Some Results on Slant Submanifold of Trans-Sasakian Manifolds

Somashekhara G^{1} and $*$ Bhavya K^{2}
1.Department of Mathematics, M.S.Ramaiah University of Applied Sciences, Bengaluru,India.
2.Department of Mathematics, Presidency University, Bengaluru,India.

Abstract

The objective of this paper is to study slant sub manifolds of trans-sasakian manifold when structure tensor field φ is killing and have obtained some results under certain conditions.

2010 Mathematics Subject Classification: 53C15, 53C40, 53D10.

Keywords:Trans-sasakian manifold, second fundamental form, slant submanifold, killing structure.

1. Introduction

The slant submanifold for an almost Hermitian manifold is defined by Chen [8], in which generalisation of both holomorphic and totally real submanifolds are discussed. The concept of Slant submanifolds were given by Chen [2], and also the examples were discussed by Chen and Tazawa [9, 10]. In 1985, Oubina [3] introduced a new class of contact manifolds namely Trans-sasakian manifold. Many authors [4, $5,6,7]$ have studied this manifold and has obtained many interesting results. The concept of slant immersions into almost contact metric manifolds was introduced by Lotta [12, 13]. Later, the geometry of slant submanifold is studied by Cabrerizo et al. [1, 15] in more specialized settings of Kcontact and sasakian manifolds. Also Gupta [11] et al. defined and studied about Slant submanifold of a Kenmotsu manifold. Killing structures on contact manifolds was studied by Blair [14].

In this paper we extend the study to find the condition for killing structure of slant submanifolds of trans-sasakian manifold.

2. Preliminaries

Let (M, g) be an almost contact metric manifold of dimension $(2 \mathrm{n}+1)$ equipped with structure $(\varphi, \xi, \eta, \mathrm{g})$ consisting of a $(1,1)$ tensor field φ, a vector field ξ, a 1 -form η and a Riemannian metric g satisfying,

$$
\begin{gather*}
\varphi^{2} X=-X+\eta(X) \xi, \eta(\xi)=1, \varphi \xi=0, \eta(\varphi X)=0, \tag{2.1}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X) \underset{(2.2)}{g}(X, \xi), g(X, \varphi Y)=-g(\varphi X, Y) .
\end{gather*}
$$

An almost contact metric manifold is called trans-sasakian manifold if

$$
\begin{gather*}
\left(\bar{\nabla}_{\mathrm{X} \varphi}\right) \mathrm{Y}=\alpha[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}]+\beta[\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \varphi \mathrm{X}] \tag{2.3}\\
\left(\bar{\nabla}_{\mathrm{x} \eta) \mathrm{Y}}=-\alpha \mathrm{g}(\varphi \mathrm{X}, \mathrm{Y})+\beta \mathrm{g}(\varphi \mathrm{X}, \varphi \mathrm{Y}),\right. \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{x}} \xi\right)=-\alpha(\varphi \mathrm{X})+\beta(\mathrm{X}-\eta(\mathrm{X}) \xi), \tag{2.5}
\end{equation*}
$$

where $\bar{\nabla}$ denotes the Levi-civita connection on \bar{M}. Let M be a n-dimensional Riemannian manifold with induced metric g isometrically immersed in \bar{M}. We denote by TM, the Lie algebra of vector fields on M and by $\mathrm{T}^{\perp} \mathrm{M}$ the set of all vector fields normal to M .

For $\mathrm{X} \in \mathrm{TM}$ and $\mathrm{N} \in \mathrm{T}^{\perp} \mathrm{M}$, we write

$$
\begin{align*}
& \varphi \mathrm{X}=\mathrm{TX}+\mathrm{NX}, \tag{2.6}\\
& \varphi \mathrm{~V}=\mathrm{tV}+\mathrm{nV}, \tag{2.7}
\end{align*}
$$

where TX and NX denotes the tangential and normal component of φX. Similarly tV and nV denotes the tangential and normal component of φV.

