for another engineer to complete his work before testing one’s own.

Failure in these tests sometimes prompted an engineer to suspect the problem lay not in her component’s model but

in someone else’s, a suspicion that could prompt feedback to the other engineer, who subsequent modification of his

model would reflect reciprocal task interdependence.

Hardware engineering thus exhibited aspects of sequential, reciprocal and pooled task interdependence, but

practices (such as early input/output specification) were developed such that pooled task interdependence primarily

characterized daily work. Under this organization design, hardware engineers, although specialists in the design of

 14

particular types of components, carried out very similar kinds of tasks and employed a common set of technologies to

create and test those components.

Overall, task interdependence was distinct from technology interdependence in hardware engineering. Each

engineer individually made her way through the sequential progression of technologies as she completed the full set

of tasks on her own component. Her peers similarly made their way through the same progression of technologies as

they completed the same set of tasks on their components. Along this progression, each engineer’s work product

traversed technology gaps as it moved from one technology to another. In traversing these gaps, products did not

simultaneously move from one engineer to another; rather, a single engineer shepherded her product from beginning

to end of the hardware engineering design flow. As a result, each engineer experienced the full set of technology

gaps along the design flow and these gaps were identical to those experienced by the other hardware engineers in

the firm. Task interdependence was primarily pooled (engineers worked separately on components that were later

combined to form the whole product); technology interdependence was primarily sequential (each engineer’s product

moved from one technology to the next as work progressed) and experienced identically by all hardware engineers.

A similar situation existed in structural engineering. Working in groups of two to four engineers, structural

engineers created drawings that illustrated their design solution and conducted analyses to test its soundness. Senior

engineers supervised the work of junior and mid-level engineers, who tended to divide up their work such that they

each performed the same tasks, but on different parts of the building. For example, one engineer might design the

bottom two floors of a building while another engineer designed the top two floors. Each engineer built models for

and ran initial analyses on the floors she designed.

Although the physics of building structures compels each floor to bear the load of all the floors above it, a fact

that might suggest the sequential design of a building from its uppermost floor to its lowermost, in practice engineers

used estimates of other floor loads to decrease sequential task interdependence among engineers. Some sequential

task interdependence did remain; for example, owners had to specify materials before floor design could begin. But

upon gaining this information, structural engineers worked largely independently on their assigned floors. When the

designs for all the floors were complete, one engineer pooled all the floor designs into a model of the entire building

 15

and conducted final analyses. Results of these analyses could serve as feedback to the engineers who designed,

and had to modify, particular floors.

Like hardware engineering, structural engineering work thus simultaneously exhibited aspects of sequential,

reciprocal and pooled task interdependence, but the work was organized such that pooled task interdependence

characterized the bulk of daily activity. Under this organization, engineers were generalists who employed a common

set of technologies in the completion of their work. As in hardware engineering, task interdependence was largely

distinct from technology interdependence because each engineer individually made her way through the sequential

progression of interdependent technologies as she completed the full set of tasks on her own floors and other

building components. The specific technology gaps encountered by the engineers varied to the extent that their

choices among substitutable technologies for a given task varied, but all engineers faced the same number of gaps in

completing the same tasks.

Although technology interdependence was high and distinct from task interdependence in both occupations,

there were differences in terms of the degree of technology substitution and the presence of narrow gaps. These

differences suggested that the manifestation of high technology interdependence varied by occupation, prompting us

to explore how hardware and structural engineers experienced and dealt with technology interdependence in the

course of their everyday work.

Experiencing and Dealing with Technology Interdependence

In the course of everyday work, pooled technology interdependence posed few direct problems for structural

engineers because having multiple technologies from which to choose was not terribly troublesome (most engineers

were happy to select their personal favorites). Sequential and reciprocal technology interdependence, on the other

hand, presented structural and hardware engineers with various kinds of problems and dilemmas in the context of

forward and backward gaps that had to be traversed. Therefore, we examined what engineers experienced and what

they did upon encountering a technology gap.

Our analysis revealed six distinct strategies that an engineer could take in dealing with a technology gap. Figure

3 displays these strategies in conjunction with the size of the gap – wide or narrow – facing the engineer. Wide gaps

presented the engineer with the prospect of significant time and effort for their traversal; engineers could choose from

 16

among four strategies for how to contend with them. Narrow gaps presented engineers with the brighter prospect of

an easier and speedier traversal as compared to wide gaps; engineers could again choose from four strategies (two

unique to narrow gaps, two common with wide gaps) in dealing with them.

In the case of a wide gap, the engineer might have decided to traverse the gap by navigating it. To navigate a

gap was to transfer, and often transform, the output from the first technology to the input of the second technology.

Navigation facilitated traversal in that one instance only. In other words, a wide gap that one individual navigated still

appeared as a wide gap to the next person who encountered it. The methods of transfer and transformation

employed in navigating a gap almost always required considerable human effort, typically in the form of routine

actions. Engineers often referred to navigation as having to do the transfer “by hand,” meaning that no simple

keystroke or command call would complete the task for them. Rather, navigating required labor-intensive actions

such as cutting and pasting data, visually inspecting and comparing models, manually checking values or equations,

and entering long series of separate commands at the prompt. Engineers endured, not enjoyed, navigation.

In a navigating example from structural engineering, the engineer transformed and then transferred output from

AutoCAD into an analysis program called Risa-3D:

Darren opens the text window in AutoCAD and copies some numbers from it onto a piece of scrap
paper. Then he uses his calculator, slapping it first because, he says, it is low on batteries. He
opens another window for Risa-3D. He explains that Risa works in feet, not inches, so he is
converting distances between columns on the drawing and entering the values in the Risa data
fields. He uses the calculator to make the conversion, a simple division operation.

