OHREF 29TH ANNUAL SPRING UPDATE IN CARDIOLOGY SYMPOSIUM

Dia

Но

Director, Northwestern HFpEF Program Director, T1 Center for CV Developmental Therapeutics Division of Cardiology, Department of Medicine Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine

ire:

m?

sanjiv.shah@northwestern.edu

NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE

Heart Failure with Preserved Ejection Fraction (HFpEF): Who are they? How do we treat them?

 $M\ A\ Y\ \ 4\ ,\ \ 2\ 0\ 1\ 8$

Sanjiv J. Shah, MD

Professor of Medicine Northwestern University Feinberg School of Medicine *sanjiv.shah@northwestern.edu*

NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE

Disclosures

- Research funding:
 - » NIH R01 HL107577, R01 HL127028
 - » AHA #16SFRN28780016, #15CVGPSD27260148
 - » Actelion, AstraZeneca, Corvia, Novartis
- Consulting/advisory board/steering committee:
 - » Actelion, Amgen, AstraZeneca, Bayer, Boehringer-Ingelheim, Cardiora, Eisai, Gilead, Ironwood, Merck, MyoKardia, Novartis, Pfizer, Sanofi, United Therapeutics

Disclosures

- Research funding:
 - » NIH R01 HL107577, R01 HL127028
 - » AHA #16SFRN28780016, #15CVGPSD27260148
 - » Actelion, AstraZeneca, Corvia, Novartis
- Consulting/advisory board/steering committee:
 - » Actelion, Amgen, AstraZeneca, Bayer, Boehringer-Ingelheim, Cardiora, Eisai, Gilead, Ironwood, Merck, MyoKardia, Novartis, Pfizer, Sanofi, United Therapeutics
- We pronounce HFpEF: "huff-puff"

HFpEF: prevalence increasing

GWTG-HF: N=110,621 patients hospitalized with HF *P*<0.0001 for trend of increased HFpEF prevalence

Oktay AA, Rich JD, Shah SJ. Curr Heart Fail Rep 2013

HFpEF: prevalence increasing

GWTG-HF: N=110,621 patients hospitalized with HF P<0.0001 for trend of increased HFpEF prevalence

Oktay AA, Rich JD, Shah SJ. Curr Heart Fail Rep 2013

HFpEF survival: poor

Owan T et al. N Engl J Med 2006;355:251-259

Dismal 35% survival at 5 years after HF hospitalization, regardless of LVEF

HFpEF: A debilitating syndrome

- TOPCAT trial (spironolactone vs. placebo):
 - » N=3445
 - » At baseline:
 - -Activity level very low (9.3 MET-hr/week)
 - -Poor QOL similar to ESRD
 - » In the Americas (n=1758):
 - -Mean BMI: 34±8 kg/m²
 - -88% with BMI > 25 kg/m²
 - -65% with BMI > 30 kg/m²

HFpEF trials: disappointing results

HFpEF challenges

- Rising prevalence
- High morbidity
- High mortality
- Multiple pathophysiologic contributors
- Few available therapies
- Need new solutions...

Solution: dedicated HFpEF program

Curr Cardiol Rep (2016) 18:122 DOI 10.1007/s11886-016-0802-1

HEART FAILURE (MR MEHRA AND E JOYCE, SECTION EDITOR)

How to Develop and Implement a Specialized Heart Failure with Preserved Ejection Fraction Clinical Program

Sanjiv J. Shah¹ · Rebecca Cogswell² · John J. Ryan³ · Kavita Sharma⁴

Shah SJ, et al. Curr Cardiol Rep 2016

<u>Myth #1</u>: Diastolic dysfunction, diastolic HF, and HFpEF are all the same

Fact #1: HFpEF is more than just diastolic dysfunction

"Diastolic HF" c.2004

Aurigemma G, et al. NEJM 2004

Left Ventricular Volume

HFpEF in 2017

Lung

Chest wall restriction, reduced vital capacity, impaired ventilation and diffusion Obstructive sleep apnea Pulmonary hypertension

Heart

Direct and indirect myocardial lipotoxicity Worsened cardiac mechanics Diastolic dysfunction; increased filling pressures/ volume overload, increased afterload

Liver

Non-alcoholic fatty liver disease Promotes generalized inflammatory state

Visceral adiposity

Inflammatory cytokines Adverse neurohormones Increased BNP clearance

Kidney

Direct toxic effects of perinephric fat Glomerulomegaly with glomerular dysfunction