Definition: Let M be a submanifold of a transsasakianmanifold \bar{M}. For each non-zero vector X tangent to M making an angle $\theta(\mathrm{x})$, such that $\theta(\mathrm{x}) \in[0, \pi / 2]$, between $\varphi \mathrm{X}$ and $T_{x} M$ is called the slant angle of M. For vector field $X \in$ $\Gamma(\mathrm{TM})$, for $\mathrm{x} \in \mathrm{M}$, if the slant angle is constant, then the submanifold is also called the slant submanifold. If $\theta=0$, then the submanifold is called invariant submanifold. If $\theta=\pi / 2$, then it is called anti-invariant submanifold. If $\theta(x) \in(0, \pi / 2)$, then it is called proper-slant submanifold

Let ∇ be the Riemannian connection on M , then the Gauss and Weingarten formulae are given by,

$$
\begin{align*}
& \bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \mathrm{Y}), \tag{2.8}\\
& \bar{\nabla}_{\mathrm{X}} \mathrm{~N}=\nabla^{+}{ }_{\mathrm{X}} \mathrm{~N}-\mathrm{A}_{\mathrm{N}} \mathrm{X}, \tag{2.9}
\end{align*}
$$

for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$ and $\mathrm{N} \in \mathrm{T}^{\perp} \mathrm{M}$ of \bar{M}.
∇^{\perp} is the connection in the normal bundle $T^{\perp} \mathrm{M}$ of M, h is the second fundamental form of M and A_{N} is the Weingarten endomorphism associated with N . The second fundamental form h and the shape operator A related by,

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018)

$$
\begin{equation*}
\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \mathrm{N})=\mathrm{g}\left(\mathrm{~A}_{\mathrm{N}} X, \mathrm{Y}\right) . \tag{2.10}
\end{equation*}
$$

If T is the endomorphism defined by (2.6) then,

$$
\begin{equation*}
\mathrm{g}(\mathrm{TX}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \mathrm{TY}) . \tag{2.11}
\end{equation*}
$$

Thus T^{2} which is denoted by Q is self adjoint.

$$
\begin{equation*}
\mathrm{T}^{2}=\mathrm{Q} \tag{2.12}
\end{equation*}
$$

On the otherhand, Gauss and Weingarten formulae together with (2.3) and (2.6) implies that,

$$
\begin{gather*}
\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}=\alpha[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}]+\beta[\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y} \\
) \mathrm{TX}]+\mathrm{A}_{\mathrm{NY}} \mathrm{X}+\operatorname{th}(\mathrm{X}, \mathrm{Y}),(2.13) \\
\left(\nabla_{\mathrm{X}} \mathrm{~N}\right) \mathrm{Y}=-\beta \eta(\mathrm{Y}) \mathrm{NX}-\mathrm{h}(\mathrm{X}, \mathrm{TY})+\operatorname{nh}(\mathrm{X}, \mathrm{Y}), \tag{2.14}
\end{gather*}
$$

for any $X, Y \in T M, A$ tensor field φ is said to be killing if,

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{X} \varphi}\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y} \varphi}\right) \mathrm{X}=0 \tag{2.15}
\end{equation*}
$$

3. Slant submanifold of Trans-sasakian manifold

In this section, we consider slant submanifold of Transsasakian manifold.

Theorem 3.1:Let M be a n dimensional slant submanifold of trans-sasakianmanifold \bar{M}, then $-\alpha \mathrm{TX}+\beta[\mathrm{X}-\eta(\mathrm{X}) \xi]=$ $\nabla_{x} \xi$,

$$
\begin{equation*}
\text { and, } \quad h(X, \xi)=-\alpha N X \tag{3.1}
\end{equation*}
$$

Proof:Put $Y=\xi$ in (2.8) we have,

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{x}} \xi=\nabla_{\mathrm{x}} \xi+\mathrm{h}(\mathrm{X}, \xi) . \tag{3.3}
\end{equation*}
$$

From (2.5) and (2.6) we get,

$$
\begin{equation*}
-\alpha \mathrm{TX}-\alpha \mathrm{NX}+\beta[\mathrm{X}-\eta(\mathrm{X}) \xi]=\nabla_{\mathrm{x}} \xi+\mathrm{h}(\mathrm{X}, \xi) . \tag{3.4}
\end{equation*}
$$

Equating tangential and normal components, we get equations (3.1) and (3.2).