An alternative to navigating a gap was to bridge it. Bridging allowed for easier traversal of the gap in all future

encounters by lessening the effort required for transferring and transforming the output of the first technology into the

input of the second one. In general, bridging meant automating some portion of the steps required to transfer and

transform output to input, perhaps by writing a script to carry out a series of commands. Leaving behind a bridge

simplified future traversals by converting a wide gap into a narrow one. Because bridging laid the groundwork for

future gap encounters, it often took longer than navigating, which focused only on the immediate encounter and left

nothing behind for the next traversal. Therefore, an engineer who opted to bridge a gap typically weighed the benefits

of time saved in future traversals against the cost of additional time spent on the present encounter. This cost

 17

notwithstanding, engineers who engaged in bridging reported enjoying the opportunity to be creative by solving the

puzzle of transfer and transformation unique to the technologies involved. Bridge creation was not an everyday affair,

and thus offered a break from normal tasks.

An example of bridging is found in the case of a hardware engineer who had written a diagnostic test to run on a

set of microprocessor configurations. Although scripts existed for loading and running his test on the simulator

against the configurations one at a time, he wanted to run his test against each configuration multiple times, not just

once. He thus wrote a script that built and repeatedly sent each configuration to the simulator with his test code. The

script constituted a bridge between the text editor (in which he created his test code) and the simulator (on which he

would run it), a bridge that he could use again any time he wanted to traverse this same gap.

Very rarely in our data did an engineer who encountered a technology gap opt to bypass it or stand still at its

edge, but these options did exist. A gap was bypassed when the engineer managed to complete his task without

having to deal with the gap. For example, he might have bypassed a gap by selecting an alternative second

technology whose input requirements were more sympathetic to the first technology’s output. Alternatively, an

individual might have opted to stand still at the edge of a gap by halting his efforts to proceed. Because an engineer

who encountered a technology gap at work typically had some task to complete that he could not forsake – perhaps

to create a document, build a model, run an analysis, or interpret data – the option to stand still was rarely observed.

In the case of narrow gaps, the strategy options were slightly different. Navigation and bridging were no longer

options, presumably because the gap was narrow and could be easily traversed simply by crossing it. To cross a gap

was to expend very little effort in guiding the output of the first technology to the second one, where it served as the

input. No manipulation of the output was required, typically because the individual who crossed a gap did so via a

bridge left behind from an earlier traversal. When Eric ran his diagnostic test on a microprocessor configuration by

simply typing the “make” command with two parameters, that constituted an example of crossing a gap. He was able

to feed the results of his component modeling into his diagnostic test by using a script that had been created earlier.

Crossing gaps allowed engineers to proceed quickly with the rest of their work, a benefit they appreciated.

Rather than crossing a narrow gap, an individual could have decided to expand it. By expanding a narrow gap,

he chose to undo, if only in that single instance, whatever action previously bridged it, perhaps because he

 18

considered that action an inappropriate or inelegant way to deal with the gap. We observed a hardware engineer

expand a narrow gap one day when he decided that, rather than run an existing script that would automatically send

his component code to the simulators with a suite of tests, he would complete each step of the process “by hand”

(i.e., he would enter individual commands one by one) so that he could determine where a problem was occurring.

Theoretically, individuals could also bypass narrow gaps or stand still at their edge; we never observed these actions

at narrow gaps presumably because traversing narrow gaps was relatively easy.

In both occupations, the engineers we observed typically navigated wide gaps and crossed narrow ones. But

because wide gaps were much more common in structural engineering than in hardware engineering, engineers in

that field were much more likely to navigate a gap than to cross one. Table 3 shows that structural engineers

navigated 92% of the gaps they encountered; in contrast, hardware engineers only navigated 39% of their gaps.

Hardware engineers more commonly crossed gaps (57%), a high rate in comparison to structural engineers (6%).

Engineers in neither occupation bridged, bypassed, expanded or stood still at gaps with much frequency.

However, hardware engineers told us many stories of gaps that they had bridged in the past, often proudly showing

us the scripts they had written, as explained by this engineer:

 “Timing Design" is a program to draw waveforms. In it, you have to click all over to draw
something. I didn't like that. And, I don't want to draw it by hand. So I wrote a little program called
Text2TimingDesigner. With my little program I can write text files and it generates waves. I have
written lots of little programs to do things for me. I keep them in a directory. It's laziness. You can
write it once and then you have it; it automates for you.

Structural engineers related no such stories. Indeed, Table 3 indicates that hardware engineers predominantly

crossed gaps (57%), whereas structural engineers rarely had that opportunity (6%). These data show that although

we did not often observe hardware engineers actively bridging gaps, there is evidence that many bridges had been

built because a gap could not be crossed if it was not previously bridged. By contrast, structural engineers did not

routinely cross gaps because they had not previously bridged many gaps.

Overall, traversing gaps in structural engineering was an arduous affair. Most gaps were wide and thus required

time and effort to navigate via the carrying out of often routine and mundane actions. In comparison, traversing gaps

in hardware engineering was easy because most gaps were narrow, making crossing the most common strategy and

 19

allowing engineers to carry on quickly with the rest of their work. Our findings indicate that the width of a gap was not

fixed by the technologies on either side of it; engineers could alter this width by, for example, bridging wide gaps to

make them narrow. Thus, engineers seemingly had the potential to increase coordination among technologies via

smoother interfaces in the form of narrow gaps and, in so doing, arguably better manage technology

interdependence. This possibility prompted our third and final question: Why did engineers in one occupation

manage high technology interdependence in ways that led to high coordination among technologies while engineers

in the other occupation did not? Specifically, why did structural engineers persist with navigating wide gaps rather

than bridging them to facilitate easier traversals like the hardware engineers did?

Coordination and Technology Interdependence

We approach the question of differences in coordination by first considering what factors enabled hardware

engineers to narrow the gaps among their technologies, then turning to structural engineering to see if the same or

different factors existed there. In hardware engineering, as we noted, the high cost of technologies worked against

the possibility of having multiple equivalent technologies to perform any given task. With only one technology on each

side of a technology gap, narrowing the gaps was a straightforward, if still difficult, task because complexity of the

interface problem for inputs and outputs was greatly reduced. With the output from a single technology serving as the

sole input to the next one, only one interface problem had to be resolved at each technology gap.

