Quantumwear® C

Quantumwear®C Higher Splash & Particle Protection Apparel

Quantumwear® C was developed to give workers a more comfortable and functional alternative while working:

- Nuclear D/D
- Abatement
- Construction
- Manufacturing
- Cleaning
- Remediation
- Demolition

Item	Size	Per Case
01173	L	25
01174	XL	25
01175	2X	25
01176	3X	25
01177	4X	25
01178	5X	25
01179	6X	25

Protecting Workers in any Environment. www.questsafety.com 1.800.878.4872

Q-Gard Quantumwear® is a Patented and property of Quest® Environmental & Safety Products, Inc. Copyright 2012©

Notice: Only a trained safety professional can determine fitness for use of Q-Gard Quantumwear® or any other Quest® products. Quest® does not warrant Q-Gard Quantumwear® or any product for any particular use or application. Do not use in the presence of flame, fire, infrared heat or any ignition source. Not for reuse or laundering or reclaiming after use.

Environmental & Safety Products, Inc.

NEW Q-Gard Quantumwear® C Permeation Resistance (ASTM F739-07) Test Comparisons

		Dupont Tychem® QC	Quantumwear "C"	Dupont Tychem® QC	Quantumwear "C"
		Average Normalized	Average Normalized	Average Steady	Average Steady
Chemical Challenge	CAS #	Breakthrough Time	Breakthrough Time	State Permeation	State Permeation
		(min)	(min)	(µg/cm²/min)	(µg/cm²/min)
Ammonia, anhydrous	7664-41-7	Immediate	Immediate	3.1	0.74
Dichloromethane	75-09-2	Immediate	Immediate	> 50	0.23
Dimethylformamide	68-12-2	Immediate	ND	0.72	N/A
50% Sodium Hydroxide	1310-73-2	ND	ND	N/A	N/A
93% Sulfuric Acid	7664-93-9	ND	ND	N/A	N/A
Toluene	108-88-3	Immediate	Immediate	503	0.12
Acetone	67-64-1	Immediate	Immediate	10	0.15
Acetonitrile	75-05-8	Immediate	ND	16	N/A
Carbon Disulfide	75-15-0	Immediate	Immediate	High	0.55
Diethylamine	109-89-7	Immediate	Immediate	64	0.51
Ethyl Acetate	141-78-6	Immediate	Immediate	13	0.4
n-Hexane	110-54-3	Immediate	Immediate	High	0.37
Methanol	67-56-1	Immediate	ND	2.2	N/A
Nitrobenzene	98-95-3	Immediate	Immediate	18	0.61
Tetrachloroethylene	127-18-4	Immediate	Immediate	High	1.38
Tetrahydrofuran	109-99-9	Immediate	Immediate	183	0.44
1,3-Butadiene	106-99-0	Immediate	Immediate	12	N/A
Chlorine	7782-50-5	Immediate	Immediate	> 50	0.23
Ethylene Oxide	75-21-8	Immediate	Immediate	167	N/A
Hydrogen Chloride	7647-01-0	Immediate	Immediate	9.3	0.64
Methyl Chloride	74-87-3	Immediate	Immediate	0.23	N/A

Note: "Immediate" means less than 10 minutes. "ND" means none detected during the 480 minute test.

"N/A" means not attained during the 480 minute test

Indicates better performance

"Cool, Comfortable, Safe"

WEAR

NEW Q-Gard Quantumwear® C

Chemical Permeation Resistance and Penetration Test Comparisons

		Permeation Resistance ASTM F739				Chemical Penetration ASTM F903		
		Kleenguard A70	Quantumwear "C"	Kleenguard A70	Quantumwear "C"	Kleenguard A70	Quantumwear "C"	
Chemical Challenge	CAS#	_	Average Normalized Breakthrough Time (min)	Average Steady State Permeation (µg/cm²/min)	Average Steady State Permeation (µg/cm²/min)	Final Results	Final Results	
Dichloromethane	75-09-2	Immediate	Immediate	85.1	0.23	Pass	Pass	
Dimethylformamide	68-12-2	Immediate	ND	2.54	N/A	Pass	Pass	
50% Sodium Hydroxide	1310-73-2	ND	ND	N/A	N/A	Pass	Pass	
93% Sulfuric Acid	7664-93-9	ND	ND	N/A	N/A	Pass	Pass	
Toluene	108-88-3	Immediate	Immediate	High	0.12	Pass	Pass	
Acetone	67-64-1	Immediate	Immediate	7.9	0.15	Pass	Pass	
Acetonitrile	75-05-8	Immediate	ND	8.97	N/A	Pass	Pass	
Carbon Disulfide	75-15-0	Immediate	Immediate	76.3	0.55	Pass	Pass	
Diethylamine	109-89-7	Immediate	Immediate	High	0.51	Pass	Fail	
Ethyl Acetate	141-78-6	Immediate	Immediate	40.3	0.4	Pass	Pass	
n-Hexane	110-54-3	Immediate	Immediate	High	0.37	Pass	Pass	
Methanol	67-56-1	Immediate	ND	1.71	N/A	Pass	Pass	
Nitric Acid	7697-37-2	193	20	1.77	316	Pass	Pass	
Nitrobenzene	98-95-3	Immediate	Immediate	97.4	0.61	Pass	Pass	
Tetrachloroethylene	127-18-4	Immediate	Immediate	High	1.38	Pass	Pass	
Tetrahydrofuran	109-99-9	Immediate	Immediate	32.8	0.44	Pass	Pass	

Note: "Immediate" means less than 10 minutes. "ND" means none detected during the 480 minute test.