Hence the proof.
Theorem 3.2: Let M be a n dimensional slant submanifold of trans-sasakian manifold \bar{M} such that ξ is normal to M then for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$, we have

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\alpha\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}-\alpha\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}-2 \alpha \beta \mathrm{~g}(\mathrm{TY}, \mathrm{X}) \xi, \tag{3.5}
\end{equation*}
$$

Where R is the curvature tensor field associated to the metric induced by \bar{M} on M.

Proof: From Riemannian curvature tensor, we have
$R(X, Y) \xi=\nabla_{X} \nabla_{Y} \xi-\nabla_{Y} \nabla_{X} \xi-\nabla_{[X Y} \xi$,

Taking covariant diff erentiation with respect to Y on eqn(3.1), we get

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

$$
\begin{gathered}
\nabla_{\mathrm{Y}} \nabla_{\mathrm{X}} \xi=-\alpha\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}-\alpha \mathrm{T}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+\beta \nabla_{\mathrm{Y}} \mathrm{X}-\beta\left(\nabla_{\mathrm{Y}}\right. \\
\eta)(\mathrm{X}) \xi-\beta \eta(\mathrm{X}) \nabla_{\mathrm{Y}} \xi-\beta \eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \xi .(3.7)
\end{gathered}
$$

Similarly by interchanging X to Y and Y to X , we get

$$
\begin{aligned}
& \nabla_{\mathrm{X}} \nabla_{\mathrm{Y}} \xi=-\alpha\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}-\alpha \mathrm{T}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\beta \nabla_{\mathrm{X}} \mathrm{Y}-\beta\left(\nabla_{\mathrm{X}} \eta\right)(\mathrm{Y} \\
&) \xi-\beta \eta(\mathrm{Y}) \nabla_{\mathrm{X}} \xi-\beta \eta\left(\nabla_{\mathrm{X}} \mathrm{Y}\right) \xi .(3.8)
\end{aligned}
$$

Also,

$$
\begin{gathered}
\nabla_{[X Y]} \xi=-\alpha \mathrm{T}\left(\nabla_{\mathrm{X}} \mathrm{Y}\right)+\alpha \mathrm{T}\left(\nabla_{\mathrm{Y}} \mathrm{X}\right)+\beta \nabla_{\mathrm{X}} \mathrm{Y}-\beta \nabla_{\mathrm{Y}} \mathrm{X}-\beta \eta\left(\nabla_{\mathrm{X}} \mathrm{Y}\right) \xi \\
+\beta \eta\left(\nabla_{\mathrm{Y}} \mathrm{X}\right) \xi .(3.9)
\end{gathered}
$$

Substitute (3.7), (3.8) and (3.9) in (3.6) we get,

$$
\begin{gathered}
R(X, Y) \xi=\alpha\left(\nabla_{Y} T\right) X-\alpha\left(\nabla_{X} T\right) Y+\beta\left(\nabla_{Y} \eta\right)(X) \xi-\beta\left(\nabla_{X} \eta\right)(Y \\
) \xi-\beta \eta(Y) \nabla_{X} \xi+\beta \eta(X) \nabla_{Y} \xi .(3.10)
\end{gathered}
$$

Using (2.4) and (3.1) we get,

$$
\begin{align*}
& \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\alpha\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}-\alpha\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}-\alpha \beta \mathrm{g}(\varphi \mathrm{Y}, \mathrm{X}) \xi+ \\
& \quad \alpha \beta \mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}) \xi+\alpha \beta[\eta(\mathrm{Y}) \mathrm{TX}-\eta(\mathrm{X}) \mathrm{TY}]+ \\
& \beta^{2}[\eta(\mathrm{X}) \mathrm{Y}-\eta(\mathrm{Y}) \mathrm{X}] . \tag{3.11}
\end{align*}
$$