Skeletal muscle

Increased adipose infiltration Impaired perfusion Decreased diffusive O₂ transport Mitochondrial dysfunction

Kitzman D, Shah SJ. JACC 2016; Borlaug B. Nat Rev Cardiol 2014

DD vs. DHF vs. HFpEF

DD

Pathophysiologic condition: impaired relaxation, ↓compliance, ↑LV filling pressures

DHF

Normal LVEF plus sign/symptoms of HF due to DD

HFpEF

Normal LVEF plus signs/symptoms of HF (excluding severe valve disease, prior ↓LVEF, constriction)

DD vs. DHF vs. HFpEF

DL

DHF HFpEF

DD vs. DHF vs. HFpEF

Pure diastolic HF Is actually a **rare** syndrome

"pure" DHF

Screened 2,054 Patients (age > 65) with a discharge diagnosis of CHF

1,119 patients with a LVEF > 50 %

Reason for exclusion	# of patients excluded
Atrial fibrillation at the time of study	313
Prior CABG	179
Incomplete records	111
Left bundle branch block or paced rhythm	90
No clear documentation of CHF	77
Active malignancy	55
Myocardial ischemia/infarction	53
Dementia/cognitive impairment	44
Deceased prior to enrollment evaluation	41
Dialysis dependant or creatinine (> 2.5 g/dl)	40
Severe COPD/pulmonary disease	39
Warfarin use	30
Moderate to severe valvular heart disease	13
History of organ transplantation	6
Ejection fraction unclear	5
Total Patients Excluded	1096

935 patients with a LVEF ≤ 50 % (excluded)

Diastolic HF study:

Started with 1,119 patients... ... after exclusions only 23 patients met enrollment criteria!

23 patients met criteria for enrollment

11 patients agreed to participate 4 men and 7 women

Pathophysiologic contributors to HFpEF

Myth #2: Diagnosing HFpEF is difficult

<u>Fact #2</u>: Diagnosing HFpEF is easy (if you know what to look for)

Diagnosis of HFpEF: 5 Lessons

- 1. Don't use BNP to rule out HFpEF
- Echocardiography is the cornerstone, use it to guide next steps
- 3. Know your zebras
- 4. Perturb the system
- 5. Everyone has HFpEF until proven otherwise

- Signs and symptoms of HF (dyspnea, exercise intolerance, fluid retention)
- Preserved LVEF (>45-50%)
- Evidence of elevated LV filling pressures at rest or during exercise

- Signs and symptoms of HF (dyspnea, exercise intolerance, fluid retention)
- Preserved LVEF (>45-50%)
- Evidence of elevated LV filling pressures at rest or during exercise
- Evidence of a cardiac-predominant problem (not an extra-cardiac cause)

Cardiac cause of ①LV filling pressures, HFpEF phenotype

Renal failure, liver failure, morbid obesity

MOST PATIENTS

Infiltrative cardiomyopathy

Renal failure, liver failure, morbid obesity

MOST PATIENTS

Infiltrative cardiomyopathy

Obese HFpEF phenotype

Obese HFpEF

Mitral valve level

Mid-cavity level

Obokata M...Borlaug BA. Circulation 2017

Obese HFpEF phenotype

Obokata M...Borlaug BA. *Circulation* 2017

61-year-old woman with HFpEF

$BMI = 56 \text{ kg/m}^2$, RAP = 18 mmHg, PCWP = 26 mmHg

61-year-old woman with HFpEF

- Signs and symptoms of HF (dyspnea, exercise intolerance, fluid retention)
- Preserved LVEF (>45-50%)
- Evidence of elevated LV filling pressures at rest or during exercise
- Evidence of a cardiac-predominant problem (not an extra-cardiac cause)
- Exclude: infiltrative, genetic, valvular, toxin, pericardial, ischemic etiology

Diagnostic approach to HFpEF

Obokata...Borlaug. Circulation 2017

Diagnostic approach to HFpEF

Assessment of Pretest Probability

Clinical history: older age, typical comorbidities (e.g. obesity, HTN, DM), HF specific symptoms like orthopnea or PND, Physical examination: edema, jugular venous distension, gallop, rales NP levels: ↑NT-proBNP or ↑BNP Chest x-ray, ECG: pulmonary congestion, LVH, atrial fibrillation Rest Echocardiography: ↑ LA volume, ↑ LV mass, ↑ E/e', ↑ TR velocity