These interface problems greatly attracted the attention of hardware engineers, who explicitly recognized,

frequently discussed, and overtly managed technology interdependence, going so far as to give it a name: “the

design flow.” We observed hardware engineers contemplating whether their design flow could support new

microprocessor configurations, arguing about whether or not to change the flow to satisfy customer requests, and

mulling over how to build new flows for new microprocessor cores. Similar to efforts in production settings, concerted

efforts were made to improve the efficiency of the design flow by embedding multiple functions in single technologies

and purchasing new technologies to replace ones with problematic interfaces.

A primary criterion in new technology selection was thus the technology’s “fit” with the flow, namely whether it

could be placed seamlessly between two existing technologies without wreaking havoc on inputs and outputs. To

learn about new technologies, hardware engineers visited vendors’ booths at the industry’s annual conference; we

 20

saw them preparing for these visits by discussing with their colleagues which vendors to see and what technology

features to inspect. Vendors pitched new technologies, as we observed during an in-house presentation, by

explaining how easily the technologies could fit in a firm’s design flow. After hearing such pitches, engineers

independently evaluated new technologies’ fit prior to purchase, as this hardware engineer described:

I have been testing the flow of a CAD tool called "Blast Fusion” from Magma [the vendor]. So far, I
have mostly verified that the flow works and everything is fine, so the other projects can go ahead
and use that tool.

Following technology selection, hardware engineers narrowed gaps by bridging them, namely by writing scripts

that automated the transfer of output. To automate this transfer was, in a sense, to abdicate control by forgoing the

opportunity to review output. Hardware engineers felt comfortable in relinquishing this review opportunity because

they were confident that unsound design as created in one technology would be detected by error-checking features

in subsequent technologies. Additionally, the size and complexity of hardware designs, with literally hundreds of

thousands of transistors to be laid out and perhaps tens of thousands of code files called in the course of a test,

made human inspection of results very difficult. The challenge was to think of all possible forms of failure (a problem

known as “coverage”), not to worry that any particular problem could not be caught by technologies once it was

identified and a suitable program written to test for it. As a result, most gaps in the forward design flow were narrow,

meaning that someone had bridged them to reduce human involvement in transferring output.

Beyond visiting vendors’ booths at the annual industry conference and inviting vendors to give in-house

presentations of new technologies, hardware engineers also entered into partnerships with vendors for the

development and licensing of new technology features. Hardware engineers further interacted with external parties

via online bulletin boards hosted on independent hardware engineering community web sites. Through such

electronic media, engineers across competing hardware engineering firms discussed and evaluated new

technologies. Information sharing among peers across firms also occurred in the pages of trade magazines, which

regularly featured interviews of engineers whose firms were among the first to purchase particular technologies.

Engineers in these interviews reported how well the technology fit in their firm’s design flow. The engineers we

observed contributed to, read and made use of such information available in print and online. For example, one

 21

engineer was interviewed by a magazine regarding the firm’s use of a new logic checking application, another

engineer made a post to a web forum about a parsing program, and a third engineer downloaded from a vendor-

supported, user-group website a script for bridging a gap to a file sharing application.

Internal bridge-building was also supported and formally organized. Hardware engineers were assigned to serve

as gurus for specific technologies, charged with answering colleagues’ questions and keeping up-to-date on new

features and products. As part of this duty, gurus were expected to build bridges, as described by this engineer:

Most of these tools have ways of automating tasks and writing scripts that would help you do the
common tasks. And so one of the things we have done is that the person who is an expert in that
helps set up some standard scripts or templates and in many of your applications, you could just
use that set-up as is or do minor modifications to it, and you don’t necessarily need to understand
exactly every step of the way. There is an automation mechanism created by this expert.

Additionally, systems administrators were employed to maintain the computer network, to manage licenses, to

prepare technology budgets, and to help assess the fit of potential new technologies in the design flow. These

examples make clear that two factors shaped the goal of high coordination among interdependent technologies: (1)

the belief that bridging activities automated tasks that were of marginal importance or that involved knowledge that

could be codified, and (2) occupational ideas of efficiency. Further, this goal was institutionalized in occupational

roles such as gurus and systems administrators. In short, managing technology interdependence in hardware

engineering was a shared task among a range of individuals.

None of these bridge-building efforts, however, involved backward gaps. Backward gaps in the hardware

engineering flow were left wide because feedback from testing programs typically prompted code modifications.

These modifications almost always required critical engineering intuition and judgment, which hardware engineers

believed no technology could adequately provide. Trace logs used for debugging, for example, could highlight for the

hardware engineer what kind of problem occurred, where it occurred, and what ramifications it had. But the trace logs

could not tell the engineer what caused the problem (e.g., giving a variable a wrong name, mistakenly calculating the

timing of an event, or putting the wrong data in a register). To narrow backward gaps by entering the testing feedback

as direct input into a technology for modifying code far exceeded the analytic capabilities of technologies. Whereas

hardware engineers believed that bridges built across forward gaps automated tasks that required routine or

 22

codifiable knowledge, they were certain that contending with feedback required skilled problem solving on the part of

the engineer, resulting in no narrowing of backward gaps.

Unlike hardware engineers, structural engineers did not employ the phrase “design flow” or any equivalent term.

Structural engineers understood technology interdependence in the context of their work (that is to say, they

recognized the issues of transfer and transformation as work products traveled among technologies), but, in

comparison to hardware engineers, they managed this interdependence much less fastidiously. That is not to say

that structural engineers never purchased new technologies to improve their flow. But, in general, structural

engineers purchased new technologies absent the detailed probing, extended vendor interaction, and pre-purchase

assessment witnessed in hardware engineering. Perhaps as a result, new technology purchases did little to

streamline the flow. In a case described by a senior engineer, the modeling assumptions of a new application were

not aligned with the assumptions that engineers routinely made. Consequently, although the application automated

one task, it required for its use the extra step of transforming input data:

We needed a good tool to do 3-D modeling. If you have a rectangular building with all the floors
the same, then you ought to be able to build a model that puts in all the coordinates for you
automatically, which is what this new software does. However, because some programmer
assumed that your model is parallel to the y-axis, we have to re-input all of the data. That is a
ridiculous assumption to make. Programmers don't really know what assumptions make sense.