Using (2.6) we get,

$$
\begin{align*}
& \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\alpha\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}-\alpha\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}-\alpha \beta \mathrm{g}(\mathrm{TY}, \mathrm{X}) \xi+ \\
& \quad \alpha \beta \mathrm{g}(\mathrm{TX}, \mathrm{Y}) \xi+\alpha \beta[\eta(\mathrm{Y}) \mathrm{TX}-\eta(\mathrm{X}) \mathrm{TY}]+ \\
& \beta^{2}[\eta(\mathrm{X}) \mathrm{Y}-\eta(\mathrm{Y}) \mathrm{X}] . \tag{3.12}
\end{align*}
$$

If ξ is orthogonal to X, Y then we get (3.5)
Hence the proof.

Lemma 1:

Let M be a n dimensional slant submanifold of transsasakian manifold \bar{M} with $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=0$, then for any $\mathrm{X}, \mathrm{Y} \in$ TM, we have

$$
\begin{equation*}
\left(\nabla_{Y} T\right) X-\left(\nabla_{X} T\right) Y=2 \beta g(T Y, X) \xi \tag{3.13}
\end{equation*}
$$

Proof: Put $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=0$ in equation (3.5) we get (3.13).
Hence the proof.

Lemma 2 :

Let M be a n dimensional anti-invariant submanifold of trans-sasakian manifold \bar{M} with $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=0$, then for any $X, Y \in T M$, we have

$$
\begin{equation*}
\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}=\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y} \tag{3.14}
\end{equation*}
$$

Proof: Since M is anti-invariant submanifold of transsasakianmanifold \bar{M}, we have

$$
\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y})=0 .
$$

Therefore from (3.11), we have

$$
\begin{equation*}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=\alpha\left[\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}-\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}\right] \tag{3.15}
\end{equation*}
$$

Put $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \xi=0$ in the above equation we get (3.14).
Hence the proof.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018)

4. Slant submanifold of Trans-sasakian manifold with killing structure

In this section, we consider slant submanifold of Transsasakian manifold with killing structure tensor field φ of type $(1,1)$.

From [11] we know that If M is a submanifold of an almost contact metric manifold \bar{M} such that $\xi \in$ TM. Then, M is slant if and only if there exists a constant $\lambda \in[0,1]$ such that

$$
\begin{equation*}
T^{2} \mathrm{X}=-\lambda(\mathrm{X}-\eta(\mathrm{X}) \xi) . \tag{4.1}
\end{equation*}
$$

Further more, if θ is the slant angle of M, then $\lambda=\cos ^{2} \theta$. Also for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$,
we have,

$$
\begin{align*}
& g(T X, T Y)=\cos ^{2} \theta(g(X, Y)-\eta(X) \eta(Y)), \tag{4.2}\\
& g(N X, N Y)=\sin ^{2} \theta(g(X, Y)-\eta(X) \eta(Y)) . \tag{4.3}
\end{align*}
$$

Theorem 4.3.:Let M be a n dimensional slant submanifold of trans-sasakian manifold \bar{M} with killing structure tensor field φ, then M is slant if,

$$
\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) T X+\eta(X) T Y]=0,
$$

and

$$
\begin{equation*}
\eta(Y) N X+\eta(X) N Y=0 . \tag{4.5}
\end{equation*}
$$

Proof: Interchange X to Y and Y to X in equation (2.3)we have,

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{Y}} \varphi\right) \mathrm{X}=\alpha\left[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi^{-}-\eta(\mathrm{X}) \mathrm{Y}\right]+\beta\left[\mathrm{g}(\varphi \mathrm{Y}, \mathrm{X}) \xi^{-} \eta(\mathrm{X}) \varphi \mathrm{Y}\right] . \tag{4.6}
\end{equation*}
$$

Add (2.3) and (4.6) we get,

$$
\begin{gather*}
\left(\bar{\nabla}_{\mathrm{X} \varphi}\right) \mathrm{Y}+\left(\bar{\nabla}_{\mathrm{Y} \varphi) \mathrm{X}}=\alpha[2 \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}]-\beta[\eta(\mathrm{Y}\right. \\
) \varphi \mathrm{X}+\eta(\mathrm{X}) \varphi \mathrm{Y}] . \quad(4.7) \tag{4.7}
\end{gather*}
$$

If φ has killing structure field then from (2.15) and (4.7), we have
$\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) \varphi X+\eta(X) \varphi Y]=0$.