Obokata...Borlaug. Circulation 2017
Comorbidity burden \rightarrow myocardial dysfunction

Longitudinal systolic function worsens with increasing number of risk factors Diastolic function worsens with increasing number of risk factors

Selvaraj S...Shah SJ. JAHA 2014

Diagnosis of HFpEF is easy

- Signs and symptoms of HF
- LVEF >45-50%
- Evidence of increased left-sided filling pressures at rest or with stress
 - » Elevated BNP
 - » Left atrial enlargement/dysfunction
 - » Elevated E/e' ratio (at rest or with exercise)
 - » ①PCWP or LVEDP (at rest or with exercise)

ESC criteria for HFpEF Dx

- Signs and symptoms of HF
- LVEF >50%
- BNP >35 pg/ml or NTproBNP >125 pg/ml
- At least one of the following » LVH and/or LAE
 - » LV diastolic dysfunction
 - -Average E/e' \geq 13 or
 - —Average e' < 9 cm/s</pre>

ASE/EACVI "diastolic dysfunction"

- 4 key criteria:
 - » Average E/e' > 14
 - » Septal e' < 7 cm/s or lateral e' < 10 cm/s
 - » Peak TR velocity > 2.8 m/s
 - » LA volume index > 34 ml/m^2
- 0-1 criteria: No HFpEF
- 2 criteria: indeterminate HFpEF
- 3-4 criteria: HFpEF

HFpEF diagnostic toolbox

- Physical exam
- Biomarkers
- Echocardiography
- Invasive exercise hemodynamics
- Coronary evaluation
- Cardiac MRI
- Cardiopulmonary exercise test

Types of HFpEF presentation

Shah SJ. JACC 2013

Lesson #1: Don't use BNP to rule out **HFDEF**

BNP deficiency syndrome

- BNP < 100 pg/ml in 30% of HFpEF patients with confirmed 企PCWP
 - » Adipose tissue: increased NP clearance, reduced NP production
 - » HFpEF: lack of LV wall stress stimulus
 - Wall stress = pressure x chamber radius / wall thickness
 - » Other causes of low BNP:
 - -Genetic (NPPA, NPPB SNPs)
 - -Insulin resistance
 - -Increased androgens
 - -African ancestry

Anjan V...Shah SJ. *Am J Cardiol* 2012 Bordicchia et al. *J Clin Invest* 2012; Wang TJ. *NEJM* 2012

Lesson #2: Echo is the cornerstone

Echo: determine etiology, look for an intrinsic myocardial problem

Look at the echo yourself for clues

Case #1: 62-year-old woman with DM2, HTN, Sjogren syndrome, persistent SOB

- Cardiologist ordered stress echo/Doppler:
 - » Normal LVEF
 - » Normal diastolic function
 - » No LVH
 - » Normal atrial size
 - » No wall motion abnormalities at peak exercise
- Normal BNP
- Referred to pulmonary for further eval.

Case #1: 62-year-old woman with DM2, HTN, Sjogren syndrome, persistent SOB

Case #1: 62-year-old woman with DM2, HTN, Sjogren syndrome, persistent SOB

Adenosine perfusion 61 cardiac MRI result **MICE**

MO

e

est

Respiratory variation in PCWP

Respiratory variation in PCWP

Lesson #3: Know your zepras

Case #3: 50-year-old woman with SOB

Low voltage, pseudoinfarct pattern

Case #3: 50-year-old woman with SOB

Thick LV, "texture" of myocardium consistent with infiltrative cardiomyopathy

Case #3: 50-year-old woman with SOB

High E velocity, elevated E/A ratio, reduced E', \downarrow E deceleration time

Grade III (severe) LV diastolic dysfunction due to cardiac amyloidosis

Typical echo findings in cardiac amyloidosis

Loss of longitudinal cardiac function

"Garden-variety" HFpEF

Cardiac amyloidosis

Typical echo findings

Severely reduced longitudinal tissue velocities "5-5-5 sign"

"Cherry on top"