"N/A" means not attained during the 480 minute test

Indicates better performance

QUANTUM WEAR

"Cool, Comfortable, Safe"

MILLER NELSON ANALYTICAL, LLC

PENETRATION TEST REPORT

ASTM F903

MATERIAL NAME:

82GSM CHEM FABRIC

CHALLENGE CHEMICAL:

HYDROFLUORIC

FABRIC LOG OR LOT NO .:

YELLOW SUIT MATERIAL

ACID

MANUFACTURER:

XROW Q-GARD QUANTUMWEAR C

RUN NO:

PERM 92/8542

TEST RESULTS	TEST 1	TEST 2	TEST 3	AVERAGE
PASS/FAIL	PASS	PASS	PASS	PASS
			· · · · · · · · · · · · · · · · · · ·	1,70
THICKNESS, MILS	11.5	12.0	13.0	12.2
TEMPERATURE	27	27	27	27

TEST DATE:

3-10-14

ANALYTICAL METHOD:

VISUAL

PRIOR CONDITIONING:

NONE

LEAK INDICATOR:

FILTER PAPER

CAS NO:

7664-39-3

METHOD MODIFICATION:

NONE

CHEMICAL SOURCE:

ALDRICH

CONTINUOUS

COMMENTS:

NO CHANGE POST TESTING

CHEMICAL STATE:

LIQUID

CHEMICAL CONTACT TYPE: TEST PROCEDURE:

D

NOTE:

AMBIENT PRESSURE FOR 60 MIN

CONCENTRATION:

48%

TEST DURATION:

60 MIN

CLIENT:

XHIJF

TERRY OLDHAM

CHRISTOPHER J. PRIANTE

This data is derived from tests performed in accordance with ASTM F903. These tests were performed under laboratory conditions and not under actual usage conditions. Miller Nelson Analytical LLC makes no warranties concerning protection by this material and assumes no liability for use of this material with the chemicals tested. The user should determine the applicability of the conditions when assessing suitability of material for actual anticipated exposure

PERMEATION TESTING SERVICES

MILLER NELSON ANALYTICAL, LLC

PENETRATION TEST REPORT

ASTM F903

MATERIAL NAME:

82GSM CHEM FABRIC

CHALLENGE CHEMICAL:

POTASSIUM

FABRIC LOG OR LOT NO .:

YELLOW SUIT MATERIAL

HYDROXIDE

MANUFACTURER:

XXXSIX Q-GARD QUANTUMWEAR C

RUN NO:

PERM 92/8543

TEST RESULTS	TEST 1	TEST 2	TEST 3	AVERAGE
PASS/FAIL	PASS	PASS	PASS	PASS
THICKNESS, MILS	10.5	10.5	12.0	11.0
TEMPERATURE	27	27	27	27

TEST DATE:

3-11-14

ANALYTICAL METHOD:

VISUAL

PRIOR CONDITIONING:

NONE

LEAK INDICATOR:

FILTER PAPER

CAS NO:

1310-58-3

METHOD MODIFICATION:

NONE

CHEMICAL SOURCE:

ALDRICH

COMMENTS:

NO CHANGE POST TESTING

CHEMICAL STATE:

CHEMICAL CONTACT TYPE:

LIQUID

CONTINUOUS

NOTE:

AMBIENT PRESSURE FOR 60 MIN

TEST PROCEDURE:

CONCENTRATION:

D 45%

TEST DURATION:

60 MIN

CLIENT:

SHIXX

TERRY OLDHAM

ANALYST

CHRISTOPHER J. PRIANTE

This data is derived from tests performed in accordance with ASTM F903. These tests were performed under laboratory conditions and not under actual usage conditions. Miller Nelson Analytical LLC makes no warranties concerning protection by this material and assumes no liability for use of this material with the chemicals tested. The user should determine the applicability of the conditions when assessing suitability of material for actual anticipated exposure.

PERMEATION TESTING SERVICES

~Q.C.