At least three factors prevented greater coordination among interdependent technologies in structural

engineering. The first factor was the availability of multiple technologies for most tasks. As we noted, the low

purchase cost of software and the continued validity of the domain knowledge that underpinned the algorithms

embedded in software meant that, over time, numerous technologies existed for most tasks. Choosing which

technology to employ was often a matter of engineers’ preference, with no consensus on which one was “best.” The

multiplicity of technologies resulted in little standardization of input and output formats, which meant that multiple

interface problems had to be solved. For example, if four technologies were available for one task and only one

technology for the follow-on task, four distinct gaps existed. If two technologies rather than one were available for the

second task, the number of gaps jumped to eight. In this sense, although pooled technology interdependence

 23

generated no problems for structural engineers when choosing within a set of technologies for a task, it did contribute

to larger problems associated with traversing gaps between technologies in one set and technologies in the next set.

Why not simply ban certain technologies to reduce the magnitude of the interface problem? The answer to that

question may be found in the second factor that impeded the narrowing of technology gaps in structural engineering,

which was the belief among senior engineers that younger engineers’ fondness for and reliance upon computer

analysis prevented them from gaining fundamental design knowledge. Such knowledge was important in structural

engineering because software programs for testing and analysis could verify that a design was sound given its

assumptions, but they could not assess whether the assumptions themselves were appropriate. Senior engineers

thus stressed the continued occupational value of verifying one’s assumptions by traditional practices such as tracing

load paths through drawings and using time-proven approximations to estimate forces rather than repeatedly running

simulations until a “feasible” – but all too often unrealistic – solution was achieved. The comments of a senior

engineer regarding an analysis software application whose built-in assumptions ran contrary to the physics of a

particular building design illustrate the tension between computer analysis and traditional design practices:

That software has several weird assumptions, including a fixed base assumption. I reviewed a
building where it had been used. I could tell just by looking at it that it was a poor design. They
sent me reams of computer printouts from it, but all I needed to do was look at the drawing. There
was a place on the drawing where a beam came in at a 45-degree angle and that beam was huge
because the engineer said it was taking all the load because it had a fixed base. But beside it was
this other beam and it was really skinny. And the thing is, the software kept telling the engineer to
make the first beam bigger, and it kept taking more of the load, so it got bigger and bigger and this
other one got really skinny. But that was all based on the assumption of the fixed base, and in
reality it wasn’t fixed at all! In fact, this thing was sitting on almost nothing, so all the load really had
to go through that very skinny member. It all happened because some young kid out of college
learned the software, and just did what the software told him to do.

Senior engineers reasoned that leaving wide forward gaps aided in the occupational training of junior engineers by

cultivating the development of design knowledge. For this reason, senior engineers placed little emphasis on

improving work efficiency by narrowing gaps. Similar logic explains why structural engineers left backwards gaps

wide. Like hardware engineers, they recognized that design modifications based on feedback required engineering

judgment that occupational members deemed too important to lose to automation routines.

 24

Liability concerns were a third factor that lessened the perceived importance of narrowing gaps in structural

engineering. The engineer who submitted a building’s design for county permit was held responsible should the

structure fail. Avoiding liability problems meant designing structures free of major error. Unlike hardware engineers,

structural engineers did not trust that software programs could adequately test for every identified type of error.

Additionally, structural engineers viewed each design as unique, with idiosyncratic design issues that required careful

reflection and re-examination through each step of design and analysis. Consequently, structural engineers were

reticent to narrow technology gaps, and in doing so abdicate control to the analysis applications, because they could

ill afford to lose the discretion to apply their occupational knowledge and expertise.

These deterrents to narrowing gaps in this field help explain why structural engineers had limited interaction with

individuals outside the firm who might aid them in bridge-building activities. Structural engineers occasionally did

send feedback to vendors about technology problems, typically via forms on the vendors’ web sites. However, they

did not engage in more proactive co-development or licensing activities. Additionally, structural engineers neither

attended conferences dedicated to new technologies nor did they communicate electronically with other members of

the profession in external firms about technologies.

Overall, for structural engineers, plying a path among interdependent technologies was primarily a solitary,

unassisted endeavor. Because senior engineers in particular viewed the navigation of wide gaps as being beneficial

for the cultivation of occupational design knowledge and as being prudent in the face of liability concerns, there was

little imperative to improve technology coordination by limiting the number of technologies that lined each gap in

structural engineering: If easy gap traversal was not the goal, then all traversal options, being rather equally arduous,

were viable, leaving no good reason to deny an engineer his preference. For similar reasons, engineers were not

encouraged to build bridges across technology gaps.

DISCUSSION

Implications for Theories of Organizing Work

At the broadest brush, interdependence among technologies looks quite similar to interdependence among

people. When complex tasks are divided into subtasks to be completed by different technologies (people), the

technologies (people) must integrate their component parts to finish the whole task and hence are interdependent

 25

(see Thompson 1967). The division of work among technologies (people) creates gaps; the completion of work

requires integration across these gaps. In short, interdependence entails minding the gaps created in the division of

work. Where technology interdependence departs from task interdependence is in the degree of coordination

required to mind these gaps successfully.

In the case of interdependence among people, organizations enact routines, plans and schedules in the hopes

of minding the gaps via strong coordination (Malone and Crowston 1994) . Communication is another main

coordinating mechanism (March and Simon 1958). Beyond explicit mechanisms such as routines and

communication, interdependent individuals may also implicitly coordinate work by anticipating the actions and needs

of team members and adjusting their own actions accordingly (Rico et al. 2008). Heath and Staudenmayer (2000)

argued that, despite this multiplicity of coordination mechanisms, individuals often neglect coordination across

interfaces because they are too cognitively preoccupied with the act of partitioning the large task into component

tasks (and with the individual components created by this partitioning) to pay sufficient attention to integrating the

components back into a whole. Heath and Staudenmayer further claimed that individuals may neglect coordination

when they inadequately communicate or insufficiently translate across interfaces. Neglecting coordination can be

detrimental because research on interdependence among people is universal in its contention that successful

completion of interdependent tasks requires coordination; the higher the interdependence, the greater is the need for

coordination (e.g. Ilgen 1999; Rico et al. 2008; Wageman 1995).