09/10/2015-09:57:21

Case #4: 44-year-old man with severe SOB, ascites

Case #4: 44-year-old man with severe SOB, ascites

Case #4: 44-year-old man with severe SOB, ascites

54-year-old dentist with achalasia, SOB, severe leg swelling, normal LVEF

54-year-old dentist with achalasia, SOB, severe leg swelling, normal LVEF

54-year-old dentist with achalasia, SOB, severe leg swelling, normal LVEF

Lesson #4: Perturb the system

HFpEF: Global CV reserve dysfxn

HFpEF: evidence of impaired CV reserve at 20W exercise

Borlaug B, et al. JACC 2010
62-year-old woman with HTN, DM2, CKD presents with DOE

PEX: BP 148/52, HR 88, RR 12 JVP 10 cm, clear lungs, RRR; nl S1 S2; No S3 , +S4; soft systolic murmur trace LE edema

BNP 90 pg/ml (ref. value < 100 pg/ml)

Diagnostic approach to HFpEF

Obokata...Borlaug. Circulation 2017

Diagnostic approach to HFpEF

Obokata...Borlaug. Circulation 2017

Diastolic stress echo

Diastolic stress echo

Obokata...Borlaug. Circulation 2017

Diastolic stress echo

Obokata...Borlaug. Circulation 2017

Exercise hemodynamics

Exercise hemodynamics

Exercise hemodynamics

Volume challenge in a patient w/HFpEF

Exercise hemodynamics in a patient with severe HFpEF

REST

AFTER 1 MIN. OF EXERCISE

Lesson #5: **Everyone has** HFpEF until proven otherwise

<u>Myth #3</u>: There are no proven treatments for HFpEF

Fact #3: HFpEF is treatable: use a checklist approach

HFpEF checklist

- Always think about the HFpEF dx, even when the BNP is "normal"
 Look at the echo yourself for clues
- When in doubt do a right heart cath
- "Perturb the system"
- Rule out zebras

HFpEF checklist

- Prevent HFpEF
- Treat the zebras
- Treat comorbidities
- Diet/exercise
- Rx HTN, volume overload using
 - "HFpEF-centric" approach
- Tailor treatment to type of HFpEF
 Enroll in a clinical trial

Prevent HFpEF

HFpEF can be prevented...

HYVET trial indapamide resulted in 64% reduction in HF hosp. compared to placebo

Beckett NS, et al. NEJM 2008

HFpEF can be prevented...

ALLHAT-HFpEF: chlorthalidone best for HFpEF prevention

HFpEF can be prevented...

EMPA-REG: SGLT2 inhibitor reduced HF hospitalization

Hospitalization for Heart Failure

Treat the zebras

Zebras can be treated!

- Cardiac amyloid: not a death sentence
 - » Primary (AL) amyloidosis:
 - -Highly effective chemotherapy
 - -Stem cell transplantation
 - » Familial or wild-type TTR amyloidosis:
 - -Several novel drugs in pipeline (TTR stabilizers, RNA interference, RNA anti-sense molecules)
 - -Heart-liver transplant
- Constrictive pericarditis:
 » Pericardial stripping can be curative

Primary (AL) cardiac amyloid: improved survival with stem-cell tx

Friedman J....Shah SJ. ACC 2014

Treat comorbidities

Treatment of comorbidities

- CAD: look for it, treat aggressively
- CKD: be aware of hemoconcentration, chronotropic incompetence, PH
- AF: trial of cardioversion, anticoagulate, allow higher HR (80-90 bpm)
- Diabetes: carvedilol, SGLT2-inhibition?
- COPD: control volume overload
- OSA: control volume overload

Diet and exercise work!

Diet and exercise work!

AT = aerobic exercise training, CR = caloric restriction

Kitzman D, et al. JAMA 2016

Treat HTN and volume overload using a "HFpEFcentric" approach Carvedilol Bumetanide Chlorthalidone Lisinopril Spironolactone

HFpEF "poly-pill"

HFpEF diuretic polypill?

THE LANCET

Online First	Current Issue	All Issues	Special Issues	Multimedia ~	Information for A	Authors
		All Conte	nt	\$ Search	Advanced Search	
< Previous	Article	Volume 389), No. 10073 , p1	035–1042, 11 Marc	ch 2017	Next Article >
Articles						

Quarter-dose quadruple combination therapy for initial treatment of hypertension: placebo-controlled, crossover, randomised trial and systematic review

Prof Clara K Chow, PhD Ref Agy Thakkar, MBBS, Alex Bennett, MPhil, Prof Graham Hillis, PhD, Michael Burke, PhD, Prof Tim Usherwood, MD, Kha Vo, BSc, Kris Rogers, PhD, Emily Atkins, PhD, Ruth Webster, PhD, Michael Chou, MBBS, Hakim-Moulay Dehbi, MRes, Abdul Salam, PhD, Prof Anushka Patel, PhD, Prof Bruce Neal, PhD, David Peiris, PhD, Prof Henry Krum[†], Prof John Chalmers, PhD, Prof Mark Nelson, PhD, Prof Christopher M Reid, PhD, Prof Mark Woodward, PhD, Prof Sarah Hilmer, PhD, Prof Simon Thom, PhD, Prof Anthony Rodgers, PhD

HFpEF diuretic polypill?

