Math 1496 - Sample Test 2

1. Find the absolute minimium and maximum of the following on the given interval

$$
\begin{gather*}
\text { (i) } f(x)=1-x^{2} \text { on }[-1,3] \tag{i}\\
\text { (ii) } f(x)=2 x^{3}-15 x^{2}+24 x \text { on }[0,3]
\end{gather*}
$$

2. State the Mean Value Theorem. Verify the Mean Value Theorem for the following
(i) $\quad f(x)=x^{3}-x$ on $[0,2]$
(ii) $f(x)=\frac{x}{x+2}$ on $[1,10]$
3. If $y=x^{4}-6 x^{2}-8 x$ calculate the following
(i) The critical numbers
(ii) When y is increasing and decreasing.
(iii) Determine whether any of the critical numbers are minimum or maximum.
(iv) When y is concave up and down and determine the points of inflection.
(v) Then sketch the curve.
4. A ladder 13 feet long is resting against the wall of a house. The base of the ladder is pulled away from the wall at a rate of $2 \mathrm{ft} / \mathrm{sec}$. At rate is the tip of the ladder moving down the wall when the base of the ladder is 5 ft away from the wall?
5. A paper cup in the shape of an inverted cone with height 10 cm and a base of radius 3 cm , is being filled at a rate of $2 \mathrm{~cm}^{3} / \mathrm{min}$. Find the rate of change in the height of the water when the height of the water is 5 cm .
6. A rancher has 200 feet of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum?
7. An box with a square bottom is to be built that holds 64 cubic feet. Find the dimensions of the box that will minimize the surface area of the box.