Using equation (2.6), we get,
$\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]-\beta[\eta(Y) T X+\eta(X) T Y+$ $\eta(\mathrm{Y}) \mathrm{NX}+\eta(\mathrm{X}) \mathrm{NY}]=0$.

Comparing tangential and normal components in the above expression we get (4.4) and (4.5). Hence the proof.

Theorem 4.4.:Let M be a n dimensional slant submanifold of trans-sasakian manifold \bar{M} with killing structure tensor field φ, then M is slant if and only if,

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y+\left(\nabla_{Y} Q\right) X=0, \tag{4.9}
\end{equation*}
$$

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)
and

$$
\begin{gathered}
\beta[2 \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \xi+\eta(\mathrm{Y}) \mathrm{X}+\eta(\mathrm{X}) \mathrm{Y}]-4 \beta \eta(\mathrm{X}) \eta(\mathrm{Y}) \xi-\alpha[\eta(\mathrm{Y} \\
) \mathrm{TX}+\eta(\mathrm{X}) \mathrm{TY}]=0 . \quad(4.10)
\end{gathered}
$$

Proof: From (4.1) and (2.12), we have

$$
\begin{equation*}
\mathrm{QX}=-\lambda(\mathrm{X}-\eta(\mathrm{X}) \xi) \tag{4.11}
\end{equation*}
$$

Taking covariant diff erentiation for the equation (4.11) and making use of $\left(\nabla_{\mathrm{X}} \eta\right) \mathrm{Y}$ with repeated application of (4.11) we get,

$$
\begin{align*}
& \quad\left(\nabla_{\mathrm{X}} \mathrm{Q}\right) \mathrm{Y}=\lambda[-\alpha[\mathrm{g}(\mathrm{TX}, \mathrm{Y}) \xi+\beta[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \eta(\mathrm{X}) \xi] \\
& +\eta(\mathrm{Y})[-\alpha(\mathrm{TX}+\mathrm{NX})+\beta(\mathrm{X}-\eta(\mathrm{X}) \xi]] . \tag{4.12}
\end{align*}
$$

Interchange X to Y and Y to X in the equation (4.12)

$$
\begin{align*}
& (\nabla \mathrm{Y} \mathrm{Q}) \mathrm{X}=\lambda[-\alpha[\mathrm{g}(\mathrm{TY}, \mathrm{X}) \xi+\beta[\mathrm{g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{X}) \eta(\mathrm{Y}) \xi] \\
& \quad+\eta(\mathrm{X})[-\alpha(\mathrm{TY}+\mathrm{NY})+\beta(\mathrm{Y}-\eta(\mathrm{Y}) \xi]] . \tag{4.13}
\end{align*}
$$

Add (4.12) and (4.13) we get,

$$
\begin{align*}
& \quad\left(\nabla_{\mathrm{X}} \mathrm{Q}\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \mathrm{Q}\right) \mathrm{X}=\lambda[2 \beta[\mathrm{~g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{X}) \eta(\mathrm{Y}) \xi]+\eta(\mathrm{Y} \\
&)[-\alpha(\mathrm{TX}+\mathrm{NX})+\beta(\mathrm{X}-\eta(\mathrm{X}) \xi]+\eta(\mathrm{X})[-\alpha(\mathrm{TY}+\mathrm{NY})+\beta(\mathrm{Y} \\
& -\eta(\mathrm{Y}) \xi]] . \tag{4.14}\\
& \quad \text { If } \\
& \left(\nabla_{\mathrm{X}} \mathrm{Q}\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \mathrm{Q}\right) \mathrm{X}=0 .
\end{align*}
$$

Then by using equation (4.5) we obtain,
$\beta[2 g(X, Y) \xi+\eta(Y) X+\eta(X) Y]-4 \beta \eta(X) \eta(Y) \xi-\alpha[\eta(Y$
$) T X+\eta(X) T Y]=0$.