HFpEF diuretic polypill?

HFpEF trials: failures?

Meta-analysis of clinical trials in HFpEF: 企exercise capacity

Holland DJ, et al. JACC 2011

Placebo vs. Spiro by Region

Pfeffer M, et al. Circulation 2015

Reduction in HF hospitalization

TOPCAT Pitt B, et al. *NEJM* 2014

CHAMPION-HFpEF Adamson P, et al. *Circ HF* 2014

Rx of HTN, volume overload

- Use vasodilating beta-blockers
- Don't use nitrates
- Control volume overload to improve BP
- Use loop diuretics initially but minimize doses by adding sprio, chlorthalidone
 - » Use bumetanide, torsemide (bioavailability)
- Spironolactone:
 - » Cr < 2.5, eGFR > 30 ml/min
 - » Check K+, Cr at 1 week, 1 month, q 3months
Tailor treatment to type of HFpEF

Sorting HFpEF

- Start with signs/sx of HF, EF>50%
- Sort #1 (easier):
 - » Valvluar disease, recovered HFrEF, high-output HF, etc.
- Sort #2 (harder):
 - » Rare causes of HFpEF, zebras
- Sort #3:
 - » Clinical/etiologic subtype
 - » Pathophysiologic subtype

Clinical categories of HFpEF

- 1. "Garden-variety" HFpEF (HTN, DM, obesity, CKD)
- 2. CAD-HFpEF
- 3. Right heart failure-HFpEF
- 4. A-fib predominant HFpEF
- 5. HCM-like HFpEF
- 6. High-output HFpEF
- 7. Valvular HFpEF (multiple 2+ lesions)
- 8. Rare causes of HFpEF ("zebras")

Types of HFpEF presentation

Shah SJ. JACC 2013

HFpEF treatment matrix

	nrper clinical Presentation Phenotypes				
	Lung Congestion	+Chronotropic Incompetence	+Pulmonary Hypertension (CpcPH)	+Skeletal muscle weakness	+Atrial Fibrillation
Overweight/obesity/ metabolic syndrome/ type 2 DM	 Diuretics (loop diuretic in DM) Caloric restriction Statins Inorganic nitrite/nitrate Sacubitril Spironolactone 	+Rate adaptive atrial pacing	+Pulmonary vasodilators (e.g. PDE5I)	+Exercise training program	+Cardioversion +Rate Control +Anticoagulation
+Arterial hypertension	+ACEI/ARB	+ACEI/ARB +Rate adaptive atrial pacing	+ACEI/ARB +Pulmonary vasodilators (e.g. PDE5I)	+ACEI/ARB +Exercise training program	+ACEI/ARB +Cardioversion + Rate Control +Anticoagulation
+Renal dysfunction	+Ultrafiltration if needed	+Ultrafiltration if needed +Rate adaptive atrial pacing	+Ultrafiltration if needed +Pulmonary vasodilators (e.g. PDE5I)	+Ultrafiltration if needed +Exercise training program	+Ultrafiltration if needed +Cardioversion + Rate Control +Anticoagulation
+CAD	+ACEI +Revascularization	+ACEI +Revascularization +Rate adaptive atrial pacing	+ACEI +Revascularization +Pulmonary vasodilators (e.g. PDE5I)	+ACEI +Revascularization +Exercise training program	+ACEI +Revascularization +Cardioversion + Rate Control +Anticoagulation

HFpEF Predisposition Phenotypes

Shah SJ...Paulus WJ. Circulation 2016

Enroll in a clinical trial

Myth #4: HFpEF clinical trials are doomed

Fact #4: The future is bright for HFpEF clinical trials

HFpEF survival: poor

Owan T et al. N Engl J Med 2006;355:251-259

Dismal 35% survival at 5 years after HF hospitalization, regardless of LVEF

HFpEF survival: poor

Owan T et al. N Engl J Med 2006;355:251-259; Yang H-X et al. Ann Thoracic Surg 2009