In the case of interdependence among technologies, efforts to mind the gaps typically focus on standardization

of input and output, as in the case of exchange and file formats for digital technologies. Problems of coordination

across interfaces, or what we have termed technology gaps, are frequently posed as problems of interoperability,

which refers to the ability of technologies to share data with ease (March et al. 2000). In our study, hardware

engineers coordinated technologies through bridge-building activities, such as writing scripts to automate the transfer

of data from one technology to another. Coordination was also the goal when hardware engineers purchased new

equipment that fit into the “design flow.” By contrast, structural engineers often neglected to coordinate their

technologies, but not for the reasons outlined by Heath and Staudenmayer. Rather, structural engineers purposefully

eschewed high coordination because they believed that navigating difficult interfaces promoted the development of

 26

necessary occupational design knowledge. Additionally, liability concerns and the inability of technologies to

thoroughly test building designs provided structural engineers with good reason to maintain difficult interfaces as

opportunities for examination of models and reflection upon their soundness. Thus, although engineering work in

both occupations we studied was divided across a range of technologies and had to be integrated for completion of

the whole, coordination was much greater in one occupation than in the other. In short, greater coordination of

technologies was not universally sought or necessary for successful completion of highly interdependent tasks.

Our findings have important implications for theories of organizing work. These findings suggest that the division

of work among technologies can support larger occupational and organizational goals. Correct placement of

technology gaps via this division can serve, for example, to enable quality inspection of the product, to meet training

needs of individuals, to preserve occupational knowledge, and possibly even to maintain the status distinction

between senior and junior engineers. One might infer, then, that incorrect placement would inhibit achievement of

these goals. Longer segments of work could be assigned to a single technology wherever occupational and

organizational goals did not require a break in the form of a technology gap. Overall, efforts to improve work

productivity by bridging technology gaps absent consideration of occupational and organizational goals could disrupt

beneficial, albeit time-consuming, gap traversal strategies that meaningfully contribute to the development of the

product or the workforce.

Implications for Theories of Social Dynamics of Work

Our findings also have implications for theories related to the social dynamics of work. Studies of

interdependence among people have shown that interdependence is related to cooperation, learning, citizenship,

helping, motivation and satisfaction (Sprigg et al. 2000; Van der Vegt et al. 2003; Wageman 1995; Wageman and

Baker 1997). For example, Wageman (1995) found that highly interdependent work groups exhibited high

cooperation, helping, and mutual learning that were less apparent among low interdependence groups. In the case of

interdependence among technologies, human effort is required to traverse gaps. Therefore, cooperation, helping and

other social dynamics in relation to technology interdependence can be viewed from the perspective of how

individuals interact with respect to gap traversal. When hardware engineers built bridges to traverse gaps, they were

engaged in cooperation and helping because bridges could be used by everyone (given that each engineer worked

 27

with the same suite of technologies, an outcome of how work was divided among people). Engineers saw bridge-

building actions as helping even though the first person aided by the bridge was the builder himself. These results

among hardware engineers suggest that, when coordination is the goal and when task interdependence is structured

such that many individuals experience technology interdependence identically, high technology interdependence will

be associated with high levels of helping until such time as all gaps are bridged.

Among structural engineers, social dynamics were heavily influenced by occupational hierarchy, a situation that

we did not observe among hardware engineers. Through their decisions to maintain multiple technologies and their

development of norms that downplayed bridge-building efforts, senior structural engineers acting as managers

shaped how junior engineers traversed technology gaps, forcing them to navigate rather than cross gaps. Senior

engineers designed explicit policies around technology interdependence and coordination that were not aimed at

managing technology most efficiently, for to do so would surely have involved streamlining the design flow and

automating the transfer of work products across technology gaps. Rather, their decisions with respect to technology

interdependence were aimed at managing engineers in a manner consistent with developmental goals and liability

concerns that reflected, respectively, occupational and industry concerns.

In the case of structural engineers, unlike that of hardware engineers, the most salient social dynamics appeared

to be independent of the structure of task interdependence. That is to say, senior structural engineers doubtless

would have maintained wide technology gaps even if, for example, work moved from one engineer to another

simultaneous to its transfer from one technology to another. In structural engineering, a change in who does what

with which technology would not alter the need to develop design knowledge or to examine models for their

soundness. By contrast, in hardware engineering, the social dynamics appeared to be an outcome of the particular

confluence of task and technology interdependence. Bridge building activities conceivably would look different if

hardware engineers handed off work to one another across technology gaps, because a bridge built from one’s own

technology to the one before it would only help oneself (enabling better transfer to one’s tool) and a bridge built to the

technology after it would only help the next engineer (enabling better transfer to that tool). Consequently, the value of

each bridge would be localized and helping would be less visible to the group as a whole. In short, if task and

technology interdependence were more closely aligned in hardware engineering, the motivation for building bridges

 28

might change and hence bridge-building activity might look different than in the case of pooled task interdependence

with sequential technology interdependence that we witnessed. Overall, across both occupations that we studied, it

seems clear that technology interdependence was related to a particular set of social dynamics.

Looking Forward

Given that knowledge tasks are becoming increasingly data driven (Carlson 2001; Dodgson et al. 2007; Markus

2004) and technologies are often used to automate routine work processes (Henderson 1998; Stohr and Zhao 2001;

Suchman 2007), might not all occupations eventually come to deal with technology gaps in a manner similar to

hardware engineers? One way of answering this question is to first consider whether structural engineers might

someday bridge technology gaps.

Far from being Luddites, structural engineers were early adopters of computerization more than fifty years ago

(Bédard 2006). With the introduction of the desktop computer in the 1980s, a growing market for applications

provided engineers with many options. Today, calls for integration across these technologies certainly exist, but given

the fragmentation of construction projects across architectural firms, engineering firms, and contractors, the calls are

primarily aimed at inter-firm communication and data-sharing (e.g. Rosenman et al. 2007; Yang and Zhang 2006).