Conversely, Suppose

$\beta[2 g(X, Y) \xi+\eta(Y) X+\eta(X) Y]-4 \beta \eta(X) \eta(Y) \xi-\alpha[\eta(Y$ $) \mathrm{TX}+\eta(\mathrm{X}) \mathrm{TY}]=0$.
then using (4.10) and (4.5) in (4.14), we get (4.9).
Hence the proof.

Theorem 4.5.: Let M be n dimensional slant submanifold of trans-sasakian manifold \bar{M} with φ as a killing structure, then

$$
\begin{equation*}
-\mathrm{h}(\mathrm{X}, \mathrm{TY})-\mathrm{h}(\mathrm{Y}, \mathrm{TX})+2 \mathrm{nh}(\mathrm{X}, \mathrm{Y})=0 \tag{4.15}
\end{equation*}
$$

If and only if,

$$
\begin{equation*}
\left(\nabla_{X} \mathrm{~N}\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \mathrm{~N}\right) \mathrm{X}=0 . \tag{4.16}
\end{equation*}
$$

Proof: Interchange X to Y and Y to X in (2.14), we get

$$
\begin{equation*}
\left(\nabla_{Y} N\right) X=-\beta \eta(X) N Y-h(Y, T X)+n h(X, Y) . \tag{4.17}
\end{equation*}
$$

Add equation (2.14) and (4.17) we have,

$$
\begin{gathered}
\left(\nabla_{X} N\right) Y+\left(\nabla_{Y} N\right) X=-\beta \eta(Y) N X-h(X, T Y)-\beta \eta(X) N Y \\
-h(Y, T X)+2 n h(X, Y) .(4.18)
\end{gathered}
$$

If

$$
\left(\nabla_{\mathrm{X}} \mathrm{~N}\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \mathrm{~N}\right) \mathrm{X}=0,
$$

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018)
Then from (4.18) we get,

$$
\begin{gather*}
-\beta[\eta(Y) N X+\eta(X) N Y]-h(X, T Y)-h(Y, T X)+2 n h(X, Y) \\
=0 . \tag{4.19}
\end{gather*}
$$

Using equation (4.5) we obtain,

$$
-\mathrm{h}(\mathrm{X}, \mathrm{TY})-\mathrm{h}(\mathrm{Y}, \mathrm{TX})+2 \mathrm{nh}(\mathrm{X}, \mathrm{Y})=0 .
$$

Conversely, Suppose

$$
-\mathrm{h}(\mathrm{X}, \mathrm{TY})-\mathrm{h}(\mathrm{Y}, \mathrm{TX})+2 \mathrm{nh}(\mathrm{X}, \mathrm{Y})=0 .
$$

Then using (4.15) and (4.5) in (4.18), we get (4.16).
Hence the proof.

Theorem 4.6.: Let M be n dimensional slant submanifold of trans-sasakian manifold \bar{M} with killing structure tensor field φ, then M is slant if T satisfies

$$
\begin{equation*}
\left(\nabla_{\mathrm{X}} \mathrm{~T}\right) \mathrm{Y}+\left(\nabla_{\mathrm{Y}} \mathrm{~T}\right) \mathrm{X}=0, \tag{4.20}
\end{equation*}
$$

then

$$
\begin{equation*}
A_{N Y} X+A_{N X} Y+2 \operatorname{th}(X, Y)=0 \tag{4.21}
\end{equation*}
$$

Proof: Replace X by Y and Y by X in (2.13) we get,

$$
\begin{aligned}
\left(\nabla_{Y} T\right) X & =\alpha[g(X, Y) \xi-\eta(X) Y]+\beta[g(\varphi Y, X) \xi-\eta(X) T Y \\
&]+A_{N X} Y+\operatorname{Yh}(X, Y),
\end{aligned}
$$