HFpEF survival: comparable to T4 non-small cell lung cancer, stage 3B or worse

Current HFpEF clinical trials

- PARAGON-HF: neprilysin inhibition
- REDUCE-LAP: interatrial shunt device
- KNO₃CK-OUT: oral nitrites
- INDIE-HFpEF: inhaled nitrites
- REGRESS-HFpEF: cardiospheres
- LIBERTY-HCM: *late I_{Na+} inhibitor*
- ATTR-ACT: transthyretin stabilizer
- ENDEAVOUR: transthyretin RNAi

Current HFpEF clinical trials

- EMPEROR-Preserved: SGLT-2 inhibition
- PRESERVED-HF: SGLT-2 inhibition
- PANACHE: adenosine partial A1R agonist
- SERENADE: endothelin receptor blocker
- SOUTHPAW: oral prostacyclin
- And several more therapeutics currently in various stages of development

Enrichment trial design for HFpEF

Creation of L-to-R shunt = ↓↓LAP at rest/exercise = ↓↓symptoms in HFpEF

Feldman T... Shah SJ. *Circulation* 2017

Interatrial shunt device (IASD)

Transcatheter implant to create a small permanent interatrial shunt (Op:Os ratio 1.2-1.3)

Implant 19 mm OD 8 mm ASD

Animal explant

Feldman T... Shah SJ. Circulation 2017

Subcostal view showing patency of shunt with $L \rightarrow R$ flow

Subcostal 4-chamber view, continuous wave Doppler showing velocity of blood flow through IASD throughout the cardiac cycle

Change in PCWP: baseline to 1 mo.

Feldman T... Shah SJ. Circulation 2017

Two 66-year-old women with HFpEF: Who should get the IASD?

Umbrella trial design for HFpEF

1. HFpEF is a systemic disorder, more than just DD

2. Don't miss the HFpEF diagnosis, and the zebras!

3. Categorize by type of HFpEF and tailor treatment 4. There are several potential treatments for HFpEF

5. Enroll in HFpEF clinical trials

STOP!

HFpEF: the "huff-puff" syndrome

huff and puff

Fig. to breathe very hard; to pant as one exerts effort. John came up the stairs huffing and puffing. He huffed and puffed and finally got up the steep hill.

See also: and, huff, puff

McGraw-Hill Dictionary of American Idioms and Phrasal Verbs. © 2002 by The McGraw-Hill Companies, Inc.

huff and puff

1. to breathe noisily, usually because you have been doing physical exercise *They're so unfit they start huffing and puffing if they have to run further than twenty yards.*

2. (*informal*) to complain noisily about something but not be able to do anything about it *They huffed and puffed about the price, but eventually they paid up.*

See also: and, huff, puff

Cambridge Idioms Dictionary, 2nd ed. Copyright © Cambridge University Press 2006. Reproduced with permission.

huff and puff

1. to breathe in a noisy manner *He* was on the top of the hill long before *I* came up huffing and puffing behind him.

2. to complain The owners will huff and puff about their financial problems and then not do anything to solve them.

See also: and, huff, puff

Cambridge Dictionary of American Idioms Copyright © Cambridge University Press 2006. Reproduced with permission.

huff and puff

Fig. to breathe very hard; to pant as one exerts effort. *John came up the stairs huffing and puffing. He huffed and puffed and finally got up the steep hill.*

See also: and, huff, puff

McGraw-Hill Dictionary of American Idioms and Phrasal Verbs. © 2002 by The McGraw-Hill Companies, Inc.

huff and puff

1. to breathe noisily, usually because you have been doing physical exercise *They're so* unfit they start huffing and puffing if they have to run further than twenty yards.

2. (informal) to complain noisily about something but not be able to do anything about it

They huffed and puffed about the price, but eventually they paid up.

See also: and, huff, puff

Cambridge Idioms Dictionary, 2nd ed. Copyright © Cambridge University Press 2006. Reproduced with permission.

huff and puff

1. to breathe in a noisy manner *He was on the top of the hill long before I came up huffing and puffing behind him.*

2. to complain The owners will huff and puff about their financial problems and then not do anything to solve them.

See also: and, huff, puff

Cambridge Dictionary of American Idioms Copyright © Cambridge University Press 2006. Reproduced with permission.

