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Abstract— D’yachkov-Rykov in [1-2] presented optimal constructions of superimposed
codes and designs. Their constructions are based on the g-ary codes, that were studied
by Kautz-Singleton. This paper improves D’yachkov-Rykov’s results concerning optimal
superimposed designs.

1. Notations and Formulation of the Results.

Let 1 < s <t 1<k<t N >1beintegers and X =|| z;(u) ||, i = 1,2,...,N, u
1,2,...,t be a binary (N x t) matrix (code) with columns (codewords) x(1),x(2),...,x(t
and rows Xi,Xa, ..., Xy, where x(u) = (x1(u), x2(u),...,xx(u)) and z; = (z;(1),...,z;(t)).

t
Let kK = max; > x;(u) be the mazimal weight of rows.
u=1

The code X is called a superimposed (s,t)-design if all the Boolean sums composed of
not more than s columns are distinct.

Definition 1. An (N xt)-matrix X is called a superimposed (s, ¢, k)-design of length N,
size t, strength s and constraint k if code X is a superimposed (s, t)-design whose maximal
row weight is equal to k.

By N(s,t, k) we denote the minimal possible length of the superimposed (s, t, k)-design.

In [1] the following fact was proved:

For any s > 3, k > s+ 1, ¢ = k*! there is an optimal superimposed (s,kq,k)-design of
length sq. The following theorem improves this result in case s = 3.
Theorem: Let 4 < k, ¢ > k? be integers. Then N (s, kq, k) = 3q.

Proof of the Theorem.

To prove the theorem we need the following notations and definitions.

Let ¢ > k >4 ,t = kq be integers,

A, =[q] ={1,...,q} be a g-nary alphabet,

Code B =|| bj(u) || j=1,2,3, u=1,...t be a g-nary (3 x t)-matrix with elements
b;j(u) from A,

b(u) = (b1 (u),ba(u),bs(u)), u=1,...t, be columns (codewords).

Definition 2. Code B is called an (g, k, 3)-homogeneous code if for any j = 1,2,3 and
any a from A,, the number of a-entries in the j — th row b; is equal to k.

We call a homogeneous (¢, k,3)-code B a 2-disjunct code if the Hamming distance of
code H(B) > 2.
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Let e = (e1,e2,e3) be an arbitrary 3-subset of set [t] = {1,...t}. For a given code
B and any j = 1,2,3, denote by A;(e, B)-the set of all pairwise distinct elements of the
sequence bj (61), b]' (62), b]’ (63).

Definition 3. Let n < 3 be arbitrary integer. 2-disjunct code B is called an 3-separable
code if for an arbitrary n-subset e = (ey,...,e,) of set [t], there exists the possibility to
identify this subset on the basis of sets:

Al(e, B), Ag(e, B), Ag(e, B)

Definition 4. Homogeneous code B is called a 3-hash if for an arbitrary 3-subset
e = (e1,e9,€e3), of the set [t], there exists a coordinate j = 1,2, 3, such that all the elements
bj(e1),bj(e2),b;(es) are all different.

Let a symbol b from [q] of (g, k, 3) separable code be replaced by the binary g-sequence
in which all the elements are 0’s, except the element with the number b. As a result we
obtain a binary code Xp which is a superimposed design.

Consider an arbitrary (g, k, 3) 2-disjunct code B. We introduce a characteristic (¢ X q)-
matrix C' with the elements from alphabet A, 1 = {*,[q]} = {*,1,2,...q}. Where

co— 1 if in X there is a codeword (i, j, a);
Y1 %, otherwise.

We say that matrix B is identified by the characteristic matrix C' which will be called
C(gq, k)-matrix.

Matrix C' is an C(q, k)-matrix if and only if C' has the following properties:

1. For any z from [g] there are exactly k pairs (4, j) such that C;; = z. Hence, there
are ¢(¢ — k) = in C(q, k).

2. For any p, 1, j from [g] neither Cp; = Cp; # * nor C;, = Cjp, # * where i # j. Hence
all the numbers in one column or row are distinct.

3. For any column (row) of C' the number of %-entries s equal to k.

Denote by Crs(q, k)-matrices of hash&separable code.