Much of the ensuing discussion is thus ontological, centering on the construction of standard data and interface

formats to facilitate sharing of models across similar tools in different firms. In other words, the focus is on, for

example, allowing architects and engineers with different CAD tools to view the same geometric model, rather than

on helping a structural engineer to easily transfer her geometric model created in a CAD tool to her computational

tool for analysis. Although some research efforts are aimed at sharing data more easily up and down the structural

engineering design flow (e.g. Senescu et al. 2006), these efforts are not center stage. Given the imperatives imposed

by occupational development and industry liability, it seems doubtful that senior structural engineers will deem

technology gaps within their firm as problematic as gaps across their firm to architects and contractors. As a result,

structural engineers are unlikely to streamline technologies within their firms as hardware engineers have.

More broadly, in knowledge occupations beyond engineering, we suspect that a number of factors may render

the narrowing of wide gaps impractical, infeasible or unwise. Cost is one such possibility: Firms may find that the cost

of closing gaps is simply too high. Cost may especially prove a factor when in-house personnel lack the technical

 29

skills to manipulate technology interfaces, thus forcing the firm to consider contracting with external consultants,

purchasing off-the-shelf applications or hiring additional staff to close gaps. Quite a few knowledge occupations are

likely to surface issues of liability that, as in the case of structural engineers, lend high value to wide gaps; here,

lawyers, doctors, and stockbrokers seem among the likely candidates. Outsourcing or offshoring jobs at the task level

requires wide technology gaps to allow transfer of the work between individuals (Leonardi and Bailey 2008).

Similarly, task interdependencies across an organization’s various functions and departments may correspond with

wide technology gaps whose narrowing would impinge upon existing successful work practices.

Enterprise Resource Planning (ERP) systems, or large-scale commercial software applications intended to

integrate transaction-oriented work processes within a firm, arguably pose the greatest threat to the persistence of

wide technology gaps in many knowledge occupations. ERP system implementation closes wide gaps by replacing

prior independent computer applications, often unique to each function, with a set of interrelated programs in

functional modules. The modules and their interfaces are standardized and permit little modification (Robey et al.

2002). Thus, when a firm implements an ERP system, it ignores the possibility that wide gaps may have served

valuable purposes, often because the firm attributes their existence solely to the ad hoc acquisition of disjoint

software applications over time. Boudreau and Robey’s (2005) finding that ERP users developed workarounds even

in the face of such a rigid technology suggests that these users may have sought ways to overcome the loss of

control that accompanied the closing of wide gaps. Moreover, many organizations that adopt ERP systems find that

they need to maintain some legacy programs and that linking those programs to the ERP system is difficult, meaning

that narrow gaps are not easily achieved (Markus et al. 2000). Overall, research to date suggests that even large-

scale integrated business systems are unlikely to remove all wide gaps in an organization.

Decreases in technology costs prompt a second, alternative future to one in which most wide gaps are

narrowed, in that all occupations might come to look like structural engineering with its multiple technologies per task.

We can begin to evaluate the likelihood of this possibility by first considering whether hardware engineers might

someday possess duplicate technologies for each task.

In hardware engineering, tasks continue to grow in complexity. Consider the task of verification: Because

verification involves investigation of the total possible states of a chip’s storage elements, the size of the verification

 30

problem is essentially Moore’s Law squared (MacMillen et al. 2000). To handle the increasing complexity of

verification, hardware engineers have increased the level of abstraction at which they simulate models (Sangiovanni-

Vincentelli 2003). Additionally, new tools have been developed to formally check models (MacMillen et al 2000).

Because increasing complexity forces hardware engineers to simultaneously upgrade their current tools and add new

tools to perform new subtasks, hardware engineers are unlikely to spend money on duplicate technologies for any

step in the design flow even if technology prices begin to decrease.

More broadly, one can think of several other reasons why some occupations might opt for a single technology

per task. Perhaps, for example, an occupation may wish to ensure standardization of its product through use of a

single technology whose processes and output are well understood. Smooth interfaces among existing technologies

may similarly argue against the introduction of duplicate technologies for fear of introducing transfer problems that

might impact productivity or quality; this possibility seems most likely in occupations whose members’ skills do not

include extensive technology manipulation. Firms may avoid duplication when implementation and maintenance

costs of multiple technologies are prohibitive even though purchase costs are low. Finally, occupations that favor

automation of various work processes are apt to choose single technologies over multiple ones. In short, lower

technology costs are unlikely by themselves to lead to a proliferation of technology options, and with them many wide

gaps, in many occupations.

Although technology advances and decreases in cost are unlikely to alter our findings, there is still much to learn

about technology interdependence, particularly in relation to task interdependence. In our study, technology

interdependence was primarily sequential and task interdependence was primarily pooled. Because all engineers

worked with the same suite of technologies on their distinct tasks, any change in the management of technology

interdependence (e.g., the construction of a bridge) affected the work of all engineers (e.g., each engineer could

traverse the bridged gap faster than before), but did not alter their task interdependence. The separation of task

interdependence and technology interdependence in our study limits what we can say about their relationship. A

simple thought experiment, however, suggests that if the two forms of interdependence are more tightly aligned, then

changes in how technology interdependence is managed may have important implications for task interdependence

and for occupational roles.

 31

Consider the automotive engineering task of building and analyzing a digital simulation of a car crash. This task

may be divided between two people such that the first person, a design engineer, is charged with designing the car

and the second person, an analysis engineer, is charged with analyzing the design in a digital simulation. Sequential

task interdependence is high: The analysis engineer cannot run the simulation absent the design of the car.

Sequential technology interdependence also exists. The design engineer uses a CAD technology; the analysis

engineer uses a computer-aided engineering (CAE) technology. Output from the CAD technology serves as input to

the CAE technology, and vice versa in the case of feedback. If the technologies were to become highly coordinated

(e.g., if bridges were built to cross the forward and backward gaps), task interdependence could change dramatically.