MNA

MILLER NELSON ANALYTICAL, LLC

PERMEATION TEST REPORT

ASTM F 739-2012 (NORMALIZED)

MATERIAL NAME:

82GSM CHEM FABRIC

CHALLENGE CHEMICAL:

HYDROFLUORIC

FABRIC LOG OR LOT NO .:

YELLOW SUIT MATERIAL

ACID

MANUFACTURER:

PXXIS Q-GARD QUANTUMWEAR C

RUN NO:

PERM92/8544

TEST RESULTS	TEST 1	TEST 2	TEST 3	AVERAGE
NORMALIZED (0.1 UG/SQ CM/MIN)	>480	>480	>480	>480
BREAKTHROUGH TIME, MIN				
PERMEATION RATE STEADY	ND	ND	ND	ND
STATE MAXIMUM, UG/SQ CM/ MIN				
THICKNESS, MILS	11.5	12.5	13.0	12.3
WEIGHT, OZ/SQ YD	2.6	2.6	2.6	2.6

TEST DATE:	3-3-14	ANALYTICAL METHOD:	ELECTROCHEMICAL
PRIOR CONDITIONING:	NONE	COLLECTION SYSTEM:	OPEN LOOP
CAS NO:	7664-39-3	COLLECTION MEDIUM VOLUME:	NA
CHEMICAL SOURCE:	ALDRICH	CHEMICAL STATE:	LIQUID
CONCENTRATION:	48.0 %	CHEMICAL CONTACT TYPE	CONTINUOUS
SAMPLING FREQUENCY:	CONTINUOUS	COLLECTION MEDIUM:	AIR
MINIMUM DETECTION LIMIT:	0.02 PPM	POST TEST CONDITION:	NO CHANGE
MINIMUM DETECTABLE RATE:	0.0201 UG/SQ CM/MIN		POST TESTING
The state of the s	Control of the Contro		

TEMPERATURE: 27 oC
TEST DURATION: 8 HOURS
METHOD MODIFICATION: NONE

SPECIMEN AREA EXPOSED: 20.3 SQ. CM

FLOW RATE

SQ. CM

1000 ML/MIN

CLIENT:

XSXX

CONTACT:

TERRY OLDHAM

ANALYST LISTIAN PRIANTE DATE

STEPHEN J. PRIANTE

DATE

This data is derived from tests performed in accordance with ASTM F739-2012. These tests were performed under laboratory conditions and not under actual usage conditions. Miller Nelson Analytical, LLC. makes no warranties concerning protection by this material and assumes no liability for use of this material with the chemicals tested. The user should determine the applicability of the conditions when assessing suitability of material for actual anticipated exposure.

PERMEATION TESTING SERVICES

MILLER NELSON ANALYTICAL, LLC

PERMEATION TEST REPORT

ASTM F739-12

MATERIAL NAME:

MANUFACTURER:

82GSM CHEM FABRIC

CHALLENGE CHEMICAL:

POTASSIUM

FABRIC LOG OR LOT NO .:

YELLOW SUIT MATERIAL

PKS Q-GARD QUANTUMWEAR C

RUN NO:

HYDROXIDE PERM92/8545

TEST RESULTS	TEST 1	TEST 2	TEST 3	AVERAGE
NORMALIZED (0.1 UG/SQ CM/MIN)	>480	>480	>480	>480
BREAKTHROUGH TIME, MIN				w- 6520
PERMEATION RATE STEADY	ND	ND	ND	NE
STATE MAXIMUM, UG/SQ CM/MIN	(40-70)20			
THICKNESS, MILS	11.0	13.0	14.5	12.8
WEIGHT, OZ/SQ YD	2.4	2.5	2.6	2.5

TEST DATE:

3-6-14

ANALYTICAL METHOD:

CONDUCTIVITY

PRIOR CONDITIONING:

NONE

COLLECTION SYSTEM:

OPEN LOOP

CAS NO:

1310-58-3

COLLECTION MEDIUM VOLUME:

NA

CHEMICAL SOURCE:

ALDRICH

CHEMICAL STATE:

LIQUID

CONCENTRATION:

45 %

CHEMICAL CONTACT TYPE

CONTINUOUS

SAMPLING FREQUENCY:

CONTINUOUS

MINIMUM DETECTION LIMIT:

0.025 PPM (UG/G)

COLLECTION MEDIUM: POST TEST CONDITION: DISTILLED WATER NO CHANGE

MINIMUM DETECTABLE RATE:

0.023 UG/SQ CM/MIN

TEMPERATURE:

TEST DURATION: METHOD MODIFICATION: 27 oC

8 HOURS

NONE

CLIENT:

XSH

SPECIMEN AREA EXPOSED:

20.3 SQ. CM 8 ML/MIN

CONTACT:

TERRY OLDHAM

FLOW RATE:

ANALYST

STEPHEN J. PRIANTE

This data is derived from tests performed in accordance with ASTM F739-12. These tests were performed under laboratory conditions and not under actual usage conditions. Miller Nelson Analytical, LLC. makes no warranties concerning protection by this material and assumes no liability for use of this material with the chemicals tested. The user should determine the applicability of the conditions when assessing suitability of material for actual anticipated exposure.

PERMEATION TESTING SERVICES

TEL - 951-245-7755

FAX - 951-245-0898

E-MAIL – stevep@mnapermeations.com 31951 Corydon Road, Suite #120, Lake Elsinore, CA 92530 WEB SITE - http://www.mnapermeations.com