It is possible to prove that matrix C' is Cys(q, k) if and only if C' has the properties
1 — 3 and the following 2 properties.

4. For any i, j, k,p from [¢] such that C;; = Ckp = a the C;;, = Cy; = *. Hence there
are no submatrixes of the form of:

a b
(")

5. If C;, = Cjp = a and Cy, = Cj, = b then C;, # Cjp Hence, in Cys(q, k) there are
no submatrixes of the form of:

*x a c
* b
c b x

Lemma 1: Let k& > 4, ¢ be integers. In case ¢ > k than there exists an Cyg(ck, k).
Proof: By @ we denote a ((c¢ + k) x k)-matrix whose elements are defined as follows:

0, = JH, ifl<i<e
W7 ()4, ifet+l1<i<ctk
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Let p be some integer 1 < p < ¢. By B} we denote a (k x k)-matrix whose " row is the

(i + p)t" row of matrix Q.We construct

B

One can easily check that this matrix has all the properies 1 — 4.

Lemma 2: Let k > 4, ¢ be integers. In case ¢ > k? than there exists an Cgs(q, k).

Proof: As q > k? ¢ = ck + r where r < k and ¢ > r. Here we explain an algorithm of
constructing Cys(k, q).

Algorithm:
Step 1: According to the method explained in Lemma 2 we can simply construct a
Cus(ck,k) where on the diagonal there are ¢ squares-(k x k) We denote the first k of
them as Ay, Ao, ..., Ag.
Step 2: (By this step we extend our alphabet with new numbers ck+1,ck+2,...,ck+r).
In every A; r numbers {(i — )k +1,(¢i — D)k +2,...,(i — 1)k + r} (r first numbers) are
changed to the numbers ck + 1,ck +2,...,ck+r.
Step 3: (By this step we change the size of the square).
We construct new squares D; A; (1 <14 <r). The size of the D; will be g+1. On the diagonal
positions we place *. On the sub-diagonal line (positions C;(;_1y where 2 < i < k + 1) the
elements i,k +1,...,k(k — 1)+ will be placed in some order. If in square A; there also are
elements from {i,k +1i,...,k(k — 1) + ¢} they will be placed at the positions symmetric to
their equal on the sub-diagonal line. All the other elements from A; will be transfered to D;
in arbitrary fixed order. There will be enough place as changing the size of the square we’ve
added 2k + 1 new positions to it. And after that we’ve filled k positions with the numbers
ik+1,...,k(k—1)+1iand k+ 1 with *.
Step 4: Changing the matrices A; to D; on the diagonal of C(ck, k) we get an C(q, k).

One can easily check that all the properies 1 — 4 are fulfilled. So Lemma 2 is proved.

To illustrate the algorithm the following example is given.

Example: Let k =3, ¢ =11 = ¢ =3, r = 2. Instead of 10 we write a, and instead
of 11 we write b.
Step 1:

C(9,3) =

P T T e BN
¥ X ¥ ¥ ¥ ¥ 00 LN
X X K X X ¥ OODW
EIEE RN N . 3
¥ ¥ ¥ DO OO U X X ¥
X X K WO O ¥ ¥
N T T T
UMD 00 % % % % % %
D W WO ¥ F ¥ X X X%

Step 2:

A= Ay = A3:>
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Step 3:

* a b 3 x 2 b 8

1 x 4 6 2 x a 3
Di=ls 4« 7] P25 |75 « 9
9 8 7 =« 6 1 9 =x

Step 4:

x a b 3 *x *x x * *x * *

1 = 4 6 % % % % * % %

5 4 % 7T % * *x *x x x x

9 8 7 * x * * % x *

x % x % *x 2 b 8 *x x x
C1,3)=|* * * * 2 *x a 3 * * =
* % % % 7 5 x 9 x x %

x % % x 6 1 9 x x x %

¥ % *x x % * *x % g b 9

* % ok % *x ok *x x 1 2 3

* % * % *x * *x x 4 5 6

From [1] it is known that N (3, kq, k) > 3¢ where ¢ > k > 4. Lemma 2 proves that for
the case of ¢ > k? there is a method of constructing designs of length 3¢q. Hence, in this case
N(3,kq, k) = 3q and theorem is proved.
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