High coordination could collapse the existing occupational division between design and analysis; if output from the

CAD technology automatically fed into the CAE technology, the distinct roles of “design engineer” and “analysis

engineer” might become obsolete. This thought experiment demonstrates that the level of coordination used to

manage interdependent technologies has the potential to alter task interdependence and hence to reshape

occupational roles. This experiment thus points to the potential of empirical research that explores the relationship

between technology interdependence and task interdependence:

Future studies of forms of knowledge work may also discover yet more strategies that individuals use in dealing

with technology gaps, adding to the typology that we created. New strategies may serve as behavioral clues to

different occupational or organizational goals that are manifested in the coordination of technology. Such studies

might also uncover situations in which individuals bridge backward gaps; the engineers in our study did not bridge

backward gaps because traversal of these gaps required intuition and expertise that could not be given over to

technologies. In other settings, traversing backward gaps may not require such skills. More thorough inquiry is also

required into the factors that shape technology interdependence; our study has uncovered several factors that

appeared instrumental in the occupations we studied, but many more are likely to exist. Overall, the concepts of

technology gaps and gap encounters that we put forward in this paper are but a first step in unraveling technology

interdependence; future studies may develop other concepts that deepen our understanding of this construct.

 32

REFERENCES

Bachrach, D.G., B. Powell, E.R. Bendoly, R. G. 2006. Organizational citizenship behavior and performance
evaluations: Exploring the impact of task interdependence. Journal of Applied Psychology 91(1) 193-201.

Barley, S.R. 2005. What we know (and mostly don't know) about technical work. S. Ackroyd, R. Batt, P. Thompson,
P.S. Tolbert, eds. The Oxford handbook of work and organization. Oxford University Press, Oxford, 376-403.

Bédard , C. 2006. On the adoption of computing and IT by industry: The case for integration in early building design.
Pringer, Heidelberg.

Boland, R.J., K. Lyytinen, Y. Yoo. 2007. Wakes of innovation in project networks: The case of digital 3-D
representations in architecture, engineering, and construction. Organization Science 18(4) 631-647.

Boudreau, M.-C., D. Robey. 2005. Enacting integrated information technology: A human agency perspective.
Organization Science 16(1) 3-18.

Campbell-Kelly, M. 2003. From airline reservations to Sonic the Hedgehog: A history of the software industry. MIT
Press, Cambridge, MA.

Carlson, P.A. 2001. Information technology and organizational change. Journal of Technical Writing and
Communication 31(1) 77-95.

Carrillo, J.E., C. Gaimon. 2000. Improving manufacturing performance through process change and knowledge
creation. Management Science 46(2) 265-288.

de Jong, S.B., G.S. Van der Vegt, E. Molleman. 2007. The relationships among asymmetry in task dependence,
perceived helping behavior, and trust. Journal of Applied Psychology 92(6) 1625-1637.

Dodgson, M., D.M. Gann, A. Salter. 2007. "In case of fire, please use the elevator": Simulation technology and
organization in fire engineering. Organization Science 18(5) 849-864.

Downey, G.L., A. Donovan, T.J. Elliott. 1989. The invisible engineer: How engineering ceased to be a problem in
science and technology studies. Knowledge and Society 8 189-216.

Ecker, K.H., J.N.D. Gupta. 2005. Scheduling tasks on a flexible manufacturing machine to minimize tool change
delays. European Journal of Operations Research 164(3) 627-638.

Espinosa, J.A., J. Lerch, R. Kraut. 2004. Explicit vs. implicit coordination mechanisms and task dependencies: One
size does not fit all. E. Salas, M. Fiore, eds. Team cognition: Understanding the factors that drive process and
performance. APA Books, Washington, DC, 107-129.

Faraj, S., L. Sproull. 2000. Coordinating expertise in software development teams. Management Science 46 1554-
1568.

Glaser, B. 1978. Theoretical sensitivity. The Sociological Press, Mill Valley, CA.

Gray, A.E., A. Seidmann, K.E. Stecke. 1993. A synthesis of decision models for tool management in automated
manufacturing. Management Science 39(5) 549-567.

 33

Guzzo, R.A., G.P. Shea. 1992. Group performance and intergroup relations in organizations. M.D. Dunnette, L.M.
Hough, eds. Handbook of industrial and organizational psychology, 2nd ed. Consulting Psychologists Press, Palo
ALto, CA, 269-313.

Heath, C., N. Staudenmayer. 2000. Coordinating neglect: How lay theories of organizing complicate coordination in
organizations. B.M. Staw, R.I. Sutton, eds. Research in organizational behavior. JAI Press, Greenwich, 153-191.

Henderson, K. 1998. The role of material objects in the design process: A comparison of two design cultures and
how they contend with automation. Science, Technology & Human Values 23(2) 139-174.

Ilgen, D.R. 1999. Teams in organizations: Some implications. American Psychologist 54 129-139.

Langfred, C.W. 2007. The downside of self-management: A longitudinal study of the effects of conflict on trust,
autonomy and task interdependence in self-managing teams. Academy of Management Journal 50(4) 885-900.

Leonardi, P.M., D.E. Bailey. 2008. Transformational technologies and the creation of new work practices: Making
implicit knowledge explicit in task-based offshoring. MIS Quarterly 32(2) 411-436.

Linden, R.C., S.J. Wayne, L.K. Bradway. 1997. Task interdependence as a moderator of the relation between group
control and performance. Human Relations 50(2) 169-181.

MacMillen, D., M. Butts, R. Composano, D. Hill, T.W. Williams. 2000. An industrial view of electronic design
automation. IEEE Transactions on computer-aided design of integrated circuits and systems 19(12) 1428-1448.

Malone, T.W., K. Crowston. 1994. The interdisciplinary study of coordination. ACM Computing Surveys 26(1) 87-119.

March, J.G., H. Simon. 1958. Organizations. Wiley, New York.

March, S., A. Hevner, S. Ram. 2000. Research commentary: An agenda for information technology research in
heterogeneous and distributed environments. Information Systems Research 11(4) 327-341.

Markus, M.L. 2004. Technochange management: Using it to drive organizational change. Journal of Information
Technology 19 4-20.

Markus, M.L., S. Axline, D. Petrie, C. Tanis. 2000. Learning from adopters' experiences with ERP: Problems
encountered and success achieved. Journal of Information Technology 15 245-265.

Mohr, L. 1971. Organizational technology and organizational structure. Administrative Science Quarterly 16 444-459.