Add equations (2.13) and (4.22) we get,
$\left(\nabla_{X} T\right) Y+\left(\nabla_{Y} T\right) X=\alpha[2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y]+$ $\beta[\mathrm{g}(\varphi \mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{TX}$
$\left.+\mathrm{g}(\varphi \mathrm{Y}, \mathrm{X}) \xi^{-\eta}(\mathrm{X}) \mathrm{TY}\right]+\mathrm{A}_{\mathrm{NY}} \mathrm{X}+\mathrm{A}_{\mathrm{NX}} \mathrm{Y}+2 \operatorname{th}(\mathrm{X}, \mathrm{Y})$. (4.23)

If

$$
\left(\nabla_{X} T\right) Y+\left(\nabla_{Y} T\right) X=0 .
$$

Then we have,

$$
\begin{align*}
& \alpha[2 \mathrm{~g}(\mathrm{X}, \mathrm{Y}) \xi-\eta(\mathrm{Y}) \mathrm{X}-\eta(\mathrm{X}) \mathrm{Y}]-\beta[\eta(\mathrm{Y}) \mathrm{TX}+\eta(\mathrm{X}) \mathrm{TY}] \\
& +\mathrm{A}_{\mathrm{NY}} \mathrm{X}+\mathrm{A}_{\mathrm{NX}} \mathrm{Y}+2 \operatorname{th}(\mathrm{X}, \mathrm{Y})=0 \tag{4.24}
\end{align*}
$$

Using the equation (4.4) we get,

$$
\mathrm{A}_{\mathrm{NY}} \mathrm{X}+\mathrm{A}_{\mathrm{NX}} \mathrm{Y}+2 \operatorname{th}(\mathrm{X}, \mathrm{Y})=0
$$

Conversely, Suppose

$$
A_{N Y} X+A_{N X} Y+2 \operatorname{th}(X, Y)=0
$$

Then using (4.21) and (4.4) in (4.23), we get (4.20).
Hence the proof.

5. Conclusion

In this paper we have obtained some results on slant submanifolds of trans-sasakian manifold obeying certain conditions with φ as a killing structure tensor field.

References:

[1] J. L. Cabrerizo, A. Carriazo and L. M. Fernandez, Slant Submanifolds in sasakian manifolds, Glasgow Math. J.,42 (2000), 125-138.
[2] B.Y. Chen, Geometry of submanifolds, Marcel Dekker, 1973.
[3] J.A.Oubina, New classes of almost contact metric structure, Publications Mathematicae Debrecen, 32(3-4)(1985), PP.187193.
[4] C.S.Bagewadi and E GirishKumar : Note on Trans-sasakian manifolds, Tensor N.S. 65(1)(2004), 80-88.
[5] D.E.Blair, Contact Manifolds in Riemannian geometry, Lecture notes in Mathematics, Springer Verlag, Berlin-Newyork, 509(1970).
[6] H.G.Nagaraja, R.C.Premalatha and G.Somashekhara,On an (ε, δ) Trans sasakian structure, Proceedings of the Estonian Academy of Sciences, 61(1)(2012), PP.20-23.
[7] ViqarAzam Khan and Meraj Ali Khan,Semi-slant submanifolds of Trans-sasakian manifolds, Sarajevo Journal of Mathematics, 2(14), 83-93.
[8] B. Y. Chen, Slant immersions, Bull. Aust. Math. Soc.,41 (1990), 135-147.
[9] B. Y. Chen and Y. Tazawa, Slant surfaces with codimension 2, Ann. FAc. Sci. Toulouse Math., XI(3) (1990), 29-43.
[10] B. Y. Chen and Y. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., 14(1) (1991), 101-120.
[11] R. S. Gupta, S. M. KhursheedHaider and M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Radovi Matematicki, 12 (2004), 205-214.
[12] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Roum., 39 (1996), 183-198.
[13] A. Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl., 3(1) (1998), 37-51.
[14] D. E. Blair, Almost contact manifolds with killing structure tensors, Pacific J. Math., 39(2) (1971), 285-292.
[15] J. L. Cabrerizo, A. Carriazo and L. M. Fernandez, Structure on a slant submanifold of a contactmanifold, Indian J. Pure and Appl. Math.,31(7)
(2000),

857-864.

