Exploring students' mental models of matter and energy transformation through lexical analysis of written assessments

Luanna Prevost University of South Florida

Why use written assessments?

- Constructed responses assessments, including written assessments:
- Allow students to represent their understanding in their own words (Keuchler and Simpkin, 2010)
- Give faculty greater insight into student thinking compared to multiple choice assessments (Birenbaum and Tatsuoka, 1987)
- Students treat constructed response and multiple- choice assessments as different cognitive tasks and prepare for them differently (Stanger-Hall, 2012)

Question 1

- A tropical rainforest is an example of an ecosystem. Which of the following statements about matter and energy in a tropical rainforest is the most accurate?
- Please choose ONE answer that you think is best.

A) Energy is recycled, but matter is not recycled.B) Matter is recycled, but energy is not recycled.C) Both matter and energy are recycled.D) Neither matter nor energy is recycled.Explain your answer.

Lexical Categories

MatterEnergyQuestion (57)		🖰 Categories
The most accurate statement wou recycled. For example, an animal i that produce energy by using sun	Id be that both matter and energy are in the tropical rainforest consumes plants light, oxygen, and wat	energy forest matter molecules/nutrients organism/plants sunlight
B) Matter can be decomposed and recycled back into the environment, like a dead carcass or nutrient run offs. Energy however is lost, and although can be transferred, is not recyclable. From the prev		energy matter molecules/nutrients organism trophic groups
B) Matter is recycled, but energy is not recycled. Matter remains at a constant amount in an ecosystem, it does not disappear but remains in various forms. Matter exists in forms of carbon, nitrogen,		energy matter organism cycling ecosystem form heat molecules/elements
	into 0 or more categories	molecules/elements

Student Responses

Matter can be decomposed and recycled back into the environment, like a dead carcass or nutrient runoff. Energy however is lost, and although can be transferred, is not recyclable.

Category	Words & phrases in student responses
 Matter 	• Matter
• Energy	• Energy
 Organism 	 Dead carcass
 Decompose 	 Decomposed
 Cycling 	 Recycled Recyclable
• Loss	• Lost

- Connects text and cluster analyses
- Generates output for report
- Facilitates rapid analysis of new data sets

Question 1

- A tropical rainforest is an example of an ecosystem. Which of the following statements about matter and energy in a tropical rainforest is the most accurate?
- Please choose ONE answer that you think is best.

A) Energy is recycled, but matter is not recycled.	4%
B) Matter is recycled, but energy is not recycled.	83%
C) Both matter and energy are recycled.	13%
D) Neither matter nor energy is recycled.	0%

Explain your answer.

Scientific Ideas	Percentage	
Heat loss		69.4
Description of matter moving through trophic		
groups		40.0
Energy inefficiency		38.8
Biogeochemical cycling		27.1
Non-scientific Ideas	Percentage	
Energy converted into Matter		11.8
Matter converted into energy		8.2

Size of Smallest Cluster	48 (28.2%) □
Size of Largest Cluster	63 (37.1%)□
Ratio of Sizes: □ □ Largest Cluster to □ Smallest Cluster □	1.31□

Cluster Sizes

cluster-3

Clusters

Input (Predictor) Importance

Cluster	cluster-1 🗆	cluster-2	cluster-3
Label			
Description			
Size	37.1%	34.7%	
Inputs			· · ·
	FW_heat□□ 0.02□	FW_heat□□ 0.78□	FW_hea 0.56□
	FW_lost□□	FW_lost□□	FW_los
	0.30 🗆	0.98□	0.77
	FW organism□□	FW organism□□	FW organi
	⁻ 0.63 -	⁻ 0.83□	0.08□
			EW/ officio
			0.38
		Fvv_transter⊔⊔ 0.25⊡	FVV_trans 0.60
	EW low of	EW/ Jow of	EV// Jow/
	thermodynamics	thermodynamics	thermodynar
	FW_trophic_groups	FW_trophic_groups	FW_trophic g
	0.68	1.00	0.79

Size of Smallest Cluster	48 (28.2%)□
Size of Largest Cluster□	63 (37.1%)□
Ratio of Sizes: □ □ Largest Cluster to □ Smallest Cluster□	1.31□

Scientific Ideas	Percentage
Energy lost	67.6
Available energy decreases at higher trophic levels	54.7
Heat lost	43.5
Energy/Heat lost during transfer	42.9
Energy allocated to metabolism and growth	31.2
Second Law of Thermodynamics/Entropy	18.8
Non-scientific Ideas	Percentage
Surface interpretation	12.4
More energy consumed at higher trophic levels	10.6
Matter Energy Interconversion	4.7

Acknowledgements

USF Kelli Hayes Andrea Espina

Automated Analysis of Constructed Response Research Group (AACR) msu.edu/~aacr

This work was supported by the National Science Foundation (Grant DUE 1022653). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.