Morisi, T.L. 1996. Commercial banking transformed by computer technology. Monthly Labor Review 119(8) 30-36.

Naveh, E., M. Erez. 2004. Innovation and attention to detail in the quality improvement paradigm. Management
Science 50 1576-1586.

Rico, R., M. Sanchez-Manzanares, F. Gil, C. Gibson. 2008. Team implicit coordination processes: A team
knowledge-based approach. Academy of Management Review 33(1) 163-184.

Robey, D., J.W. Ross, M.-C. Boudreau. 2002. Learning to implement enterprise systems: An exploratory study of the
dialectics of change. Journal of Management Information Systems 19 17-46.

Rosenman, M.A., G. Smith, M.L. Maher, L. Ding, D. Marchant. 2007. Multidisciplinary collaborative design in virtual
environments. Automation in Construction 16 37-44.

 34

Sangiovanni-Vincentelli, A. 2003. The tides of EDA. IEEE Design & Test of Computers 59-75.

Senescu, R., R. Mole, A. Fresquez. 2006. A case study in structural drafting, analysis and design using an integrated
intelligent model. Joint International Conference on Computing and Decision Making in Civil and Building
Engineering, Montreal, CA.

Sharma, R., P. Yetton. 2003. The contingent effects of management support and task interdependence on successful
information systems implementation. MIS Quarterly 27(4) 533-555.

Shea, G.P., R.A. Guzzo. 1987. Groups as human resources. G.R. Ferris, K.M. Rowlands, eds. Research in
personnel and human resources management. JAI Press, Greenwich, CT, 323-367.

Sinreich, D., B. Nelkenbaum. 2006. Determining production sequences for single-stage multifunctional machining
systems based on the tradeoff between fixture cost, re-fixturing and tool replenishment. IIE Transactions 38(10) 813-
828.

Sprigg, C.A., P.R. Jackson, S.K. Parker. 2000. Production teamworking: The importance of interdependence and
autonomy for employee strain and satisfaction. Human Relations 53(11) 1519-1542.

Staum, J. 2001. Simulation in financial engineering. Proceedings of the 2001 Winter Simulation Conference 123-133.

Stohr, E.A., J.L. Zhao. 2001. Workflow automation: Overview and research issues. Information Systems Frontiers
3(3) 281-296.

Strauss, A., J. Corbin. 1998. Basics of qualitative research: Techniques and procedures for developing grounded
theory, 2nd ed. Sage, Thousand Oaks, CA.

Streufert , S. 2001. Improving medical care: The use of simulation technology. Simulation & Gaming 32(2) 164-174.

Suchman, L. 2007. Human–machine reconfigurations: Plans and situated actions. Cambridge University Press,
Cambridge

Thompson, J.D. 1967. Organizations in action: Social science bases of administrative theory. McGraw-Hill, New
York.

van der Vegt, G.S., O. Janssen. 2003. Joint impact of interdependence and group diversity on innovation. Journal of
Management 29(5) 729-752.

Van der Vegt, G.S., E. Van de Vliert. 2005. Effects of perceived skill dissimilarity and task interdependence on
helping in work teams. Journal of Management 31(1) 73-89.

Van der Vegt, G.S., E. Van de Vliert, A. Oosterhof. 2003. Informational dissimilarity and organizational citizenship
behavior: The role of intrateam interdependence and team identification. Academy of Management Journal 46(6)
715-727.

Wageman, R. 1995. Interdependence and group effectiveness. Administrative Science Quarterly 40(1) 145-180.

Wageman, R., G. Baker. 1997. Incentives and cooperation: The joint effects of task and reward interdependence on
group performance. Journal of Organizational Behavior 18(2) 139-158.

Yang, Q.Z., Y. Zhang. 2006. Semantic interoperability in building design: Methods and tools. Computer-Aided Design
38 1099-1112.

 35

Zantek, P.F., G.P. Wright, R.D. Plante. 2002. Process and product improvement in manufacturing systems with
correlated stages. Management Science 48 591-606.

Zuboff, S. 1988. In the age of the smart machine: The future of work and power. Basic Books, New York.

 36

Figure 1. Technology Interdependence in Hardware Engineering

Figure 2. Technology Interdependence in Structural Engineering

Wide

Narrow Narrow Wide

Wide Wide

Task 1 Task 2 Task 3 Task 4

Technology B Technology C Technology D Technology A

Wide Wide Wide

Wide Wide Wide

Task 1 Task 2

Technology
A1

Technology
A2

Technology
A3

Technology
B1

Technology
B2

Technology
C1

Technology
C2

Technology
C3

Technology
D1

Technology
D2

Task 3 Task 4

 37

Figure 3. Strategies at Wide and Narrow Gaps in a Work Flow

Technology B Technology A Technology B Technology A

bridge

Options: Navigate
 Bridge
 Bypass
 Stand still

Wide Gap

flow of work

Options: Cross
 Expand
 Bypass
 Stand still

Narrow Gap

flow of work

 38

Table 1. Direction of Workflow Across Gaps by Occupation

N Percentage N Percentage

Forward 101 80% 154 84%

Backward 26 20% 29 16%

Total 127 100% 183 100%

Structural Engineering Hardware Engineering

Table 2. Size of Gap by Direction and Occupation

N Percentage N Percentage

Size of Gap Wide 118 93% 76 42%

Narrow 9 7% 107 58%

Total 127 100% 183 100%

Forward Distribution Wide 92 91% 47 31%

Narrow 9 9% 107 69%

Total 101 100% 154 100%

Backward Distribution Wide 26 100% 29 100%

Narrow 0 0% 0 0%

Total 26 100% 29 100%

Structural Engineering Hardware Engineering

Table 3. Strategies for Dealing with Gaps by Occupation

Strategy N Percentage N Percentage

Navigate 117 92% 72 39%

Bridge 0 0% 3 2%

Bypass 0 0% 1 1%

Stand still 1 1% 0 0%

Cross 8 6% 105 57%
Expand 1 1% 2 1%
Total 127 100% 183 100%

Structural Engineering Hardware Engineering

